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The relationship between two variables may be mathetmatically
coupled if either one or both variables are derived and/or
calculated, and this can lead to erroneous results and invalid
conclusions. The purpose of this report is to identify four types
ofmathematic coupling of data. Type 1 coupling involves direc-
tional changes in two variables which are mathematically
coupled. Type 2 coupling is the functional relationship be-
tween two calculated variables which have one or more com-
mon component variables. Type 3, the most common type of
mathematic coupling, is direct algebraic coupling between two
variables, when one or more of the variables is derived and/or
calculated. Type 4 is indirect coupling or physiologic coupling.
The common problem in each type of mathematic coupling
is that one variable either directly or indirectly contains
the whole or components of the second variable. Statistical
techniques, when properly applied to the relationship between
the two variables, further obscure the underlying mathetr atic
coupling, and tend to support the erroneous results. Recog-
nition of mathematic coupling is imperative for correct data
analysis and accurate interpretation.

SEVERAL AUTHORS HAVE IDENTIFIED and empha-
sized misuse of and errors in statistical tech-

niques when applied to clinical and laboratory data."12
An equally important and totally overlooked source of
error in surgical and medical investigation is mathe-
matic coupling of data. Usually mathematically cou-
pled data is properly treated statistically, and this
tends to support erroneous results and obscure the
unrecognized underlying mathematic coupling. This
report identifies the cause of common mishaps in
mathematic data manipulation, including the most
common type-algebraic coupling of calculated vari-
ables, that lead to misinterpretation of results and
erroneous conclusion. Herein published examples of
mathematic coupling are cited to illustrate and eluci-
date each type. However, it is not the intent or pur-
pose of this study to criticize authors or editors.
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Methods

Definitions
Mathematic coupling. Mathematic coupling means

that part of the relationship between two variables that
is due to a common component, where one of the vari-
ables is contained in the other variable or a third
dependent variable is common to both variables.
Dependent variable. A dependent variable can take

on an array of values and depends on one or more
of the four classical independent variables of physical
science (the three co-ordinates defining the variable's
position in space, and time). Dependent variables
usually have a functional relationship with one or more
other dependent variables, and it is these relationships
which make up the vast majority of physical science.
For example, blood pressure is a dependent variable,
its value depending on the instant of time in which it is
measured and the position in the arterial or venous
system that one measures it. Thus, it depends on the
independent variables of time and position. However,
blood pressure is also a function oftwo other dependent
variables, the resistance of the vascular bed and
cardiac output.
A dependent variable may be a measured variable,

such as directly measured blood pressure or blood
flow, or a calculated variable. A derived variable
such as vascular resistance is always calculated but
a calculated variable is not necessarily derived.
In many instances a variable may be either measured
or calculated. For example, cardiac output can be
measured directly by the indicator dilution technique,
or calculated from Fick measurements of oxygen con-
sumption divided by the arterial-venous oxygen
content difference.
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Physiologic coupling. Physiologic coupling between
two dependent variables means that there is a common
component variable upon which both depend. How-
ever, physiologic coupling between two variables does
not require that one or both variables be calculated.

Types of Mathematic Coupling
An analysis of four types of mathematic coupling

that appear in the surgical and medical literature is
given. The first type ofmathematic coupling considered
is an analysis of the directional changes in two vari-
ables which are coupled mathematically. The second
type is the relationship between two calculated vari-
ables which have common component variables, and
the mathematic relationship between the two variables
is such that one or more of the apparent common
dependent variables cancel out. The third type of
mathematic coupling is direct algebraic coupling be-
tween two variables when one is derived and/or cal-
culated. This is by far the most common type of
mathematic coupling and several subtypes are given.
Algebraic coupling between two variables produces
an apparent correlation between the variables when no
true correlation exists, or it erroneously strengthens
any true functional dependence that does exist. The
fourth type presented is physiologic coupling.

