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INTRODUCTION

The immunosuppressive and anticancer drug rapamycin acts
by binding the highly conserved immunophilin FKBP12
(FK506-binding protein of 12 kDa, encoded by the FPR1 gene
in Saccharomyces cerevisiae), and the FKBP12-rapamycin com-
plex then binds and inhibits the kinase TOR (target of rapa-
mycin, encoded by the homologous TOR1 and TOR2 genes in
S. cerevisiae) (63, 64, 135) (Fig. 1). This mechanism of action is
conserved from yeasts to humans. Indeed, a number of impor-
tant discoveries that contributed to elucidating rapamycin’s
mode of action, including the discovery of TOR, were made in
S. cerevisiae. Since its discovery, TOR has been widely inves-
tigated and has been recognized as a central controller of cell
growth in eukaryotes (52, 130). S. cerevisiae also played a sig-
nificant part in elucidating the cellular role of TOR and in
defining TOR signaling pathways. In this review, we discuss the
contributions made by S. cerevisiae to understanding rapamy-
cin action and TOR function.

RAPAMYCIN ACTION

Rapamycin is a potent antibiotic produced by a strain of
Streptomyces hygroscopicus isolated from a soil sample col-
lected in Rapa-Nui (Easter Island) (156). The pharmaceutical
potential of rapamycin was originally discovered in a screen for
novel antifungal agents. Much later, rapamycin was found to
exhibit immunosuppressive activity due to its capacity to block
the growth and proliferation of T cells (136, 142). More re-

cently, rapamycin has been found to display anticancer prop-
erties (57, 70, 73).

Rapamycin binds 12-kDa FK506-binding protein (FKBP12)
with high affinity. FKBP12 was first identified in vitro as a
receptor of FK506, an immunosuppressant structurally related
to rapamycin, and was later shown to be a cytoplasmic pepti-
dylprolyl rotamase (62, 135). The observations that S. cerevisiae
mutants lacking FKBP12 are viable and resistant to rapamycin
toxicity and that rapamycin analogs still bind and inhibit
FKBP12 rotamase activity but do not immunosuppress indi-
cated that FKBP12 is not the target through which rapamycin
blocks growth (14, 63, 64, 90, 135, 164). Rather, an FKBP12-
rapamycin complex is the toxic agent that then acts on another
target to inhibit cell growth.

The findings that dominant mutations in either TOR1
(TOR1-1, Ser1972Arg) or TOR2 (TOR2-1, Ser1975Ile) confer
complete resistance to the growth-inhibitory properties of
rapamycin and that such mutations prevent the binding of
FKBP12-rapamycin to TOR demonstrated that TOR is the
relevant target through which rapamycin blocks cell growth
(19, 63, 101, 145, 171). Finally, the observation that loss of
TOR function in S. cerevisiae mimics rapamycin treatment
indicated that FKBP12-rapamycin inhibits TOR function (92).
More details are given below concerning the mode of action of
rapamycin and the evolutionary conservation of this mode of
action.

TOR IS CONSERVED IN LOWER AND HIGHER
EUKARYOTES

After the original identification of TOR in the yeast Saccha-
romyces cerevisiae, TOR was identified in fungi, mammals, flies,
worms, and plants, suggesting that TOR is conserved in all
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eukaryotic life forms. In the opportunistic fungal pathogen
Cryptococcus neoformans, a TOR1 homologue was cloned by
degenerate PCR, and a TOR2 homologue was detected by
sequencing expressed sequence tags (36). Moreover, a C. neo-
formans FKBP12 homologue was cloned based on its ability to
interact with the FKBP12-rapamycin binding domain in TOR1
(36). These findings revealed that the antifungal activity of
rapamycin in C. neoformans is mediated via conserved com-
plexes involving FKBP12 and TOR homologues. More re-
cently, a TOR1 homologue has also been identified and char-
acterized in the fungal pathogen Candida albicans (37), and
TOR1 and TOR2 homologues have been identified and char-
acterized in the fission yeast Schizosaccharomyces pombe (161,
162).

Unlike most lower eukaryotes, which contain two TOR

genes, higher eukaryotes appear to possess only one TOR
gene. The first TOR identified in a higher eukaryote was mam-
malian TOR (mTOR; also known as FRAP, RAFT, and
RAPT). mTOR was discovered based on its ability to interact
in vitro with the FKBP12-rapamycin complex (18, 127, 128) or
by a two-hybrid screen (29). The subsequent demonstration
that an mTOR variant constructed to contain a mutation
(Ser2035Ile) analogous to the previously identified yeast
TOR2-1 mutation (Ser1975Ile) confers rapamycin resistance in
mammalian cells indicated that mTOR is the in vivo target of
FKBP12-rapamycin and that rapamycin action is conserved
from yeasts to mammals (19). More recently, the isolation of
Drosophila melanogaster mutants and the sequencing of the
Caenorhabditis elegans and Arabidopsis thaliana genomes al-
lowed the cloning and characterization of TOR genes (dTOR,

FIG. 1. Rapamycin-FKBP complex binds and inhibits TOR. (A) Chemical structure of rapamycin. The TOR- and FKBP-interacting regions of
rapamycin (30) are indicated by dashed lines. (B) TOR is active in the presence of nutrients and inactive upon nutrient limitation or FKBP-
rapamycin (Rap) binding.
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CeTOR, and AtTOR, respectively) from these organisms (106,
114, 169; J. Avruch and F. Mueller, personal communication
for CeTOR).

The S. cerevisiae TOR1 and TOR2 genes encode two large
(approximately 280 kDa) and highly homologous (67% iden-
tical) TOR1 and TOR2 proteins. TOR1 and TOR2, as sug-
gested by their similarity, are functionally redundant. However,
TOR2 has an additional function that TOR1 is unable to
perform (see below). In S. pombe, the two TOR proteins Tor1
and Tor2 are 52% identical to each other and 42 to 48%
identical to the S. cerevisiae TOR1 and TOR2 proteins (161).
mTOR, dTOR, CeTOR, and AtTOR show approximately
38%, 37%, 28%, and 36% identity with the S. cerevisiae TOR
proteins, respectively (114, 169) (Table 1).

DOMAIN STRUCTURE OF TOR

A feature common to all TOR proteins is a conserved C-
terminal region with strong homology to the related catalytic
domains of phosphatidylinositol 3-kinase (PI3K) and phospha-
tidylinositol 4-kinase (Fig. 2). The presence of this character-
istic phosphatidylinositol kinase (PIK) homology domain has
defined a TOR-related family of kinases termed the PIK-re-
lated kinases. In addition to TOR, this family includes the
mammalian ATM (ataxia telangiectasia mutated), ATR (atax-
ia telangiectasia related), DNA-dependent protein kinase, the
Drosophila mei-41, and the yeast MEC1, RAD53, and TEL1
proteins (for a recent review, see reference 2). All these pro-
teins are involved in diverse cellular functions, such as control
of cell growth, regulation of cell cycle progression, a DNA
damage checkpoint, recombination, and maintenance of telo-
mere length. Despite significant homology to lipid kinases, no
lipid kinase activity has been demonstrated for any of the
PIK-related kinases. However, yeast and mammalian TORs

have been reported to exhibit Ser/Thr protein kinase activity
(see below). Genetic studies in S. cerevisiae have revealed that
the integrity of the TOR kinase domain is essential for TOR
function (3, 67, 92, 171).

N-terminal to the kinase domain, the TORs contain a po-
tential regulatory region of approximately 100 amino acids, the
FKBP12-rapamycin binding (FRB) domain (Fig. 2). The loca-
tion of the FRB domain in TOR was initially identified in S.
cerevisiae by TOR1 and TOR2 point mutations that prevent
FKBP12-rapamycin binding and confer dominant rapamycin
resistance (22, 67). The FRB domain, the minimal protein
domain capable of binding FKBP12-rapamycin, was then de-
fined by deletion analysis of the region in mTOR correspond-
ing to the region in S. cerevisiae TOR containing the rapamycin
resistance-conferring mutations (28). Analysis of the original
rapamycin resistance-conferring TOR alleles revealed that a
Ser residue (Ser1972 in TOR1 and Ser1975 in TOR2) is impor-
tant for the interaction of TOR with the FKBP12-rapamycin
complex (22, 67, 145). The yeast Ser1972/1975 is conserved in
mTOR (18, 127). Subsequent genetic studies identified two
additional residues (Trp2042 and Phe2049 in TOR2) also con-
served in mTOR that play a critical role in FKBP12-rapamycin
binding to the yeast TOR proteins (101).

The crystal structure of FKBP12-rapamycin bound to the
FRB domain of mTOR has been determined (30). This struc-
ture revealed that FKBP12 and the FRB domain of mTOR
interact primarily via rapamycin. Rapamycin simultaneously
occupies a hydrophobic binding pocket in FKBP12 and a hy-
drophobic pocket in the FRB domain and thus “glues”
FKBP12 and mTOR together (30). The residues that form the
rapamycin-binding pocket of mTOR are conserved in the S.
cerevisiae TOR1 and TOR2 proteins, and thus all three pro-
teins are likely to contain a hydrophobic pocket with similar
architecture (30). The protein-protein contacts between
FKBP12-rapamycin and mTOR, although a minor contribu-
tion to the overall interaction between FKBP12-rapamycin and
mTOR, may explain why rapamycin by itself cannot interact
with TOR. The mechanism by which FKBP12-rapamycin in-
hibits TOR function is unknown. The FKBP12-rapamycin
complex may inhibit TOR kinase activity directly or, for exam-
ple, may block access to substrates or partner proteins (46,
117). mTOR kinase activity has been shown to be inhibited by

FIG. 2. Structure of the TOR kinases. Functional domains con-
served in TOR proteins are depicted, including the N-terminal HEAT
repeats, the central FAT domain, and the C-terminal FKBP-rapamycin
binding (FRB), kinase, and FATC domains. aa, amino acids.

TABLE 1. TOR is evolutionarily conserveda

TOR protein
% Identity

ScTOR1 ScTOR2 Sptor1 Sptor2 CnTOR1 CeTOR AtTOR dTOR mTOR

ScTOR1 — 67 42 47 39 28 36 37 38
ScTOR2 — 43 48 40 28 38 38 40
SpTOR1 — 52 42 28 38 40 42
SpTOR2 — 44 29 42 42 44
CnTOR1 — 26 35 38 39
CeTOR — 28 32 35
AtTOR — 38 40
dTOR — 53
mTOR —

a The table shows the identity (expressed as a percentage) between the TOR proteins so far identified in eukaryotes. ScTOR1, Saccharomyces cerevisiae TOR1;
ScTOR2, Saccharomyces cerevisiae TOR2; SpTOR1, Schizosaccharomyces pombe TOR1; SpTOR2, Schizosaccharomyces pombe TOR2; CnTOR1, Cryptococcus
neoformans TOR1; CeTOR, Caenorhabditis elegans TOR; AtTOR, Arabidopsis thaliana TOR; dTOR, Drosophila TOR; mTOR, mammalian TOR (human in this case).
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the FKBP12-rapamycin complex in vitro (19, 20, 137), but this
inhibition remains controversial (21, 117).

In addition to the catalytic and FRB domains, TOR proteins
also contain up to 20 tandemly repeated HEAT motifs at their
N termini (5) (Fig. 2). The term HEAT motif is derived from
the four proteins where this domain was originally identified:
huntingtin, elongation factor 3, the A subunit of type 2A pro-
tein phosphatase (PP2A), and TOR. Each HEAT repeat con-
sists of an antiparallel �-helical motif of approximately 40
amino acids (56, 68) and is thought to mediate protein-protein
interactions. Recently, it has been proposed that HEAT re-
peats anchor S. cerevisiae TOR2 to the plasma membrane,
possibly by mediating an interaction with a membrane-associ-
ated protein (93). The N-terminal part of mTOR has been
shown to interact with gephyrin, a protein involved in the
postsynaptic clustering of glycine receptors in spinal cord neu-
rons (126).

Additional domains found in TOR and in other members of
the PIK-related kinase family are the FAT and FATC domains
(Fig. 2). The FAT domain, spanning approximately 500 amino
acids N-terminal to the FRB and catalytic domains in TOR, is
found only in members of the PIK-related kinase family (3,
17). Although the function of the FAT domain remains to be
elucidated, it has been proposed that this domain could serve
as a scaffold or as a protein-protein interaction domain, similar
to the HEAT repeats (17). Finally, the FATC domain, a 35-
amino-acid sequence in the extreme C terminus, occurs only in
combination with the FAT domain and may be important for
catalytic activity of PIK-related kinases (17, 87).

TOR SIGNALING IN YEASTS AND HIGHER
EUKARYOTES

Organization of the Actin Cytoskeleton

S. cerevisiae TOR2 has two essential signaling functions. One
function is shared with TOR1 and is required for activation of
translation initiation and early G1 progression in response to
nutrients (see below) (7, 44). The second essential function is
unique to TOR2 and mediates the cell cycle-dependent polar-
ization of the actin cytoskeleton (132, 134). Polarization of the
actin cytoskeleton is essential for targeting secretion to the bud
site and thus for establishing and maintaining cell polarity
(133). The shared function of TOR2 is sensitive to rapamycin,
whereas the unique TOR2 function is not (134, 171). The
molecular basis for the selective inhibition of only one of the
two TOR2 functions by rapamycin is unknown.

TOR2 signaling to the actin cytoskeleton is mediated by
activation of the small GTPase RHO1 via the exchange factor
ROM2 (132, 133). RHO1, in turn, signals to the actin cytoskel-
eton via its direct effector protein kinase C1 (PKC1) and a
PKC1-activated mitogen-activated protein (MAP) kinase cas-
cade (65, 66). Although the PKC1-controlled MAP kinase cas-
cade maintains cell integrity by activating the transcription of
genes required for cell wall synthesis (74, 170), it remains to be
determined whether control of the actin cytoskeleton by this
MAP kinase cascade also occurs at the transcriptional level or
in a more direct fashion. To date, it is not known if the rapa-
mycin-insensitive, TOR2-unique function is conserved in other
organisms. Rapamycin-insensitive TOR signaling has not been

detected in mammalian cells, possibly because studies on TOR
signaling in mammalian cells have relied exclusively on rapa-
mycin to inhibit mTOR.

Translation Initiation

Initiation of protein synthesis in eukaryotes is a highly reg-
ulated process mediated by several polypeptide initiation fac-
tors (for a review, see Hershey and Merrick [69]). The hetero-
trimeric initiation factor 4F (eIF4F) mediates translation
initiation by facilitating ribosome binding to the 5� cap
(m7GpppN, where m is a methyl group and N is any nucleo-
tide) structure of the mRNA. In S. cerevisiae, the eIF4F com-
plex is composed of the cap-binding subunit eIF4E (encoded
by CDC33), eIF4G (TIF4631 and TIF4632, encoding two sim-
ilar proteins termed eIF4G1 and eIF4G2, respectively), and
eIF4A (encoded by TIF1 and TIF2).

The loss of TOR function in yeast cells results in an early
and severe inhibition of translation initiation (7). It is as a
consequence of this translation defect that TOR-inhibited cells
arrest in the G1 phase of the cell cycle. The mechanism by
which TOR1 and TOR2 activate translation initiation is un-
certain, although the most plausible hypothesis is that the TOR
pathway positively controls translation initiation through acti-
vation of eIF4E (7). Several observations suggest that TOR
may control translation at the level of eIF4E. First, cdc33 and
tor mutants display remarkably similar phenotypes (7, 39). Sec-
ond, the EAP1 protein has recently been identified in S. cer-
evisiae based on its capacity to interact with eIF4E (33). EAP1
blocks cap-dependent translation via competition with eIF4G,
and disruption of the EAP1 gene confers partial resistance to
rapamycin, suggesting a role for EAP1 similar to the one de-
scribed for mammalian eIF4E-binding protein 1 (4E-BP1; see
below).

Translational inhibition upon TOR inactivation may involve
degradation of the initiation factor eIF4G because degradation
of eIF4G protein has been reported in rapamycin-treated cells
(12). However, it is unknown whether the degradation of
eIF4G is a primary cause of translation inhibition or a second-
ary effect of the translational downregulation caused by TOR
inhibition.

Several lines of evidence indicate that the G1 cell cycle arrest
observed in rapamycin-treated cells is, at least in part, a con-
sequence of the inhibited translation of CLN3 (7, 44), a cyclin
involved in G1 progression (111, 154). The abundance of CLN3
depends on its relative rates of synthesis and degradation (166)
and therefore, regulation of CLN3 synthesis or stability is a
critical step in controlling progression through the cell cycle (7,
39, 48, 119). The finding that the G1 arrest in response to TOR
inactivation is suppressed by cap-independent expression of
CLN3 supports a model in which TOR stimulates cap-depen-
dent translation initiation, including translation of CLN3 and
other G1 cyclins, to drive cells through G1 and into S phase (7).

