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ABSTRACT

The major problem of using somatic mutations
as markers of malignancy is that the clinical sam-
ples are frequently containing a trace amounts of
mutant allele in a large excess of wild-type DNA.
Most methods developed thus far for the purpose of
tickling this difficult problem require multiple pro-
cedural steps that are laborious. We report herein
the development of a rapid and simple protocol
for detecting a trace amounts of mutant K-ras in a
single tube, one-step format. In a capillary PCR, a
17mer peptide nucleic acid (PNA) complementary
to the wild-type sequence and spanning codons 12
and 13 of the K-ras oncogene was used to clamp-
PCR for wild-type, but not mutant alleles. The desig-
nated PNA was labeled with a fluorescent dye
for use as a sensor probe, which differentiated all
12 possible mutations from the wild-type by a melt-
ing temperature (Tm) shift in a range of 9 to 16�C.
An extension temperature of 60�C and an opposite
primer 97 nt away from the PNA were required
to obtain full suppression of wild-type PCR. After
optimization, the reaction detected mutant templates
in a ratio of 1:10 000 wild-type alleles. Using this
newly devised protocol, we have been able to detect
19 mutants in a group of 24 serum samples obtained
from patients with pancreatic cancer. Taken together,
our data suggest that this newly devised protocol
can serve as an useful tool for cancer screening
as well as in the detection of rare mutation in many
diseases.

INTRODUCTION

Somatic mutations are useful markers for the early detection
of cancer (1,2). For example, the K-ras mutation in codons
12 and 13 occurs in 80–90% of pancreatic cancer and 35–50%
of colorectal cancer (3–5). However, detecting such mutations
for population screening purposes presents a challenge for the
clinical laboratory because of the large excess of wild-type
DNA usually found in clinical samples, especially in body
fluids or stool. This excess of wild-type DNA can exhaust
essential reagents during PCR, and tends to mask the mutant
signal during detection assays. The general strategy used to
date to overcome this difficulty was to employ suppression of
the wild-type allele or enrichment of the mutant allele during
amplification, and followed by using a detection procedure
that provided a sufficient resolution to reveal the mutant
signals. Methods used to enrich mutant template level include
allele-specific amplification (6), restriction enzyme digestion
of wild-type DNA (4,7,8) and sequence-specific ligation (9).
Methods used to detect mutant signal include: (i) distin-
guishing the conformational or length differences by gel
electrophoresis (10–12) or denaturing high-performance liquid
chromatography (13); (ii) detecting short sequences by mass
spectrometry (14,15); and (iii) detecting nucleotide sequence
changes by melting curve analysis (16), endonuclease V reac-
tion (17) or hybridization on a microarray chip (18). However,
most of these methods are not convenient for use in clinical
laboratories owing to multiple procedural manipulations that
are time-consuming and cost ineffective. Most importantly,
the risk of contamination during multiple transfers was
increased.

Recently, the peptide nucleic acid (PNA)-based PCR
procedure has been developed for the enrichment of mutant
alleles (19). PNA is a synthetic DNA analog in which
the normal phosphodiester backbone is replaced with a
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2-aminoethylglycine chain. Its nucleobases complement DNA
or RNA in the normal A-T and G-C geometry (20–22). Two
important features make PNA a superior PCR clamp for
specific alleles. PNA cannot serve as a primer for polymer-
ization, nor can it be a substrate for exonuclease activities of
Taq polymerase. In addition, the melting temperature (Tm) of
a perfectly matched PNA–DNA duplex is higher than that of
DNA–DNA of the same length, but a single mismatch
destabilizes the PNA–DNA hybrids, causing a Tm shift of
10–18�C (23). Therefore, PNA can specifically block primer
annealing or chain elongation on a perfectly matched template
without interfering with these reactions on templates with
mismatched bases (15,24,25). In addition, the large Tm differ-
ence between perfectly matched and mismatched hybrids
makes PNA a good sensor of point mutations. For example,
a PNA sensor probe has been used to detect GNAS mutations
after PCR (26).

The use of melting curve analysis in combination with
fluorescent probes provides a powerful tool for the detection
of single base alterations. The hybridization probe system
is most widely used for this purpose. This system usually
comprises a pair of oligonucleotides—the anchor and the
sensor—each labeled with a different fluorescent dye, such
that fluorescence energy transfer occurs between the
two when they anneal adjacent sites of a complementary
PCR strand (27). The melting curve profile of the sensor
probe (designed to anneal to the variable region), allows
for homogeneous genotyping in a closed tube (27). Recently,
hybridization probes was combined with PNA-mediated
PCR clamping for detection of variant bcr-abl allele in
leukemia (28), and of K-ras mutation in pancreatic cancer
(29,30).

