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THE ASSUMPTIONS UNDERLYING THE
GENERALIZED MATCHING LAW
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Allen (1981) derived the power-function generalization of the matching law from a func-
tional equation involving relative response rates on three concurrently available schedules
of reinforcement. This paper defines the conditions (relative homogeneity and indepen-
dence) under which a more general class of behavioral laws reduces to the power law. The
proof also removes two deficiencies of Allen’s result (discussed by Houston, 1982), which
are, first, that his derivation produces a power law without a bias coefficient, and second,
that it holds only for experiments with three or more concurrent schedules.
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The generalized version of the matching law
(Baum, 1974, 1979; Staddon, 1968) states that
relative rate of responding on two alternatives,
i and j, is a power function of the relative rate
of reinforcement obtained from the two alter-

natives:
B, _ /R;\*®
E“‘(R_,) . )

The reinforcers are typically delivered by vari-
able-interval (VI) schedules, but other sched-
ules have been used as well. The parameter ¢
measures bias, that is, excess preference for
one alternative, and parameter s measures the
degree to which response ratios are sensitive
to reinforcement ratios. The case when ¢ and s
are both equal to one is of special significance
because it corresponds to Herrnstein’s original
version of the matching law (Herrnstein, 1961,

1970):
B ®

i Y

Allen (1981) has provided a formal deriva-
tion of the power law in the following way.
He assumed, first, the existence of a general
functional relationship between relative re-
sponse rates and relative reinforcement rates:

Requests for reprints should be sent to Drazen Prelec,
Society of Fellows, Harvard University, 78 Auburn
Street, Cambridge, Massachusetts 021£8.

He then showed that if there are at least three
distinct alternatives, i,,k, and if the same
functional relationship f holds for all possible
alternative pairs (and all rates of reinforce-
ment), then f has to be a power function:
f(x) = x*. Allen interpreted this derivation as
a formal proof that the power function is a
necessary consequence of consistent deviations
from simple matching (Equation 2). In a re-
joinder to Allen’s article, Houston (1982)
pointed out that Allen’s interpretation of his
result is not quite true because the notion of
a consistent deviation from matching itself
lacks formal justification. Houston also men-
tioned a second unsatisfactory aspect of the
proof, namely that it yields a power function
without a bias parameter. Allen’s (1982) re-
sponse that the bias parameter can be reintro-
duced by applying the power law to value-
scaled reinforcement ratios,
B, _ (Vi
5=/(7)

where V; = ¢;R; and V; = ¢;R;, is not convinc-
ing. If arbitrary value transformations of rein-
forcement are permissible, then what prevents
us from deriving the power law from power
function value transformations alone: B;/B; =
Vi[Vy=cRe[RP = (cif ) (Ri[Ry)%?

These objections notwithstanding, Allen’s
proof shows that a relatively general constraint
on lawful response-reinforcement relationships
(Equation 3) is in fact closely related to an ap-
parently more specific one (Equation 1). In
this paper, I take this strategy one step further
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and derive the conditions under which a more
general class of behavioral laws reduces to the
power law.

THE UNDERLYING ASSUMPTIONS

Consider the following constraints on behav-
ioral laws pertaining to concurrent-schedule
experiments with n = 2 alternatives, where
alternatives refer to specific reinforcer-sched-
ule-operandum combinations. Thus, alterna-
tive { may designate a VI schedule without
COD, delivering 3 s of food for pecks on a red
key. (Changing the scheduled rate of reinforce-
ment does not constitute a change in alterna-
tives but rather a change in the rate of rein-
forcement for the same alternative.)

(Al) Controlling variables: Response rates
are continuous, differentiable functions of the
rates of reinforcement obtained in the experi-
ment,

B¢=F¢(Rl,..,Rn),i= l,..,n,
and only reinforcement can maintain respond-
ing:
R, =0 implies B; = 0.

This assumption ensures that we can express
response rates in all experiments by means of
a single set of functions, Fy(R,, . ., R,), with
the proviso that the absence of any alternative
i from a given experiment is indicated by set-
ting R, equal to zero.
Next, I define for each pair of alternatives,
i and §, a relative preference function, Py(R,,
., Ry):
B,

-E= P.”(Rl, .o

F(R,..,R,)

F(R, .., R,

) = R’

)

(A2) Relative homogeneity: Relative prefer-

ence is not affected by proportional increases

(A > 1) or decreases (A < 1) in all reinforce-
ment rates:

P(j(m19 ooy AR,;) = Pq(Rl, ey R”),

for all alternatives i,j, and all values of \
greater than zero. In other words, preference,
as measured by relative rates of response, does
not depend on the overall rate of reinforce-
ment, SR;, but only on the way in which this
total is distributed among the alternatives.

I now introduce the third and final assump-
tion by means of an intermediate condition
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which, it turns out, is necessary for deriving
the power law. We will say that reinforcement
rates can be scaled independently of context
if there exists a set of functions V(R;), one for
each alternative i, such that relative response
rate for two alternatives is equal to the relative
scaled value of their reinforcement rates:

Vy(R))

B, _
B~ Pl - ViR

»Ry) =
®)

Regardless of how one interprets the functions
V., two key properties of Equation 5 stand out.
First, all reinforcement rates other than R,
and R; drop out of the relative preference
function, and second, what remains of that
function can be additively decomposed into a
part depending only on R, and a part depend-
ing only on R;:

log Pi(Ry, . ., R,) = log Vi(Ry) — log V,(R)).

The relative preference functions that satisfy
this condition (Equation 5) can be character-
ized in two different ways. The first formula-
tion, given by Assumption A3, is conceptually
more transparent but has a drawback in that
it applies only to experiments with three or
more alternatives.

(A3) Relative independence: Relative pref-
erence is not affected by the rate of reinforce-
ment for a third alternative,

% Py(R,, ..

for all distinct alternatives i,j,k.
One can think of this assumption as a distant
relative of the independence-from-irrelevant-
alternatives principle (Luce, 1959), because it
asserts that preference does not depend on re-
inforcement for competing alternatives. Luce’s
choice axiom is actually much stronger than
A3, which maintains that preference P;; does
not depend on the availability of a third alter-
native only as long as the obtained rates of re-
inforcement for i and § are held constant; the
choice axiom makes no such qualification (see
Prelec, 1982, pp. 206-207; Prelec & Herrnstein,
1978).

As a direct consequence of Assumption A3,
we can write relative preference as a function
of only two arguments:

Py(R,,..,R,) = FyRRR)). (6)
It is obvious that Equation 5 implies Equation

’ Rn) = 0»



GENERALIZED MATCHING LAW

6; what is less self-evident is that the converse
implication also holds, provided there are at
least three alternatives. The proof is relatively
straightforward. Because of the tautology,
(B:/By) = (B;/B,)(B;/By), relative preference
functions must obey the identity:

Fu(RyRy) = Fy(RuR)Fp(RyRy).  (7)
Equation 7 is a form of Sincov’s functional
equation (Aczel, 1966), usually written as
F(xz) = G(x,y) + H(y,2).

Appendix I shows that the solutions to
Equation 7 are all versions of Equation 5:

Fy(R,R)) = % , ®
F, tk(RbRk) = VK,:E_IR;—% P
Fy(R,Ry) = ZZE;:)) .

A different formulation of independence
(Equation 5) is given below.

(B3) Additive independence: A change in
reinforcement rate for alternative i, from R, to
R;*, changes the relative preference for i over
every other alternative by the same proportion,
irrespective of the rates of reinforcement for
other alternatives:

PyR,,..,R,..,R,)

Py(R,,..,R* .., R,)
_ Py(RY, .., R,.. >R,
~ Py(R/,..,R* .., R,)

for all alternatives f,k distinct from i (includ-
ing j = k).

As will become apparent in the next section,
the sole reason for including B3 along with A3
is to be able to deal with the important special
case when there are only two alternatives; for
three or more alternatives, Assumptions A3
and B3 are completely equivalent. To prove
this, notice first that Equation 5 implies B3,
since both sides of the equality in B3 are then
equal to Vy(R;)/V(R;*). Therefore, A3 implies
B3 as well. Conversely, using the fact that
Py, = 1/Py,;, we can rewrite B3 as

Pki(R;. ""Ri""R;)Pij(Rl""Rb")Rn) =
Pu(R),..,R* ..,R)PyR,,..,R*, .., R,).

Now let R, = Ry, .., R/ = R,, and apply the
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identity Py,P,; = