
The TIGR Maize Database
Agnes P. Chan1, Geo Pertea1, Foo Cheung1, Dan Lee1, Li Zheng1, Cathy Whitelaw1,

Ana C. Pontaroli2, Phillip SanMiguel3, Yinan Yuan4, Jeffrey Bennetzen2,

William Brad Barbazuk5, John Quackenbush1,6,7 and Pablo D. Rabinowicz1,*

5
1The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA, 2Department of
Genetics, University of Georgia, Athens, GA 30602, USA, 3Genomics Center, 4Department of Biological Sciences,
Purdue University, West Lafayette, IN 47906, USA, 5Donald Danforth Plant Science Center, 975 North Warson Road,
St Louis, MO 63132, USA, 6Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute,
44 Binney Street, Boston, MA 02115, USA and 7Department of Biostatistics, Harvard School of Public Health,

10 Boston, MA 02115, USA

Received August 15, 2005; Revised and Accepted October 15, 2005

ABSTRACT

Maize is a staple crop of the grass family and also an
excellent model for plant genetics. Owing to the large

15 size and repetitiveness of its genome, we previously
investigated two approaches to accelerate gene dis-
covery and genome analysis in maize: methylation
filtration and high C0t selection. These techniques
allow the construction of gene-enriched genomic

20 librariesbyminimizing repeatsequencesdue toeither
their methylation status or their copy number, yield-
ing a 7-fold enrichment in genic sequences relative to
a random genomic library. Approximately 900 000
gene-enriched reads from maize were generated

25 and clustered into Assembled Zea mays (AZM)
sequences. Here we report the current AZM release,
which consists of �298 Mb representing 243 807
sequence assemblies and singletons. In order to
provide a repository of publicly availablemaize geno-

30 mic sequences, we have created the TIGR Maize
Database (http://maize.tigr.org). In this resource, we
have assembled and annotated the AZMs and used
available sequenced markers to anchor AZMs to
maize chromosomes. We have constructed a maize

35 repeat database and generated draft sequence
assemblies of 287 maize bacterial artificial chromo-
some (BAC) clone sequences, which we annotated
along with 172 additional publicly available BAC
clones. All sequences, assemblies and annotations

40 are available at the project website via web interfaces
and FTP downloads.

INTRODUCTION

The availability of the highly accurate genome sequences
of Arabidopsis and rice, along with the draft genome

45sequences that have been generated such as for the poplar gen-
ome (http://genome.jgi-psf.org/Poptr1/Poptr1.home.html), or
in progress such as those of sorghum (http://www.jgi.doe.
gov/sequencing/why/CSP2006/sorghum.html), a moss (http://
www.jgi.doe.gov/sequencing/why/CSP2005/physcomitrella.

50html) and a spikemoss (http://www.jgi.doe.gov/sequencing/
why/CSP2005/selaginella.html), has created the opportunity
to perform comparative genomics studies among a broad
variety of plants. All of the plant genomes previously selec-
ted for sequencing are relatively small. Large plant genomes

55pose a big challenge for genome sequencing owing to their
high level of repetitiveness and frequent polyploidy. This
sequencing limitation has so far excluded most economically
important crops and key plant model systems from compre-
hensive genome analysis.

60Maize (Zea mays), is the most important crop in the United
States and one of the most important worldwide. It belongs to
the cereal family, which includes other crop plants, such as
rice, wheat, sorghum, barley and rye, and has been widely used
as a classical model for genetics studies. Nevertheless, funding

65for sequencing its complete genome has become available only
recently (http://www.nsf.gov/pubs/2004/nsf04614/nsf04614.
htm). Its large size and frequent, highly conserved repetitive
elements (1,2) are likely to generate assembly artifacts that are
difficult to resolve, significantly increasing the efforts needed

70for completion. For such reasons, we explored alternative
technologies for gene-targeted sequencing in maize as a pre-
lude to generating the complete genome.

Two gene-enrichment technologies were tested in maize:
methylation filtration (MF) and high-C0t selection (HC). MF
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takes advantage of the differential methylation of DNA in
plants: genic sequences have been shown to be hypomethyl-
ated, whereas repetitive sequences are hypermethylated (3,4).
AnMF library consists of random, small insert genomic clones

5 (5) constructed using an McrBC+ Escherichia coli host strain
(6). The McrBC (modified cytosine restriction) system select-
ively propagates the hypomethylated sequences but not the
methylated sequences. The HC approach is based on the dif-
ferential reassociation kinetics of high- and low-copy-number

10 DNA after denaturation. During the renaturation process, the
repetitive sequences reanneal quickly while the low-copy-
number sequences remain as single-stranded DNA for a longer
time. This single-stranded, low-copy DNA can be separated
from double-stranded high-copy-number sequences using

15 hydroxyapatite chromatography. The second strand of the
low-copy-number DNA is then synthesized in vitro so that
the DNA can be cloned and sequenced (7,8). Both the MF
and HC gene-enrichment techniques have proved successful
in several plant species (7,9–12).

20 Using MF and HC, we have sequenced 895 731 gene-
enriched sequence reads from maize (9). We have assembled
these gene-enriched reads based on sequence similarity to
generate the Assembled Zea mays (AZM) sequences aiming
to reconstruct the genic regions. The maize MF and HC

25 sequences have also been assembled and analyzed by other
groups including the Maize Assembled Genomic Islands
database (http://www.plantgenomics.iastate.edu/maize) and
the Plant Genome Database (http://www.plantgdb.org/prj/
GSSAssembly/zeamays). We have also investigated the feas-

30 ibility of generating bacterial artificial chromosome (BAC)
assemblies by sequencing, assembling and annotating 287
maize BAC clones to a medium (5- to 7.5-fold) sequence
coverage. In addition, we have annotated 172 maize BAC
assemblies downloaded from the public domain. BAC annota-

35 tion was performed using a series of automated processes. We
have performed a number of analyses on the AZMs and BAC
assemblies, which include anchoring AZMs to the genetic
map, annotation for the gene content of the AZMs and
BAC assemblies and construction of a maize repeat database,

40 including both known and novel repeats. All data are access-
ible from the TIGR Maize Database website, a centralized and
comprehensive resource of maize genomic assemblies and
annotation (http://maize.tigr.org).

RESULTS

45 Assembly of gene-enriched sequences

MF and HC libraries with an average insert size of �1.5 kb
were constructed along with a whole-genome shotgun
(unfiltered or UF) library as a control. The AZMs were
built every 4 months. In the latest release (AZM 4.0), a

50 total of 450 166 MF, 445 565 HC and 50 877 UF reads
were generated after vector trimming and removal of low-
quality sequences. Using comparable datasets of MF, HC
and UF reads, the levels of gene-enrichment were �7-fold
(13). The sequence reads include a combination of paired-

55 end and single-end reads with an average edit length of
751 bp. For each data release, four individual assembly builds
were carried out: (i) MF and HC reads combined, (ii) MF reads
only, (iii) HC reads only and (iv) UF reads only. In each

assembly build, the input reads were first repeat-masked to
60avoid assembly artifacts from highly similar repeat sequences.

The repeat-masked sequences were clustered based on the
identity of the overlapping ends (>40 bp) and mate-pair
information. The sequence reads grouped into each cluster
were assembled with the TIGR assembler to generate a con-

65sensus sequence using a modified pipeline designed to
assemble expressed transcript sequences (14). Sequence
reads that could not be clustered or assembled were collected
as singletons. The output sequences, including assemblies and
singletons, from each build were referred to as AZMs. Indi-

70vidual assemblies can be accessed through a web-based AZM
report as shown in Figure 1.

Figure 1. An AZM assembly report showing the assembled consensus se-
quence, a graphical layout of the component reads and related protein hits.
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A total of 243 807 AZMs spanning 298 Mb were generated
in the AZM 4.0 MF and HC combined build from 895 731
input reads (673 Mb). The average assembly length is 1.2 kb
and the average number of component reads in each

5 assembly is 5.5 (Table 1). Using a curated set of maize
gene models, it was estimated that the coverage of the
genic fraction of the genome by the AZMs is �2-fold
(W.B. Barbazuk, unpublished data).

Anchoring the AZM sequences to chromosomes

10 Unlike fingerprinted BAC assemblies, AZMs are not linked to
the physical or genetic maps. To place the AZMs onto the
maize chromosome arms, we have anchored the AZMs to the
genetic map using the ‘IBM2 neighbors’ collection of
sequence-based genetic markers (http://www.maizemap.org/

15 resources.htm). An in silico alignment of AZMs to 2530
maize genetic loci was carried out using BLAT searches
(15). Only alignments of at least 95% identity along at least
20% of the marker sequence were reported. A total of 1767
genetic loci (70% of all available markers) were aligned to the

20 AZMs. A chromosome-based genome viewer was set up in
our website to provide a global display of the distribution of
AZMs and genetic markers along individual chromosomes
(Figure 2A). The AZMmapping information can also be selec-
ted by chromosome, AZM accession, genetic locus or genetic

25 marker accession (Figure 2B).

Annotation of the AZM sequences

Since the AZMs are enriched in the genic regions of the maize
genome, they represent a good resource for gene discovery and
identification. To identify potential coding regions in the

30 AZMs, we have set up an automated high-throughput gene
annotation process based on alignments to protein and
expressed transcript databases. Using BLAT, the AZMs
were searched against a non-redundant protein database,
and the TIGR plant gene index databases which consist of

35 assembled cDNAs and expressed sequence tags referred to
as the tentative consensus (TC) sequences from 22 plant spe-
cies (http://www.tigr.org/tdb/tgi/plant.shtml). The criteria
used for the protein and gene index searches were the best
hit and the five best hits, respectively. Approximately 32 000

40 AZMs had a significant alignment to the protein database or
TC database, thus, at least 13% of the AZMs contain potential
coding sequences.

A web display has been set up for accessing the protein and
TC alignments to the AZMs. The search results can be selected

45 based on AZM accession, protein accession, TC accession and

key word searches through the description of the protein or
TC record.

Sequencing, assembly and annotation
of maize BAC sequences

50To gain further insight into the gene-rich regions of the maize
genome, we have sequenced and generated phase I draft
assemblies for a total of 287 gene-rich BACs. Sixty-five of
the BAC clones correspond to a region in chromosome 1,
which is duplicated in chromosome 9. Another 160 BAC

55clones were selected from gene-rich regions based on the
presence of mapped cDNAs, and 62 additional BAC clones
were selected by the maize community. The BAC clones were
sequenced to �5- to 7.5-fold coverage. The reads were
assembled using the sequence assembler Arachne (16).

60Owing to the repetitive content of the BAC sequences and
the current sequence coverage, the BAC assemblies were cre-
ated as unordered, unoriented phase I draft assemblies for
submission to GenBank.

Annotation of the BAC assemblies was performed using a
65set of automated procedures, which process sequences and

search results using a Sybase relational database (17). The
annotation processes generate gene models from ab initio
gene finders and also search the BAC sequences against nuc-
leic acid and protein databases. First, the BAC sequences were

70processed by three gene finders, including FGENESH (18),
GeneMark.hmm (19) and Genscan (20). The gene finders
identify potential coding regions and generate predicted
gene models. Second, the BAC sequences were searched
against a non-redundant protein database and the TIGR

75plant gene index databases using the search tools from the
AAT package, which performs optimal pairwise alignments
to define the exon–intron boundaries in the query sequences
using available protein and cDNA data (21). The current work-
ing gene models were generated using FGENESH outputs.

80The putative function of the gene product derived from a
FGENESH prediction was assigned automatically based on
the best match from the protein database search. All annotation
data including predicted gene models, gene matches to the
protein database and the plant gene index databases, and

85annotation reports of the working models are displayed
through a suite of web pages from the open source MANATEE
project (http://manatee.sourceforge.net).

Using the above approach, we have so far annotated 282
BAC clones (52 Mb) generated from our sequencing project

90and 167 maize BAC clones (25 Mb) collected from GenBank.
Based on these two collections of 449 BAC sequences, our
analysis showed that the average gene density in these BACs is
1 gene per 53 kb, the average gene size from the start to stop
codons including introns is 3.2 kb, the average exon length is

95236 bp, the average number of exons per gene is 5, and that the
average length of the coding region is 1.2 kb.

The maize repeat database

Approximately 60–80% of the maize genome consists of retro-
transposons and other repetitive sequences. We have created a

100maize repeat database to aid in the identification and classi-
fication of the maize repeat elements. The repeat database is
composed of three components: the cereal plant repeat
sequences from GenBank, the maize repeats identified by

Table 1. A summary for the maize genomic assembly release 4.0 (AZM4)

Before assembly

Gene-rich sequence reads 895 731
After assembly

Number of assemblies generated 144 999

Average number of reads per assembly 5.5
Average length of assembly (bp) 1624
Maximum length of assembly (bp) 16 340
Singleton sequences 98 808

Assemblies and singletons (AZM4) 243 807
% Repeat-masked 30
% GC-content 46
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Figure 2. In silico alignments of AZMs to maize chromosomes through sequenced genetic markers. (A) A section of a genome view displaying AZMs anchored to
individual chromosomes through alignments to genetic markers. (B) Mapping AZM assemblies to genetic markers. In both displays, the AZM to marker mappings
can be selected by chromosome, AZM accessions, genetic loci or genetic marker accessions.
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similarity search and the novel maize repeats identified using a
de novo repeat finder. A collection of cereal repeats obtained
from GenBank was downloaded from the TIGR plant repeat
database [http://www.tigr.org/tdb/e2k1/plant.repeats; (22)],

5 which also includes a set of manually annotated transposable
elements from maize (P. SanMiguel, unpublished data). The
cereal repeat collection contains four categories: transposable
elements, centromeric and telomeric repeats, ribosomal
repeats and unclassified repeats. This dataset was included

10 as the first component of the maize repeat database and was
used as a reference set to search against maize genomic
sequences, including AZMs, BAC assemblies and BAC end
sequences, using BLAST searches and a cutoff threshold of at
least 80% identity over a string longer than 100 bp. Subregions

15 of the maize genomic sequences that satisfied the criteria were
included as the second component of the maize repeat data-
base. RECON is a de novo repeat finder that groups together
similar elements from the input sequences using single-linkage
clustering (23). The maize genomic sequences, which showed

20 no significant hits to the GenBank cereal repeats were used as
the input dataset for de novo repeat discovery using RECON.
Repeat families with five or more elements were collected as
the third component for the maize repeat database. In the
current release, the maize repeat database contains 28 249

25 sequences (22 Mb), of which 74% are transposable elements,
1% are centromeric and telomeric repeats, 3% are ribosomal
repeats and 22% are unclassified repeats.

CONCLUSIONS

We have created the TIGRMaize Database with the goal to set
30 up a central repository of maize genomic assemblies and
annotation. We have generated 298 Mb of AZM assemblies
and 52 Mb of BAC assemblies, representing most of the maize
gene space and 14% of the whole genome. We are in the
process of assembling 97 000 additional MF reads generated

35 by Cold Spring Harbor Laboratory (11) into the AZMs. The
AZM assemblies can be accessed through a web-based AZM
report which displays the assembled consensus sequence, a
layout graph of the component reads and related protein hits.
For AZMs that have been anchored to the genetic map via

40 genetic markers, they can be accessed through a genome
viewer or selected through a web display. Predicted gene
models on the BAC assemblies can be accessed through the
MANATEE annotation report, which displays putative func-
tions of the gene product, gene structure, protein domains and

45 related protein sequences.
Both the component reads and AZM and BAC assemblies

are available as ftp downloads. The AZM assemblies and the
maize repeat database are available for BLAST searches using
a blast server at the maize project website (http://tigrblast.tigr.

50 org/tgi_maize/index.cgi).
While the maize genome sequencing effort is underway,

BAC clones from a minimal tiling will be sequenced. The
AZMs could be aligned to the sequenced BAC clones, thereby
helping to complete some BAC sequences and also helping to

55 anchor them to the physical map. The maize genomic assem-
blies we generated can facilitate large-scale genomic annota-
tion and analyses, such as gene duplications, classification of

paralogous genes and comparative genomics, to further our
understanding of the maize genome.
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