Results

Type I Mathematic Coupling

Directional changes in mathematically coupled
variables. Consider a study where two variables A and
B are either directly measured or calculated. A third
variable C is formed from the sum of A and B. The
variables of interest are A and C where C = A + B.
If the question is asked, what happens to the direc-
tional changes of A and C with an intervention that
affects both A and B?, then it is apparent that there
are only eight possible combinations of directional
change in A and C. Table 1 gives the eight combina-
tions of either increasing or decreasing A in combina-
tion with increasing B, holding B constant, or de-
creasing B. Holding A constant is not considered be-
cause this does not cause a directional change in both
variables. Of the eight combinations of directional
changes, six are in the same direction, i.e., either both
A and C increase or both A and C decrease. The
other two combinations are changes in A and C in
opposite directions. Two sets of data of precisely this
type have been recently published,3 where 12 measure-
ments were made in man of A and B and directional
changes in A and C calculated (C = A + B). When a
nonparametric statistical technique (chi square) was

TABLE 1. Directional Changes in Two Coupled Variables A and C
Where A and B are "Measured" Variables and C is

Calculated from C = A + B

Directional Change Directional Change
in Measured Variables in Coupled Variables

A and B A and C

1. At BT AT CT same
2. A I B X A X C X same
3. At B, AAA>AB AT CT same
4. A tB, lA < AB A T C4 different
5. Al BT, AA>AB Al C same
6. A B T, AA < AB A CT different
7. A T B unchanged A T C T same
8. A I B unchanged A I C l same

applied to this data the null hypothesis assumed was
that there is an equal chance for A and C to go in
the same and in different directions, that is, six in the
same direction and six in the opposite directio,ns. The
probability values for the likelihood of the observed
directional changes of Figures 2 and 3 of Rhodes et al.3
being signficant were 0.05 and 0.01, respectively. How-
ever, because of mathematic coupling of the calculated
variable C with the variable A the null hypothesis is not
six and six (one to one) but rather nine and three (three
to one) (Table 1). If a chi square analysis is repeated
on the published data,3 using the correct null hypothesis
there is no statistical significance in direction change
in either set of data. In fact the two sets of cal-
culated data3 were nine and three, exactly what is
predicted by chance alone, and 11 and one; which is not
statistically different from the correct null hypothesis
for 12 measurements. The proper statistical test was
applied, but the unrecognized error was produced
through mathematic coupling of the variables A and C.

Type 2 Mathematic Coupling

The functional relationship between two calculated
variables with common component dependent vari-
ables. The effect of interventions that change a com-
ponent of two calculated variables may be misinter-
preted as a change in the relationship between the
two calculated variables unless the algebraic relation-
ship between the two calculated variables is clearly
understood. Common component variables may can-
cel out of the mathematic relationship when two cal-
culated variables are compared. An example of this
type coupling is a recent report of the effect of partial
hepatectomy on the hepatic uptake of glucagon and
insulin.4 The hepatic uptake of a substance is defined
as the flux of the substance in the portal vein plus the
flux of the substance in the hepatic artery minus the
flux in the hepatic vein all divided by the weight of the
liver. Thus an intervention such as partial hepatectomy
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independent of any experimental data and are illus-
trated in Figure 1. The slope of the new regression line
after 42% hepatectomy is expected to have a ratio of
1.7 to 1 when compared with the original slope, and
for a 72% hepatectomy the slope change is expected
to be 3.6 to 1 when compared with the original slope.
Figures 3 and 4 of Caruana and Gage4 indicate a slope
change after hepatectomy of 1.8 to 1 for both glucagon
and insulin analysis (the expected value due to coupling
of 1.7 is not significantly different), and with 72%
hepatectomy the ratio was 4.1 to 1 for glucagon and
for insulin 5.7 to 1 (the expected value being 3.6 to 1).
Neither of the latter differences are statistically sig-
nificantly different from the expected. Clearly, the
published data4 is the effect of changing liver weight
(partial hepatectomy), not any metabolic changes in
the liver. The results are predictable without measure-
ments, are independent of metabolic fluxes, and, there-
fore, cannot be interpreted as having anything to do
with insulin or glucagon being involved with hepatic
regeneration as the authors suggest.4 The linear re-
gression analysis was applied properly but what should
have been tested was the mathematic relationship be-
tween the two calculated variables hepatic uptake and
hepatic delivery.

Type 3 Mathematic Coupling

Classical algebraic coupling of two variables. This
type of mathematic coupling is frequently found in the
literature. It occurs by addition, subtraction, multipli-
cation, or division of one variable by another variable.