In this report we devised a convenient PCR procedure
for the detection of a trace amounts of mutant K-ras in a
large excess of wild-type DNA. The key feature of this pro-
cedure is that a PNA oligomer serves as both PCR clamp and
sensor probe, which allows for differentiation from the wild-
type of sequence alterations in codons 12 and 13. The principle
of this design, as well as other methods for PNA-mediated
PCR clamping, is depicted in Figure 1.

MATERIALS AND METHODS

Primers and probes

Three forward primers (F1, F2 and F3) and a reverse
primer (R) were designed to amplify K-ras fragments in
exon 1. The sensor probe covering the variable region is a
17mer PNA labeled with fluorescein at the N-terminus (equi-
valent to the 50-end of a DNA oligomer) The anchor probe is
a 44mer DNA labeled with fluorescent dye LC-Red 640
at the 30-end. PCR primers and the anchored probe were
provided by TIB MOLBIOL (Berlin, Germany). PNA was
provided by Applied Biosystems (Forster City, CA, USA).
Sequences of primers and probes used in this study are listed
in Table 1.

Templates

Wild-type genomic DNA was purified from the cultured
human leukemia cell line K-562 (BCRC60007; from Resource

Collection and Research Center, Hsinchu, Taiwan) using a
QIAamp DNA-blood-mini kit (Qiagen, Hilden, Germany).
Purified DNA was quantitated by ultraviolet (UV) spectro-
photometry and stored at �20�C until use. Mutant templates
were either purified from cell line SW480 (BCRC60249) by
the QIAamp kit or synthesized by PCR-based site-directed
mutagenesis. SW480 cells harbor a G to T mutation at the
second base of codon 12 in the K-ras gene. The PCR-based
site-directed mutagenesis was performed using one of 12 dif-
ferent primers complementary to the variable region of the K-
ras gene but bearing a mismatch at either the first or second
position of codon 12 or 13 (Table 1). Sequences of all the
synthesized mutant templates were verified by an auto-
sequencer. The synthesized templates were purified with QIA-
quick PCR purification kit (Qiagen) and diluted with 10 mM
Tris–HCl (pH 8.0) containing 1 mg/ml salmon sperm DNA and
stored at �20�C before use.

Figure 1. The schematic concepts using PNA-mediated PCR for detection of
mutant K-ras. For simplification, only one template strand is shown.
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PCR analysis

PCR was performed in a 20 ml reaction mixture containing 1·
reaction buffer [50 mM Tris (pH 8.5), 3 mM MgCl2, 500 mg/ml
BSA, 200 mM each deoxyribonucleoside triphosphate],
0.5 mM forward and reverse primers, 0.25 mM PNA, 0.5 U
Platinum Taq (Invitrogen, Carlsbad, CA, USA), and templates.
The amplification was performed on a LightCycler (Roche
Diagnostics, Mannheim, Germany) starting with a 2 min
denaturation at 94�C, then running for 50 cycles as follows:
94�C held for 0 s for denaturation; 70�C held for 5 s for PNA
binding, 56�C held for 0 s for primer annealing and 10 s at
various temperatures for extension. Melting analysis was per-
formed after a 20 s denaturation at 95�C and then decreasing
the temperature to 45�C at ramp rate 0.7�C/s. Detection was
in channel F2 for the LC-Red 640 labeled probes.

Detection of K-ras mutation in patients’ sera

Serum samples were collected from 24 pancreatic cancer
patients in Chang Gung Memorial Hospital, Taiwan. Control
samples were collected from 10 healthy volunteers. DNA was
extracted from 200 ml aliquots of serum using a QIAamp
DNA-blood-mini kit (Qiagen). One-fourth of the eluted
DNA was used as PCR template. PCR was performed using
F2 as the forward primer and 60�C (clamp condition) or 72�C
(non-clamp condition) as extension temperature. Presumptive
mutants were identified as those samples having melting peaks
close to 60�C. To confirm results and determine specific muta-
tion types, PCR products were separated on a 2% agarose gel,
eluted, and then sequenced by an automated DNA sequencer.