The eIF4F complex is highly conserved. Formation of the
mammalian eIF4F complex is regulated by the 4E-BP family of
translational repressors (11, 100, 108, 120). The 4E-BPs com-
pete with the eIF-4G proteins for binding to eIF4E, and bind-
ing of 4E-BPs to eIF4E is regulated by the phosphorylation
state of 4E-BPs (124). Low phosphorylation of 4E-BP pro-
motes the formation of a 4E-BP–eIF4E complex, whereas high
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phosphorylation of 4E-BP inhibits this interaction. mTOR, in
conjunction with the PI3K signaling pathway, modulates
4E-BP phosphorylation. mTOR immunoprecipitates phos-
phorylate 4E-BP1 in vitro (21, 50), although it remains to be
determined whether mTOR phosphorylates all or some of the
phosphorylated sites in 4E-BP1 (51). mTOR and PI3K signal-
ing may also contribute to control translation initiation in re-
sponse to amino acids or insulin by regulating the phosphory-
lation state of eIF-4GI (123).

The 40S ribosomal phosphoprotein S6 has been proposed to
affect translation initiation of a group of mRNAs possessing a
5�-terminal oligopyrimidine tract (5� TOP) in mammals and
Drosophila melanogaster (reviewed by Meyuhas and Hornstein
[107]). Most 5� TOP mRNAs encode components of the trans-
lational apparatus, such as ribosomal proteins, elongation fac-
tors, and the poly(A)-binding protein. mTOR, in the presence

of amino acids, promotes phosphorylation of S6 through acti-
vation of p70 S6 kinase (p70S6k). Phosphorylation of S6, in
turn, results in the upregulation of translation initiation.
mTOR phosphorylates p70S6k in vitro, suggesting that mTOR
may act on this protein directly (21, 78). p70S6k phosphoryla-
tion is also controlled by the PI3K signaling pathway in re-
sponse to growth factors such as insulin (152). Interestingly,
the mTOR and PI3K inputs on p70S6k can be separated (43,
104). Thus, mTOR and PI3K also control translation initiation
by regulating p70S6k activity.

Early on, mTOR was known to control translation only via
p70S6k and S6 phosphorylation (31, 47, 94, 122). However, the
observation that phosphorylation of the yeast equivalent of S6
(S10) is not important for growth led to the model in S. cer-
evisiae that TOR controls translation via eIF-4E and cap-de-
pendent translation (7, 82). This model from S. cerevisiae, in
turn, led to the finding that mTOR controls translation via
eIF-4E (and 4E-BP) in addition to p70S6k (10). 4E-BP phos-
phorylation was originally thought to be controlled by MAP
kinase independently of mTOR (100, 115) rather than by
mTOR independently of MAP kinase (10, 157).

Ribosome Biogenesis

The production of ribosomes is an energetically very costly
process that requires the action of all three RNA polymerases
and involves more than 100 gene products (160). Thus, to
couple the rate of protein synthesis to the energetic and met-
abolic demands of the cell, the abundance of the components
of the translation machinery must be finely regulated according
to growth conditions and nutrient availability. In S. cerevisiae,
TOR signaling regulates ribosome biogenesis at both the tran-
scriptional and translational levels and plays an important role
in coupling nutrient availability to the transcription of genes
involved in the formation of ribosomes. Inhibition of the TOR
pathway by rapamycin treatment or nutrient starvation leads to
a downregulation of transcription of ribosomal protein mRNAs
by polymerase II (24, 60, 121) as well as transcription of rRNA
and tRNA by polymerase I and polymerase III (121, 168).
TOR also controls processing of at least the 35S precursor
rRNA (121).

All the above findings point to TOR signaling as an essential
pathway in the control of ribosome biogenesis. However, the
mechanism by which TOR controls the synthesis of ribosomes
remains largely unknown. TAP42, an essential phosphoprotein
that interacts with the catalytic subunits of protein phosphatase
2A (PP2A) and PP2A-related phosphatases, is under control
of the TOR pathway (see below) (44, 81). The finding that a
mutation in TAP42 inhibits polyribosome formation suggests
that TAP42/protein phosphatase functions upstream of trans-
lational initiation (44). Furthermore, a role for TAP42/protein
phosphatase in regulating ribosomal protein and rRNA gene
expression has also been proposed (121).

In mammalian cells, mTOR controls the synthesis of rRNA
in a process that involves activation of p70S6k (96, 103). mTOR
also regulates the abundance of ribosomal proteins and other
components of the translation machinery, such as the poly(A)-
binding protein, by promoting translation of 5� TOP mRNAs
(80) (see above). Thus, like yeast TOR, mTOR controls ribo-

FIG. 3. TOR controls phosphatases in S. cerevisiae. Under good
nutrient (nitrogen) conditions, TOR inhibits the phosphatase SIT4 by
promoting the association of SIT4 with TAP42. Two different models
have been proposed for the mechanism by which TOR controls the
SIT4-TAP42 complex. Jiang and Broach (81) proposed that TOR
controls the interaction between SIT4 and TAP42 by phosphorylating
TAP42 directly (indicated by a dashed arrow). Jacinto et al. (79)
suggested that the association of SIT4 and TAP42 is controlled pri-
marily by the TAP42 interactor TIP41. TOR may phosphorylate and
inactivate TIP41 by an unknown mechanism. Dephosphorylated TIP41
positively regulates SIT4 by binding and inhibiting TAP42. The asso-
ciation of TIP41 with TAP42 enhances SIT4 phosphatase activity,
allowing free SIT4 subunits to associate with SAPs and activate target
phosphoproteins such as NPR1 and GLN3. Dephosphorylation and
activation of TIP41 are mediated by SIT4, indicating that TIP41 is part
of a feedback loop that amplifies SIT4 activity. Arrows indicate acti-
vation; bars indicate inhibition. Adapted from Jacinto et al. (79). Rap,
rapamycin.

VOL. 66, 2002 TOR SIGNALING AND RAPAMYCIN ACTION 583



some biogenesis at both the transcriptional and translational
levels.