Consider a measured variable, X to which a random
number, a, is added or subtracted to form a second
variable Y = X a. If one plots on a vertical axis (or-
dinate) the calculated variable Y = X + a and on the
horizontal axis (abscissa) the value of X, then a strong
relationship between the Y co-ordinate and X co-
ordinate is guaranteed because of coupling. Classical
examples of data produced by addition and subtraction
coupling are Figure 1 ofArchie.5 Figure 2 ofGale et al. 6

Figure 1 of Fuller et al.7 and Figure 5 of Scharf et al.8
In each example cited the Y variable equals the X
variable plus or minus some other measured variable
or number. Thus, when a regression analysis is applied
to the data, it is expected to be highly significant be-
cause of coupling. While there may be some true
functional relationship between the X and Y variables
it is clearly obscured by the strong linear X and Y
mathematical coupling.
The most common type of mathematic coupling is

the relationship between a measured and a calculated
variable when the calculated variable equals the meas-
ured variable multiplied times another number or

72% HEPATECTOMY
(SLOPE 3/ SLOPE 1 3.6)

w

a. ~/ /42% HEPATECTOMY
D / X (SLOPE 2/SLOPE 1I1.7)

BEFORE HEPATECTOMY

HEPATIC DELIVERY, X

FIG. 1. Type 2 mathematic coupling. The functional relationship
between two complex calculated variables is determined almost en-
tirely by hepatic weight.

which changes the liver weight automatically changes
the calculated hepatic uptake of that substance.
Hepatic delivery of a substance is the flux of the sub-
stance in the portal vein plus the flux in the hepatic
artery all divided by the total body weight. If one com-
pares hepatic uptake (Y) to hepatic delivery (X), as
done by Caruana and Gage4 in their Figure 3 for
insulin and Figure 4 for glucagon, the linear equation
relating the two variables is Y = aX + b, where a
is the slope and b the intercept of the line. However,
direct algebraic calculation of hepatic uptake (Y)
versus hepatic delivery (X) from the definition of each
shows that the slope is determined almost entirely by
change in the liver weight. Specifically, the equation
of the line relating hepatic uptake (Y) and hepatic de-
livery (X) is: Y = (body weight/hepatic weight) X-
(hepatic vein flux/liver weight). The slope of this line
is body weight divided by liver weight. The portal vein
and hepatic vein fluxes cancel out completely and are
not part of the functional relationship ofX and Y. The
slope of the linear relationship between these two
variables is determined only by body weight divided by
liver weight. This is due to coupling of the calculated
X and Y variables. Since the effect of removing even

72% of the liver decreases body weight only a small
per cent, the change in slope of the relationship be-
tween X and Y is almost completely determined by
change in liver weight, and is independent of all fluxes.
Thus, no flux measurements need to be made to predict
the effect of hepatectomy on the change in the slope
of the relationship between hepatic uptake and hepatic
delivery of a substance. The effects of a 42% and a

72% hepatectomy on these two variables are predicted
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FIG. 2. Classical product coupling of variables.
Arterial-venous oxygen content difference (A
AV, Y axis) and cardiac index (CI, X axis) are
the assumed measured variables given in (A),
where the data was obtained from random num-
ber tables. Oxygen consumption (VO2) is cal-
culated from the product of cardiac index and
arterial-venous oxygen difference. This is pro-
duced by multiplying the y coordinates in (A)
by cardiac index as given in (B). Oxygen con-
sumption (a calculated variable) versus car-
diac index is given in (C). A linear regression
analysis of the mathematically coupled data in
(C) is given.
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variable. Figure 2 illustrates this type of mathematic
coupling. The Y co-ordinate of Figure 2C is a cal-
culated variable obtained by multiplying the Y and X
variables of Figure 2A. In Figure 2A the data was ob-
tained from random number tables. For discussion pur-
poses, the X axis is arbitrarily called cardiac index
and the Y axis called arterial-venous oxygen content
difference. If one wishes to compare oxygen consump-
tion with cardiac index then oxygen consumption, now
a calculated variable, is obtained by multiplying
arterial-venous difference times cardiac index. This
is done by multiplying the X and Y variables of Figure
IA, given schematically as multiplying the Y co-

ordinates of Figure IA times the Y co-ordinates of
Figure iB, to produce Figure IC. The two variables
in Figure IC appear to be statistically significantly
related, the linear regression analysis correlation co-
efficient is 0.75, the standard error is small and the
slope is significantly different from zero. This type of
data and results are purely artificial, can be produced
with random numbers and are due to algebraic
coupling. Examples of this type mathematic coupling
are Figure 3 of Siegel et al.9, Figure 1 of Weisel et al.'0
and Figure 1 of Kennedy et al."

A slightly more sophisticated, but just as common,
technique of algebraic coupling is the inverse rela-
tionship of the Y and X variables produced by
division coupling. Figure 3 illustrates this type coupling.
In Figure 3A random numbers between 1 and 2 are
given for the X variable which, for discussion pur-
poses, is called oxygen consumption, and for the Y var-
iable, which is called arterial-venous oxygen differ-
ence. Ifone wishes to compare arterial-venous oxygen
difference to cardiac index then the later variable can
be calculated by dividing oxygen consumption by
cardiac index. The reciprocal of cardiac index is given
in Figure 3B, and the result is given in Figure 3C.
While the true mathematic relationship between the
coupled variables arterial-venous difference and cardiac
output is parabolic and not linear, there is sufficient
variability that a linear regression is an acceptable
approximation of the apparent functional relation-
ship. Figure 3C suggests a strong inverse relationship
between arterial-venous oxygen difference and cardiac
index with a correlation coefficient of 0.77, a narrow
standard error and a slope significantly different from
zero. However, this result is entirely due to mathe-
matic coupling and has no basis in reality, since
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FIG. 3. Classical division coupling of variables.
Arterial-venous oxygen content difference (A AV;
Y axis) and oxygen consumption (VO2, X axis)
are the assumed measured variables given in (A),

' °° where the data was obtained from random number
tables. Cardiac index (CI) is calculated by dividing
oxygen consumption by the arterial- venous oxygen
content difference. This is done by multiplying
the Y axis of (A) by (B) to produce (C), arterial-
venous oxygen content difference versus cardiac
index. A linear regression analysis of the mathe-
matically coupled data in (C) is given.

Cl V02/AAV

the data base were random numbers. A classical ex-

ample of this type of coupled data has been pub-
lished for laboratory animals in Figure 2 of Wright et
al.12 and for man in Figure 4 of Duff et al.13 This data
was interpreted to mean that there is a strong in-
verse relationship between arterial-venous oxygen

content difference and cardiac index in septic shock.12'13
In both of these studies'2"13 oxygen consumption, not
cardiac index was the measured variable and cardiac
index was calculated, as illustrated above. Comparison
of calculated cardiac index to arterial-venous oxygen
content difference produces coupled data identical to
that of Figure 3C. Because of mathematic coupling,
a correlation coefficient of 0.71 is expected (r = 0.71
then r2 = 0.50, since 50% of the relationship between
X and Y is due to coupling), and the authors'2"13 found
correlation coefficients of 0.82 and 0.83, probably not
significantly different from chance alone (0.71) when
coupling is accounted for.

Vascular resistance is another hemodynamic variable
that is frequently mathematically coupled, probably
because it is a derived variable. For example, if
systemic or pulmonary vascular resistance (resistance

= pressure gradient/flow) is compared with pressure
gradient then multiplication type coupling occurs
(Fig. 2), and if resistance is compared to flow then
division type coupling occurs (Fig. 3). Examples of
mathematic coupling of vascular resistance with pres-
sure or flow are given in Figure 5 of Kersten et al.'4
and Figure 1 of Siegel et al.9 Other examples of
division type algebraic coupling are given in Figure
3 of Daniel et al.,15 Figure 2 of Berkowitz'6 and
Figure 4 of Siegel et al.9 Nonlinear division type
coupling is illustrated by Figures 7-10 of Karayan-
nacos et al.,'7 where the X axis is directly pro-

portional to velocity and the Y axis is inversely
proportional to the velocity squared.

Type 4 Mathematic Coupling

Physiologic coupling. As indicated above, mathe-
matic coupling is possible when a calculated variable,
such as vascular resistance, is compared with a meas-
ured variable, which is a component of the calculated
variable, such as pressure gradient or cardiac output
being compared with resistance. However, if two vari-
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ables are not calculated, but are directly measured,
it is still possible to have coupling between the two
variables. This is called physiologic coupling. For ex-
ample, if cardiac output and heart rate are directly
measured and compared, it is expected that some linear
relationship between the two variables will be found
because cardiac output depends physiologically on
heart rate. A recent article18 illustrates the com-

plexity of physiologic coupling in clinical investigation.
In this study,18 a significant relationship was found be-
tween the per cent increase in heart rate from control
during nitroprusside infusion and the per cent change
in systemic vascular resistance after nitroprusside
withdrawal. Resistance was calculated from measured
cardiac output and measured pressure gradient. Heart
rate was measured independently and, therefore, there
is no direct calculated algebraic coupling between
resistance and heart rate. From the analysis of the
relationship between change in heart rate from con-
trol (state 1) to nitroprusside (state 2) and change in
resistance from nitroprusside (state 2) to final control
(state 3), it is evident that the resulting apparent
relationship between the changes in these two variables
is due primarily to physiologic coupling, and is pre-

dictable from mathematic analysis. To analyze this
relationship the subscripts 1, 2 and 3 are used to
identify the two steps and three states, respectively-
control, nitroprusside, and postnitroprusside, where
HR is=heart rate, SV is stroke volume, P is mean
systolic pressure, CO is cardiac output (CO = HR
SV), and R is resistance (R = P/CO). If Y is the frac-
tional per cent change in heart rate from state 1 to
state 2, then Y = (HR2/HR1) - 1 = (HR2/HR3) (HR3/
HR1) - 1. If X is the fractional per cent change in R
from state 2 to state 3, then X = (R3/R2 - 1) = (P3/P2)
(CO2/CO3) - 1, or X = (P3/P2) (SV2/SV3) (HR2/HR3)
- 1. Thus the equation of a line relating X and Y is
Y = a X + b, where the slope a is (P2/P3) (SV3/
SV2) * (HR3/HR1), and the intercept b is b = a - 1. The
slope and intercept of the relationship between the X
and Y variables depends on P2/P3, SV3/SV2 and
HR3/HR1. They do not depend on P1, HR2, or SV1. If
one considers no change in heart rate between the
initial and final state, HR3/HR1 = 1, and no change in
pressure or stroke volume between the nitroprusside
and final state, (P2/P3) = (SV3/SV2) = 1, then the equa-
tion Y = a X + b predicts a slope of 1.0 and an inter-
cept of 0. In Figure 4 of Packer et al.18 the authors
found a slope of 0.78 and an intercept of - 0.22, not
much different from what is expected if the only
variable that changed was heart rate. The raw data of
Figures 1-3 of Packer et al.18 indicate that the cal-
culated slope, a, is less than 1.0 because of the small

relative directional changes in the measured variables
determining the slope in the mathematic relationship.
The intercept of the regression equation in Figure 4 of
packer et al.18 is -21.3%, or -0.213. If this value is
substituted into the algebraic equation derived herein,
a slope of 0.79 is calculated (a = 1 - 0.21) as com-
pared with the regression equation slope of 0.78. This
indicates that almost all of the apparent interdepend-
ence of changing heart rate during nitroprusside and
per cent rebound change in systemic vascular re-
sistance after stopping nitroprusside is due to physi-
ologic coupling between the two variables. Only by
comparing the raw data to the coupled relationship
presented above can one determine that there is a

significant difference in slope between the line pre-
dicted from the physiologic coupling and the actual
measured data.