RESULTS

The 17mer PNA probe differentiated wild-type K-ras
from mutants

To determine whether our hybridization probes could differ-
entiate wild-type from mutant K-ras, we made 12 mutant
templates by PCR-based site-directed mutagenesis. These
12 mutants cover all possible single nucleotide mutations in

codons 12 and 13 that result in amino acid changes. In the
regular PCR conditions, all of these mutant templates as well
as the wild-type template can be amplified. Melting curve
analysis revealed that the Tm of the PNA probe bound to
wild-type K-ras is 69�C, but varies between 53 and 60�C
when bound to the different mutant templates (Figure 2).
This indicates that a single nucleotide change causes a Tm

shift of 9–16�C for the 17mer PNA probe.

PNA suppresses PCR of wild-type but not mutant
templates at a lower extension temperature

To determine whether the conventional PCR extension step
is conducted at a temperature that is too high for the PNA to
inhibit elongation through the wild-type template, a mixture of
1 ng of mutant genomic DNA and a 100-fold excess of wild-
type DNA was used as template for real-time PCR performed
using different extension temperatures. When doing extension
at 72�C or 65�C, only the wild-type melting curve was seen,
indicating that no obvious clamp occurred (Figure 3A and B).
After lowering the extension temperature to 60�C, which is
around the Tm of mutants and 9�C lower than the wild-type Tm,
the mutant peak started to appear (Figure 3C). Further
decreases the extension temperature, to 55�C or 50�C, slowed
PCR amplification of both wild-type and mutants (data
not shown).

Distant primers enhance PCR clamping of
wild-type templates

In addition to extension temperature, we demonstrated that the
position of opposite primers also influences the PNA-mediated

Figure 2. The PNA sensor probe differentiated the 12 possible K-ras mutations
in codons 12 and 13 from the wild-type. Mutant K-ras were generated by PCR-
mediated site-directed mutagenesis and were used as PCR templates to test the
resolution of the PNA sensor probe. All the PCR were performed under non-
clamping conditions, using primer F1, and 72�C for extension. Melting curves
(A) and melting peaks (B) were plotted after PCR. Filled and open arrowheads
indicate wild-type and mutant melting peaks, respectively. Mut, mutant; WT,
wild-type; NTC, no template control.

Table 1. Primers and probes used in this study

Name Sequence (50–30 for
DNA or N to C for PNA)

Positiona

Primers
F1 atgactgaatataaacttgtggta 1 � 24
F2 attaaccttatgtgtgacat �70 � �51
F3 tactggtggagtatttgata �94 � �75
R caagatttacctctattgtt 121 � 102

Probes
Sensor (PNA) (FIuorescein)-cctacgccaccagctcc 44 � 28
Anchor gtccacaaaatgattctgaattagctgtatcgtcaaggcactct-

(640)
90 � 47

Primers for site-directed mutagenesis
M1Xb atgactgaatataaacttgtggtagttggagctXgtggcgta 1 � 42
M2X atgactgaatataaacttgtggtagttggagctgXtggcgta 1 � 42
M3X atgactgaatataaacttgtggtagttggagctggtXgcgta 1 � 42
M4X atgactgaatataaacttgtggtagttggagctggtgXcgta 1 � 42

aA of the ATG start codon is designated as position 1.
bX represents either A, T or C. The number represents the position of four
guanines in codons 12 and 13. Therefore, ‘M1C’ would indicate a G to C change
at the first guanine.
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PCR clamping. When using primer F1, which is 28 nt away
from the PNA binding site (Figure 4A), wild-type amplifica-
tion could not be completely suppressed (Figures 3C and
4B). However, when using primers F2 and F3, which are
more than 97 nt from the PNA binding site, wild-type
amplification was successfully inhibited, and only the mutant
was amplified (Figure 4B).

The assay detects rare mutants in a large excess of
wild-type DNA

To determine the assay’s limits for detecting rare mutants, we
used different amounts of mutant genomic DNA mixed with
100 ng of wild-type genomic DNA as templates. When per-
forming PCR under optimal conditions, using primer F2 and
doing extension at 60�C, as little as 10 pg of mutant DNA
(about three genomes, or 1:10 000) was detected by melting
curve analysis (Figure 5).

The assay detects K-ras mutations in serum DNA

Of 24 purified serum DNA samples from pancreatic cancer
patients, 19 (79%) had melting peaks close to 60�C and were
presumed to be mutants; the other five samples without obvi-
ous peaks were presumed to be wild-type. Sequence analysis
confirmed that each of the 19 ‘expected mutants’ had a point
mutation in codon 12 (Table 2). Note that all the ‘expected
wild-type’ could not be amplified during clamp-PCR: these
samples were subjected to PCR under non-clamp condition to
ensure that they contained amplifiable DNA (data not shown).
In addition, using our assay, all samples from the 10 healthy
controls were determined to be wild-type (data not shown).

