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NOPdb: Nucleolar Proteome Database

Anthony Kar Lun Leung*, Laura Trinkle-Mulcahy, Yun Wah Lam,
Jens S. Andersen’, Matthias Mann' and Angus I. Lamond

Division of Gene Regulation and Expression, Wellcome Trust Biocentre, School of Life Sciences,
University of Dundee, Dundee DD1 5EH, UK and 'Department of Biochemistry and Molecular Biology,
University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Received August 13, 2005; Accepted August 16, 2005

ABSTRACT

The Nucleolar Proteome Database (NOPdb) archives
data on >700 proteins that were identified by multi-
ple mass spectrometry (MS) analyses from highly
purified preparations of human nucleoli, the most
prominent nuclear organelle. Each protein entry is
annotated with information about its corresponding
gene, its domain structures and relevant protein
homologues across species, as well as documenting
its MS identification history including all the pep-
tides sequenced by tandem MS/MS. Moreover, data
showing the quantitative changes in the relative
levels of ~500 nucleolar proteins are compared at dif-
ferent timepoints upon transcriptional inhibition.
Correlating changes in protein abundance at multiple
timepoints, highlighted by visualization means in the
NOPdb, provides clues regarding the potential inter-
actions and relationships between nucleolar proteins
and thereby suggests putative functions for factors
within the 30% of the proteome which comprises
novel/uncharacterized proteins. The NOPdb (http://
www.lamondlab.com/NOPdb) is searchable by either
gene names, nucleotide or protein sequences, Gene
Ontology terms or motifs, or by limiting the range
for isoelectric points and/or molecular weights and
links to other databases (e.g. LocusLink, OMIM and
PubMed).

INTRODUCTION

The nucleolus is the most prominent structure within the euka-
ryotic nucleus and is known for its role in ribosomal RNA
(rRNA) transcription, processing and the subsequent assembly
of processed rRNA with ribosomal proteins to form ribosomal
subunits (1-3). Recent studies suggested that the mammalian

nucleolus may also play roles in tumourigenesis (4), viral
replication (5) and cellular stress responses (6). However,
the pathway and the identities of the molecular machineries
involved in these mechanisms within this nuclear organelle
remained largely unknown. Due to its inherent high density,
nucleoli from cultured human cells can be isolated readily
from sonicated nuclear extracts (7). Taking advantage of this,
we and others have previously employed mass spectrometry
(MS) techniques to identify the protein components from
highly purified nucleolar preparations (8—10). Furthermore,
fluorescent protein-tagging experiments and photobleaching
analyses have vividly demonstrated the dynamic nature of
the nucleolar proteome, where proteins only accumulate in
the nucleolus either under specific metabolic conditions, or
at specific cell cycle stages (11). Recently, we have extended
our MS analyses to measure the dynamic behaviour of the
nucleolar proteome by quantitating the relative level of indi-
vidual nucleolar components upon transcriptional inhibition
using a method known as stable isotope labelling with amino
acids in cell culture (SILAC) (12).

DATABASE ACCESS AND CONTENT

To facilitate the analysis of these quantitative proteomic
data, we have established the Nucleolar Proteome Database
(NOPdb), a database aiming to archive all the human nucleo-
lar proteins identified by MS analyses so far (13). The current
version 2.0 of the database is available at http://www.
lamondlab.com/NOPdb/ and is searchable by gene name/
symbol, protein sequence, motif (14-16), Gene Ontology
(GO) terms (17) or by setting the range of the predicted
isoelectric point and/or molecular weight (Figure 1). To date,
NOPdb archives 728 human nucleolar proteins (covering
~2.5% of the predicted human proteome) verified by multiple
MS analyses and documents the quantitative changes in pro-
tein levels for 498 of these proteins at multiple timepoints after
transcription is inhibited by treating cells with Actinomycin D.
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Figure 1. Snapshots of the NOPdb (http://www.lamondlab.com/NOPdb/). The
database was searched against molecular weights between 65 and 70 kDa and
here we show an overview page for the PES1 protein (pescadillo) documenting
its motif distribution, its GO annotations, its identification history by multiple
MS analysis and its quantitative data from SILAC analyses. Proteins of similar
kinetic profiles based on correlation coefficient are identified for future inves-
tigation. The kinetic profiles are ranked according to the Pearson’s correlation
coefficients for the log value of the peak intensities of multiple peptides at
a particular timepoint normalized to the respective peak intensities at zero
timepoints.

The NOPdb provides (i) information on gene sequences and
chromosomal localization, (ii) information on primary protein
sequence (including protein sequence, predicted isoelectric
point and molecular weight and motif structure) and (iii)
information about putative nucleolar protein homologues in
fruitfly, nematode and yeast, and also their localization data in
these species, if available (18,19). A dedicated section for MS
data has included the identification history of these nucleolar
proteins in multiple MS analyses, peptide sequences deduced
by tandem MS and the details of the MS experiments. Func-
tions of these proteins are described using GO terms and
detailed comments manually curated in the Entrez Gene data-
base (20). In addition, the NOPdb also acts as a gateway to
other databases, including NCBI LocusLink (20), OMIM (21),
PubMed (9), UniGene (20) and ENSEMBL (22).

ACCESS TO PROTEOME DYNAMICS

A general problem experienced in proteome analyses is the
abundance of novel/uncharacterized proteins (~30% in the
case of the nucleolus) where limited information is available
regarding their function (9,13). Therefore, the availability of
quantitative information allows for the first time the ability to
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annotate/classify the proteome according to the changes in
individual protein levels at multiple timepoints upon drug
treatment. Analogous to the gene expression profiles generated
for microarray data (23), we used SILAC data to generate a
unique kinetic profile over time for each protein, where the
relative abundance of each protein is compared with its
respective level at the initial timepoint. Unlike microarray
data, the quantitative measurements are made at the post-
transcriptional level. The changes in the levels of protein in
the nucleolus after drug treatment likely reflect their respective
functional roles. Moreover, proteins with similar kinetic
profiles based on Pearson’s correlation coefficients can be
identified, through the visualization means in the NOPdb,
where available. This information makes direct predictions
that can subsequently be tested both in vivo and in vitro.

PERSPECTIVES

Future versions of the NOPdb will include additional kinetic
profiles for each protein, based on their responses to both
different drug treatments and other metabolic and cell cycle
variations. Clustering of such data may offer useful informa-
tion for predicting the potential functions of these novel pro-
teins (24). Apart from shedding light to the functions of novel
proteins, clustered protein groups can be served as refined sets
for motif search. Bioinformatic tools will also be developed to
provide means to interact with the related microarray data
deposited in the public domain. Comparison of these profiles
with gene expression profiles from parallel microarray data
may yield fresh understanding of the post-transcriptional regu-
lation of the corresponding genes. Current analyses on the
primary sequences deposited in the NOPdb determined a
number of properties of the nucleolar proteome in terms of
the distribution of amino acid/short peptide composition (13),
domain structure and GO terms (Supplementary Tables 1
and 2), which are statistically different from the profiles of
proteins accumulated within other cellular structures or organ-
elles. In summary, the NOPdb provides a useful resource for
the scientific community to explore the plurifunctionality of
nucleolus, where further surprises are probably still in store.

SUPPLEMENTARY DATA
Supplementary Data is available at NAR Online.
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