Control of Phosphatases by TOR

The regulation of phosphatase activity constitutes a partic-
ularly important branch in TOR signaling (130). Genetic
screens in S. cerevisiae have identified TAP42 (a phosphatase-
associated protein of 42 kDa), the type 2A phosphatase
(PP2A) catalytic subunits PPH21 and PPH22, and the type
2A-related phosphatase SIT4 as components of the TOR sig-
naling pathway (44). TAP42 is an essential, conserved protein
that independently associates with SIT4 and with the catalytic
subunits of PP2A in response to nutrient availability and TOR
activity. In the presence of a good nitrogen source such as
ammonium or glutamine, TOR keeps SIT4 inactive by promot-
ing the binding of TAP42 to SIT4 (Fig. 3). Upon nitrogen
starvation or rapamycin treatment (conditions that inactivate
TOR), SIT4 is released from TAP42 and thereby activated (8,
44). As described below, activated SIT4 dephosphorylates tar-
get proteins such as NPR1 and GLN3. Interestingly, TAP42-
associated SIT4 may not be inactive for substrates other than
NPR1 and GLN3 (38).

TOR may control the association of TAP42 with the PP2A
catalytic subunits and with SIT4 by phosphorylating TAP42
directly (81). Phosphorylated TAP42 effectively competes with
the PP2A regulatory subunits CDC55 and TPD3 for binding to
the PP2A catalytic subunits, whereas dephosphorylated TAP42
does not compete for binding (81). However, although rapa-
mycin treatment causes dephosphorylation of TAP42 in vivo
(81), it is unlikely that the phosphorylation state of TAP42
plays a major role in SIT4 regulation (79). Upon rapamycin
treatment, dephosphorylation of TAP42 occurs much more
slowly than dissociation of the SIT4-TAP42 complex (44) and
also much more slowly than SIT4 appears to be activated (8,
131). Thus, another protein(s) may participate in the regula-
tion of SIT4. Recently, a conserved TAP42-interacting phos-
phoprotein, TIP41, was identified in S. cerevisiae (79). TIP41
positively regulates SIT4 by binding to and inhibiting TAP42
(79). The binding of TIP41 to TAP42 is stimulated by rapa-
mycin treatment via SIT4-dependent dephosphorylation of
TIP41, suggesting that TIP41 is part of a feedback loop that
rapidly amplifies SIT4 phosphatase activity under TOR-inac-
tivating conditions (79) (Fig. 3). Whether TOR phosphorylates
TIP41 directly (or indirectly) remains to be determined.

TAP42 is conserved in mammals and plants (61, 109), sug-
gesting that a regulation of PP2A activity similar to that found
in S. cerevisiae may exist in higher eukaryotes. Indeed, the
murine �4 phosphoprotein, the mammalian homologue of
TAP42, binds directly to the catalytic subunits of PP2A (77,
109), PP4, and PP6 (27, 110). However, there is substantial
controversy regarding the rapamycin sensitivity of the �4-phos-
phatase interaction (27, 109). Although it is unclear which
component(s) of the �4-phosphatase complex is sensitive to
rapamycin, inactivation of mTOR by rapamycin causes rapid
dephosphorylation of the ribosomal S6 kinase p70s6k by PP2A
(41, 118), suggesting that TOR also negatively controls phos-
phatase activity in mammals.

Regulation of Amino Acid Permeases

Yeast cells can utilize a wide variety of compounds as nitro-
gen or carbon sources, including sugars, amino acids, and pep-
tides. This versatility is determined by the ability of cells to
transport these nutrients across the plasma membrane, fol-
lowed either by their direct utilization or by conversion to
metabolites required by the cell. Amino acids are essential for
cell growth because they constitute the building blocks for
protein synthesis. However, in S. cerevisiae, some amino acids
(such as glutamine, glutamate, and asparagine) are also impor-
tant because they serve as nitrogen sources. Therefore, amino
acid permeases play an important role in cell growth and via-
bility.

Based on their function and regulation, yeast amino acid
permeases can be divided into two classes (144). Permeases of
one class, including the general amino acid permease GAP1,
are regulated in response to the available nitrogen source. In
the presence of a good nitrogen source, such as ammonium or
glutamine, the uptake activity of these permeases is low,
whereas in medium containing a poor nitrogen source, such as
proline or urea, transport activity is strongly induced. The
second class of amino acid permeases consists of transporters
that are specific for single amino acids or a small set of struc-
turally related amino acids. The histidine permease HIP1 and
the tryptophan permease TAT2 belong to this group of specific
amino acid permeases.

Studies in S. cerevisiae have revealed that the TOR pathway
plays a prominent role in regulation of amino acid permease
activity. Inhibition of TOR function by rapamycin or nitrogen
starvation induces ubiquitination and degradation of TAT2
and, as a consequence, leads to a decrease in tryptophan im-
port (9, 131). Starvation-induced downregulation of amino
acid permeases also applies to HIP1 and possibly to all specific
amino acid permeases (9). In contrast to TAT2 and HIP1,
rapamycin treatment causes a significant increase in GAP1
protein (9, 131). Thus, TOR proteins appear to regulate in-
versely the high-specificity permeases, such as TAT2 and
HIP1, and the broad-specificity permease GAP1 in response to
nutrient availability.

Upregulation of GAP1 upon nitrogen starvation is mediated
by the Ser/Thr nitrogen permease reactivator kinase NPR1
(40, 54, 55, 155). In the presence of a poor nitrogen source,
NPR1 promotes GAP1 function (54, 55), probably by phos-
phorylating and protecting GAP1 from degradation (40, 146).
In agreement with the opposite regulation of GAP1 and TAT2,
NPR1 has been proposed to function as a negative regulator of
TAT2. Indeed, tryptophan import decreases upon NPR1 over-
expression (131). How does the cell modulate NPR1 to in-
versely regulate GAP1 and TAT2 in response to the nitrogen
source? NPR1 is a phosphoprotein whose phosphorylation
state is controlled by the TOR signaling pathway in response to
the nitrogen source (131). In response to a good nitrogen
source, TOR keeps NPR1 phosphorylated and in an inactive
form that is unable to protect GAP1 from ubiquitination. Un-
der poor nitrogen conditions, NPR1 becomes dephosphory-
lated and activated in a SIT4- and TIP41-dependent manner
(79). Activation of NPR1 leads to GAP1 protection and to
TAT2 ubiquitination and degradation (131). It is unknown
whether NPR1 directly phosphorylates GAP1 or TAT2.
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At present, it is not known whether TOR plays a role in
regulating the traffic of nutrient permeases through the mem-
brane in higher eukaryotes. However, in a recent report, it was
proposed that the mTOR pathway may be involved in a pro-
cess that rapidly mobilizes the glucose transporter GLUT4 to
a highly insulin-responsive compartment upon insulin stimula-
tion (16). mTOR has also been proposed to play an important
role in the stimulation of another glucose transporter, GLUT1,
by insulin, although this effect appears to be at the level of
translation (148).

Autophagy

In response to nitrogen or carbon limitation, yeast cells
undergo a catabolic membrane-trafficking process known as
autophagy (for recent reviews, see references 1 and 89). Dur-
ing this process, a large number of cytoplasmic components are
nonselectively enclosed within a double-membrane structure
(autophagosome) and delivered to the vacuole for degrada-
tion. Although autophagy was first described in developing
kidney cells (32), the most important advances in the under-
standing of autophagy were obtained much later with the dis-
covery of autophagy in S. cerevisiae and the isolation of the first
autophagy mutants (149, 153).

Inactivation of TOR function by rapamycin induces autoph-
agy even in rich nutrient conditions, indicating that TOR in-
hibits autophagy (113). The mechanism by which TOR inhibits
autophagy is being elucidated by Ohsumi and coworkers. Ka-
mada et al. (85) reported that the protein kinase APG1 is
essential for autophagy and plays a pivotal role in the control
of autophagy by TOR. APG1 associates with APG13 and
APG17 to form the APG1 protein complex (105). The role of
TOR in the regulation of autophagy is to maintain APG13 in
a phosphorylated form with low affinity for APG1 and thereby
to inhibit APG1 activity (85) (Fig. 4). Inactivation of TOR by
rapamycin treatment or nutrient starvation causes rapid de-
phosphorylation of APG13, which increases the affinity of this
protein for APG1 and enhances APG1 kinase activity (85).
How TOR promotes APG13 phosphorylation is currently un-
known. The finding that mutations in the TOR-controlled pro-
tein TAP42 have no effect on either APG1 activity or autoph-
agy induction suggests that the APG1-APG13 interplay
comprises a novel TOR signaling pathway regulating autoph-
agy (85).

Autophagy also occurs in animal cells that are serum starved
or challenged with specific hormonal stimuli (for recent re-
views, see references 1 and 147). A number of yeast autophagy
genes, such as APG1, APG5, APG7, APG12, and AUT7, have
homologues in mammals (83, 129, 150), but only some of these
homologues have been demonstrated to participate in autoph-
agy in mammalian cells. This is the case for the mammalian
gene beclin-1, a homologue of yeast APG6 that promotes au-
tophagy in autophagy-defective S. cerevisiae (97). Interestingly,
the mTOR signaling pathway may play a role in the regulation
of autophagy, as rapamycin addition to mammalian cells in
culture induces autophagy even in nutrient-rich medium (15,
141). Inhibition of autophagy by mTOR may involve the p70S6k

signaling branch (15, 141).

Transcriptional Control of Nutrient Metabolism

Control of gene expression at the level of transcription rep-
resents an important branch of TOR signaling. Genome-wide
expression analysis of yeast cells treated with rapamycin or of
cells shifted from a rich to a poor nitrogen or carbon source
revealed a prominent role of TOR in the coordination of
transcription of nutrient-regulated genes (24, 60, 91, 140).
Rapamycin rapidly and strongly modulates the expression of
several hundred genes involved in various metabolic pathways,
including nitrogen metabolism, the glycolytic pathway, and the
tricarboxylic acid cycle. The most striking set of genes affected
by rapamycin treatment, however, are those involved in the
uptake and assimilation of different nitrogen sources. Specifi-
cally, rapamycin causes a decrease in the expression of genes
participating in the uptake and metabolism of preferred nitro-
gen sources (glutamine and ammonium) and a pronounced
increase in the expression of genes involved in the uptake and
use of poor nitrogen sources (urea and proline). Thus, rapa-
mycin induces a nitrogen starvation response.

TOR controls the expression of nutrient-regulated genes by
sequestering several nutrient-responsive transcription factors
in the cytoplasm (8). The expression of most of the nitrogen-
responsive genes is regulated by the GATA transcription fac-
tors GLN3 and GAT1 and their cytoplasmic repressor URE2
(102). Under good nitrogen conditions, GLN3 is retained in
the cytoplasm by URE2. The binding of GLN3 to URE2 re-
quires TOR-dependent phosphorylation of GLN3 by a mech-
anism that involves TAP42-mediated inhibition of the phos-
phatase SIT4 (8) (Fig. 5). Rapamycin treatment or nitrogen
starvation causes GLN3 to become dephosphorylated and to
dissociate from URE2. GLN3 then translocates into the nu-
cleus to activate its target genes (8) (Fig. 5). GLN3 importin
and exportin have recently been identified as SRP1 and

FIG. 4. TOR inhibits autophagy in S. cerevisiae. Under good nutri-
ent conditions, TOR inhibits autophagy by promoting phosphorylation
(P) of APG13 and thereby preventing the formation of an APG1-
APG13 complex, which is essential for the induction of autophagy.
Inactivation of TOR by rapamycin (Rap) treatment or nutrient depri-
vation results in rapid dephosphorylation of APG13. Dephosphory-
lated APG13 associates with APG1, and the active APG13-APG1
complex induces autophagy. Arrows indicate activation; bars indicate
inhibition.
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CRM1, respectively (25). URE2 is also phosphorylated in a
rapamycin-sensitive manner (24, 60), but the regulation of
URE2 phosphorylation is TAP42 independent. TOR also pre-
vents the access of GAT1 to the nucleus (8), but, although
GAT1 inhibition might be mediated by URE2, a direct inter-
action between GAT1 and URE2 has not been shown. Several
lines of evidences suggest that GLN3 and GAT1 are regulated
in response to different stimuli (35, 95).