DISCUSSION

The essence of this study was the development of a PCR
procedure for the detection of trace K-ras mutations using

Figure 4. Primer position affects the clamp efficiency of PNA-mediated PCR clamp. (A) Relative positions and orientations of PCR primers and probes. (B) Melting
peaks after clamp-PCR using 100 ng wild-type plus 1 ng mutant genomic DNA as templates and either F1, F2 or F3 as the forward primer. Filled and open
arrowheads indicate wild-type and mutant melting peaks, respectively.

Figure 3. Extension temperature affected the efficiency of the PNA-
mediated PCR clamp. PCR were performed using either 100 ng wild-type
(WT), 1 ng mutant (Mut) or a mix containing 100 ng wild-type and 1 ng
mutant genomic DNA (WT + Mut) as templates and F1 as the for-
ward primer. Extension temperatures were 72 (A), 65 (B) or 60�C (C).
Filled and open arrowheads indicate wild-type and mutant melting peaks,
respectively.
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PNA as a PCR clamp as well as a sensor probe. The uniqueness
of our newly developed method is that PCR amplification,
mutant enrichment and mutation detection can be accom-
plished in a single tube on a LightCycler without having to
go through several laborious procedures including electro-
phoresis, hybridization and enzymatic reaction. Next, the
Tm difference between perfectly matched templates and
mismatched templates is larger for PNA probes than oligo-
nucleotide probes. For this reason, all alleles with single base
changes can be readily distinguished from wild-type by melt-
ing peak analysis. Most importantly, only one pair of primers
and probes is required to detect all 12 possible mutations from
the wild-type in codons 12 and 13 of K-ras. All these advant-
ages greatly simplifies the manipulating procedure and thus
can be potentially useful in multiplex assays. Finally, our
procedure can detect as low as 10 pg of mutant genomic
DNA against a background of 100 ng of wild-type DNA
(a 1:10 000 ratio).

Using PNA as both sensor probe and PCR clamp is an
important feature of our method. Association and dissociation
of PNA and its complementary DNA is revealed by melting
curve analysis. This allows for easy optimization of thermal
conditions for PCR clamping of wild-type, but not mutant
templates. The Tm of the PNA-wild-type templates is 69�C:
at 72�C, the extension temperature used in conventional PCR,
less than half of these templates are associated with PNA,
leading us to hypothesize that the PNA clamp would not be
efficient under this temperature. As indicated in the Figure, we
found that in order to inhibit the wild-type amplification to a
full extent, an extension temperature of 60�C, 9�C lower than
the wild-type Tm, should be used. Conversely, an extension
temperature of 60�C has a minimal effect on mutant ampli-
fication. Since the Tm’s of all the mutants studied fall between
53 and 60�C, we can conclude that at a temperature above Tm,
Taq polymerase can readily repel a PNA block and continue
the chain elongation.

The fact that primer position also affected the efficiency
of clamping is somewhat surprising. Our explanation is that
primer position determines the running off distance from the
PNA binding site. At the extension temperature (60�C) used
in PCR during this experiment, the progression of Taq
polymerase on the wild-type template is hindered because

of PNA binding. When reaction temperature ramps from 60
(extension) to 94�C (denaturation phase of the next cycle),
PNA leaves the wild-type DNA at some temperature close
to its Tm (69�C) and polymerization resumes. This polymer-
ization will occur over a very short time, however, because the
polymerase will quickly dissociate from the template as the
temperature continue to rise. Given this narrow ‘window of
opportunity’, whether or not the polymerization can be fin-
ished depending on the distance to run off. If this distance is
too long, the polymerase does not have sufficient time to run
off the template. The ‘chain reaction’ of PCR is therefore
abolished, because the truncated products, lacking a primer-
binding site, can no longer serve as templates during the next
cycle. Our results also suggest that the ramp rate of a thermal
cycler may also influence the efficiency of a PNA clamp. We
have found that the slower the ramp rate, the longer is the
distance required between PNA and primer for successful
clamping (C.C. Chiou, unpublished data).