Physiologic coupling frequently occurs in dealing
with the pulmonary shunt equation. For example, in
Figure 1 of Berk et al.16 the per cent change from
control of the pulmonary shunt is compared with
per cent change from control of cardiac output follow-
ing an intervention. The shunt equation, QS/Qt = 0.0031
(A - a DO2) (Qt/VO2) where Qs is the shunted blood
flow and Q, is the cardiac output, predicts that frac-
tional per cent shunt (Q,Qt) is directly related to
cardiac output (Qt) if one assumes that oxygen con-
sumption (VO2) is a constant, which it usually is
unless cardiac output is very low. Accordingly, a
linear relationship between calculated shunt and oxy-
gen consumption is expected, as indicated herein Fig.
2 (type 3 coupling, multiplication). However, since
cardiac output values were not used to calculate
per cent shunt directly there is no direct algebraic
coupling between per cent shunt and cardiac output,
but there is physiologic coupling because of the linear
dependence of shunt on cardiac output, when oxygen
consumption is near constant.
A final example of physiologic coupling involves

comparison of two variables, each of which is func-
tionally dependent on a third variable. An example is
given in Figures 2 and 3 of Sorensen and Enell20
where peripheral and systemic vascular resistance
changes are compared with changes in hematocrit.
There is a physiologic relationship between peripheral
vascular resistance and hematocrit. Since it is known
that vascular resistance depends directly on blood
viscosity, the higher the viscosity the higher the re-

sistance, and since viscosity depends on hematocrit
the higher the hematocrit the higher the viscosity.
Thus, it is not surprising to find a relationship indicat-
ing that increases in peripheral vascular resistance are

associated with increasing hematocrit and vice versa.20
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This is an example of physiologic coupling and is
predictable because of the known dependence of
vascular resistance on viscosity and the dependence of
viscosity on hematocrit.

Discussion

The four types of mathematic coupling presented
herein, while they may be the more common types,
are probably not the only types that occur in the sur-
gical and medical literature. In each of the types pre-
sented statistical analysis plays a major role, but only
in the final analysis of the data. The statistical methods
are properly applied, but the error in data manipula-
tion occurs earlier. The statistical analysis serves to
support the apparent significant relationship between
variables or changes in variables and, thus, tend to
legitimatize the erroneous results and conclusions.

In many instances there may be some true func-
tional relationship between two variables but, because
of superimposed mathematic coupling, the functional
relationship is overestimated. In the examples given
in Figures 2 and 3 of this report the base data were
obtained from random number tables and therefore
the two "measured" variables should not have any
true functional relationship to each other. Accordingly,
the final erroneous but apparently significant results
are due totally to mathematic coupling.

Analysis of Types 1, 2 and 3 mathematic coupling
strongly suggest that when a variable is calculated
from measured data and then compared with a second
variable, the investigator should analyze the calcula-
tions to see if there is a dependent variable that is a
component of both. If this is not the case, then any
functional relationship between the two variables is
probably real. On the other hand, if there is a common
variable, then one must account for its effect on the
relationship between the two variables.

In the illustration used of Type 1 mathematic
coupling the statistical analysis played a major role in
the erroneous results because the incorrect null hy-
pothesis was assumed. This is evident only when the
mathematical coupling is identified.
Type 2 mathematic coupling involves coupling be-

tween two calculated variables which have several
common dependent variables which cancel out of the
relationship between the two variables. The true rela-
tionship between the two variables is simpler and
more easily predictable than expected. When cal-
culated variables that have common components are
analyzed for functional relationships, coupling is al-
most certain, and cancellation of some component
variables is possible.

Type 3 mathematic coupling is by far the most com-
mon type and can be found throughout the literature.
Algebraic coupling should always be suspected in the
relationship between two variables when one or both
are calculated. Algebraic coupling between two vari-
ables must be accounted for to obtain correct data
analysis. Interpretations of the results should be
formed with knowledge of the contribution of the
pre-existing mathematic coupling.

Physiologic coupling, as described herein, is com-
plex, interesting, and perhaps should be considered
"soft" or indirect coupling." In the example presented
the underlying common variable was change in heart
rate, and while vascular resistance is not directly
mathematically coupled to heart rate because heart
rate was not used to compute resistance, there is
indirect or physiologic coupling through heart rate.
This guarantees a linear relationship between the two
variables if change in heart rate varied over a reason-
able range. Clearly, the possibility of physiologic
coupling should be considered and accounted for
when dealing with complex relationships between
variables.
A general principle regarding mathematic coupling is

to consider that it may play a role in any conclusions
or statistical results relating calculated variables. If
two or more variables are compared the effect of
common component variables either through mathe-
matic coupling, because one or more variables are
calculated, or through physiologic coupling should be
analyzed and accounted for.
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