Inactivation of TOR by rapamycin also activates the partially
redundant Zn2� finger transcription factors MSN2 and MSN4
(8), both of which respond to different types of cellular stress,
including carbon source limitation (53, 143, 151). TOR may
inhibit MSNs (MSN2 and MSN4) in response to nutrients by
promoting the association of MSNs with the abundant 14-3-3
proteins BMH1 and/or BMH2 (8). In agreement with this
model, BMH1 and BMH2 have been shown to positively reg-
ulate rapamycin-sensitive signaling (13). Glucose withdrawal
or rapamycin treatment causes a release of MSN from BMH2.
Contrary to what was observed for GLN3, this process is in-
dependent of TAP42 and SIT4 (8), suggesting that another,
unknown TOR pathway regulates MSN.

TOR also controls the heterodimeric bHLH/Zip transcrip-
tion factor composed of RTG1 and RTG3 (91). RTG1 and
RTG3 were originally identified as genes required under con-
ditions in which mitochondrial respiratory function is impaired
(98, 99). RTG1 and RTG3 regulate the expression of tricar-
boxylic acid and glyoxylate cycle genes that participate in the
synthesis of intermediates, primarily �-ketoglutarate, required
for de novo synthesis of some amino acids, such as glutamine
and glutamate. Similar to GLN3 regulation, inhibition of TOR

by rapamycin or nitrogen starvation results in both rapid nu-
clear accumulation of RTG1 and RTG3 and induction of their
target genes (91). RTG2, a positive regulator of RTG1 and
RTG3, is essential for the TOR- and nitrogen-inhibited nu-
clear accumulation of RTG1 and RTG3 (91).

How TOR maintains RTG1 and RTG3 in the cytoplasm is
not well understood. It has been reported that RTG3 is phos-
phorylated upon rapamycin-mediated inactivation of TOR
(91). Whether RTG3 phosphorylation is influenced by TAP42
and/or SIT4 (PP2A) remains to be determined. Recently, it
was reported that MKS1, a phosphoprotein controlled by
TOR, is a negative regulator of RTG1 and RTG3, suggesting
a high degree of complexity in regulation of the RTG branch of
TOR signaling (45, 138).

mTOR signaling also controls transcription in mammalian
cells. Recently, it was reported that mTOR phosphorylates the
transcriptional activator STAT3 (167). Activation of STAT3
occurs in response to the neuropoietic cytokine ciliary neuro-
trophic factor and requires phosphorylation on tyrosine and
serine residues (163). While members of the Jun-associated
kinase/Tyk family of tyrosine kinases mediate phosphorylation
of STAT3 on Tyr705, mTOR appears to phosphorylate STAT3
on Ser727 directly.

The TOR signaling pathway in yeast and mammalian cells
controls gene expression via mRNA stability in addition to
mRNA synthesis. Inhibiting TOR signaling, through either
nutrient limitation or rapamycin treatment, causes the accel-
erated turnover of a subset of mRNAs (4, 6). Moreover, the
inhibition of TOR appears to destabilize mRNAs by multiple
mechanisms (4).

FIG. 5. TOR prevents nuclear accumulation of the nitrogen-regulated transcription activator GLN3 via TAP42-mediated inhibition of the
phosphatase SIT4. Under good nitrogen conditions, GLN3 is phosphorylated and retained in the cytoplasm by URE2. Upon nitrogen starvation
or rapamycin treatment, SIT4 is released from TAP42 and activated. Activated SIT4 dephosphorylates the GATA transcription factor GLN3.
Dephosphorylated GLN3 dissociates from URE2 and translocates into the nucleus, where it activates transcription of target genes. Arrows indicate
activation; bars indicate inhibition.
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TOR RESPONDS TO NUTRIENTS

TOR inactivation by rapamycin treatment results in a nutri-
ent starvation response, suggesting that TOR responds to nu-
trient availability (see above) (7). In S. cerevisiae, TOR signal-
ing has been proposed to respond to nitrogen and possibly
carbon sources (8, 35, 95, 131, 140). However, the specific
nitrogen or carbon metabolites that act upstream of TOR are
unknown. Recent evidence argues that TOR signaling, or at
least a specific subset of the TOR pathways, responds to the
amino acid glutamine, suggesting that glutamine is a particu-
larly important indicator of nutrient status (35). Indeed, glu-
tamine is a preferred nitrogen source and controls carbon
metabolism via the tricarboxylic acid cycle (35, 102). Glu-
tamine depletion activates the TOR-controlled transcription
factors GLN3, RTG1, and RTG3. However, other TOR read-
outs, such as localization of MSN2/4 and GAT1 and down-
regulation of ribosomal protein mRNAs, are not activated
under the same glutamine starvation conditions, suggesting
that TOR must also respond to other yet-to-be identified nu-
trients (35). Schreiber and coworkers have proposed that TOR
may act as a multichannel processor that can elicit different
responses to distinct nutrient signals (95, 140).

Glutamine may play a particularly important role in TOR
signaling in both yeast and mammalian cells. TOR in S. cer-
evisiae (35), as described above, and in mammalian cells (75)
appears to respond to glutamine. Furthermore, a recent tran-
scriptional profiling of mammalian cells revealed that rapamy-
cin treatment mimics glutamine or leucine starvation more
than glucose starvation (116). Interestingly, a decrease in blood
glutamine levels causes immunosuppression in humans and
mice similar to that caused by rapamycin treatment (23, 84).