Applying the optimal conditions resulted in the successful
detection of mutant alleles in serum DNA from patients with
pancreatic cancer, indicating that the procedure has potential
for use in screening for malignant diseases in clinical labor-
atories. Although the assay cannot identify specific mutation
types, the PCR products can be subjected to further analysis,
such as sequencing, to confirm preliminary findings; this
also makes the procedure useful for research purposes.
Note that although mutations occurring in codons 12 and
13 are more likely to be found in cancer patients, other muta-
tions occurring in the flanking region covered by the PNA can
also be differentiated by the assay. The mutation spectrum
shown in Table 2 reveals that the majority of K-ras mutations
in our samples are GGT to GTT in codon 12, which is con-
sistent with a previous study indicating that this mutation
accounts for 94.5% of pancreatic cancer in the Taiwanese
population (31).

PNA in combination with oligonucleotide hybridization
probes was used for rapid detection of K-ras mutations in
two previous studies. In both studies, a pair of oligonucleotide
hybridization probes was used to detect mutations, and a
17mer PNA was used to suppress PCR of the wild-type allele
(see Figure 1C and references 29 and 30). Because the PNA
bound to DNA so tightly, not only did it suppress PCR, but also
it competed with the sensor probe for binding to K-ras
templates. As a compromise, the investigators designed
mutant-specific sensor probes. The perfectly matched mutant,
with its high Tm (70.6�C), had the largest Tm difference from
wild-type (66.3�C). Other mutants had Tm’s closer to that

Table 2. Type of K-ras mutations found in serum DNA from pancreatic cancer

patients

(Codon) mutationa (amino acid change) Number Mutant
melting peak

(12) GGT ! GTT (Gly ! Val) 16 Yes
(12) GGT ! AGT (Gly ! Ser) 1 Yes
(12) GGT ! GAT (Gly ! Asp) 1 Yes
(12) GGT ! GTT, GATb (Gly ! Val, Asp) 1 Yes
Wild-type 5 No
Total 24

aAltered bases are underlined.
bTwo mutations co-exist in the patient.Figure 5. Assay sensitivity for detection of K-ras mutants in a large excess of

wild-type DNA. 100 ng wild-type genomic DNA plus various amounts of
mutant genomic DNA were used as templates for clamp-PCR. Under the opti-
mal condition using F2 as the forward primer and 60�C as extension tempera-
ture, the assay detected the signal from as few as 10 pg mutant DNA without
interference from the wild-type DNA. Filled and open arrowheads indicate
wild-type and mutant melting peaks, respectively.
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of wild-type and were therefore less easily differentiated. The
design of these studies and ours look similar but utilize very
different underlying logic. In these other studies, in addition
to use of mutant-specific probes, 72�C was used as the exten-
sion temperature during PCR, leading to inefficient clamping
of wild-type amplification. However, the assay was also sens-
itive (1:10 000) because the PNA inhibited probe binding
to wild-type products, so only the mutant signal was revealed
on the melting curve. A possible problem with this design is
that competition always exists between the PNA and the
probe. The extend to which the signal is affected by this
competition when a mutant is mismatched to both PNA and
probe is not clear.

Recently, another DNA analogue, namely locked nucleic
acid (LNA), was introduced and used in molecular detection
assays (32). PNA and LNA probes have been used in com-
bination to detect genetic heterogeneity of epidermal growth
factor receptor (EGFR) in non-small cell lung cancer (33). In
that study, mutant-specific LNA probes were used in a real-
time PCR to generate amplification curve, and PNA was used
to clamp wild-type amplification. The LNA probes resembled
TaqMan probes, with a fluorophore at one end and a quencher
at the other end. An amplification curve was generated when
the probes were cleaved by Taq DNA polymerase during PCR.
By analysis of the second derivative of the amplification curve,
mutants containing a point mutation or a deletion in the EGFR
gene were detected in 100 to 1000-fold excess of wild-type
alleles. This study suggests that combining different DNA
analogues can be used to develop powerful tools for detecting
gene alterations.

Our assay may prove to have additional advantages. For
example, mutant detection can be quantitative if samples with
standard concentrations are assayed in parallel with clinical
specimens, which may be useful in some situations for evalu-
ation of the severity of disease. In addition, the PCR products
of our assay can be used for further sequencing analysis, or in
other enzymatic reactions, after a simple purification step,
without interference by the PNA. Furthermore, multiplex
assays can be performed in a single tube as long as the
real-time PCR machine can differentiate fluorescent signals
between different probes.

In summary, our study has provided a simple method to
detect a trace amounts of K-ras mutants in large excess
of wild-type DNA. This method has great potential for use
in cancer screening, and could be adapted for detection of
trace mutants pertinent to other diseases. Our study has
defined important factors affecting the efficiency of PNA-
mediated PCR clamping. These findings will facilitate
further development of the role of PNA in molecular
diagnosis.
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