In mammalian cells, amino acid deprivation causes rapid
dephosphorylation and activation of the eIF-4E binding pro-
tein (4E-BP) and dephosphorylation and inhibition of p70S6k

(59, 158, 165). Both of these processes are mediated by mTOR,
indicating that amino acids signal to 4E-BP and p70S6k via
mTOR. It has been proposed that the aminoacylation state of
tRNA may be responsible for the regulation of p70S6k phos-
phorylation (76). In yeast cells, the GCN2 kinase senses intra-
cellular amino acid availability through a tRNA-binding do-
main that exhibits similarity to histidyl-tRNA synthetase. Upon
amino acid limitation, levels of uncharged tRNA increase sig-
nificantly and activate the kinase domain of GCN2 kinase,
leading to activation of GCN4, a transcriptional activator of
several genes involved in amino acid biosynthesis (reviewed by
Hinnebusch [71, 72]). Although the GCN2 pathway is con-
served in mammals (88) and despite the similarity of the mech-
anism of amino acid sensing proposed for GCN2 and mTOR,
a connection between these two signaling pathways has never
been demonstrated. Dennis et al. (42) argue that amino acid
pools rather than the amount of aminoacylated tRNA are
important for mTOR signaling. Moreover, sensing of the in-
tracellular level of glutamine in S. cerevisiae seems to be inde-
pendent of the aminoacylated state of glutaminyl-tRNA (our
unpublished data). Thus, how TOR may sense amino acid
pools is unknown.

In mammals, both TOR and PI3K signaling are required for
regulation of common downstream effectors such as 4E-BP
and p70S6k (52, 130). Although the nature of the link between

mTOR and the PI3K signaling pathway is controversial, most
evidence suggests that mTOR activity is not regulated by PI3K.
Whereas some studies have presented evidence that protein
kinase B (PKB), a downstream effector of PI3K, stimulates
phosphorylation and activity of mTOR in response to insulin
and that mTOR is a direct substrate of PKB (112, 137, 139),
other studies have failed to detect significant alteration of
mTOR kinase activity in response to amino acids or insulin
(58, 59). Furthermore, mTOR mutants bearing Ala substitu-
tions at two PKB-dependent phosphorylation sites (Ser2448 and
Thr2446) indicate that PKB-dependent phosphorylation of
mTOR is not essential for mTOR function (139). Finally, cells
deficient in the PI3K effector PDK1 fail to activate PKB yet
display normal mTOR activity, indicating that PKB activity is
not necessary for mTOR activity (159). Thus, mTOR and
PI3K, although connected by common targets, may respond
separately to amino acids and growth factors, respectively.

Recently, two different, novel mechanisms have been pro-
posed for regulation of mTOR. Dennis et al. (42) have shown
that the mTOR pathway is influenced by the intracellular con-
centration of ATP. Although the mechanism by which ATP
acts on TOR is unknown, it appears to be different from that
used by amino acids, as both ATP and amino acids are re-
quired for mTOR signaling (42). Fang et al. (46) reported that
phosphatidic acid, which accumulates in mammalian cells upon
mitogenic stimulation, is required for activation of mTOR
downstream effectors. Phosphatidic acid interacts directly with
the FRB domain in mTOR, and this rapamycin-sensitive in-
teraction correlates with the ability of mTOR to activate down-
stream effectors (46). The finding that phosphatidic acid has no
effect on mTOR kinase activity (and the effect of rapamycin or
insulin on mTOR kinase activity is controversial, as discussed
above) suggests that the inhibitory effect of rapamycin on
mTOR may derive from its competition with phosphatidic acid
for binding to the FRB, independent of an effect on intrinsic
mTOR kinase activity (46). In other words, displacement of
phosphatidic acid by rapamycin may affect the interaction of
mTOR with a substrate rather than intrinsic mTOR kinase
activity.

TOR AND STRESS

TOR promotes cell growth in response to nutrient availabil-
ity (125, 130). Several lines of evidence suggest that TOR also
plays a role in cell growth under stress conditions other than
nutrient limitation. First, TOR controls the transcription fac-
tors MSN2 and MSN4 (8), which activate expression of genes
in response to several different environmental stress condi-
tions, including heat shock and H2O2 treatment (26, 49). As
described above, TOR controls cellular localization of MSN2
and MSN4 by preventing their access to the nucleus (8). The
specific environmental conditions in response to which TOR
controls MSN remains to be determined. Second, S. pombe
cells lacking TOR1 are sensitive to osmotic stress, oxidative
stress, high external pH, and high or low temperature (86, 161).
Third, tor1 mutants of S. cerevisiae are sensitive to high con-
centrations of salt, suggesting that TOR1 is necessary for the
proper cellular response to saline stress (34). Although the role
of TOR in salt stress signaling is at present unknown, a con-
nection between the TOR-controlled transcription factors
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GLN3 and GAT1 and the lithium and sodium extrusion pump
ENA1, which is essential for survival under saline stress con-
ditions, has been shown (34). GLN3 and GAT1 mediate in-
duction of ENA1 transcription upon rapamycin treatment and,
like TOR1, are required for growth under salt stress (34).

Why does TOR respond to environmental stress? One plau-
sible explanation is that TOR, as a central controller of cell
growth, may respond to several different types of stress to
ensure that growth occurs only when overall conditions are
favorable.

CONCLUSION

TOR appears to activate a number of different effector path-
ways in response to a wide variety of stimuli, including the
nitrogen source, amino acids, ATP, phosphatidic acid, and
stress. The mechanisms by which TOR responds to and inte-
grates different inputs remain to be determined. However, the
answers to these open questions will most likely come, at least
in part, from S. cerevisiae.
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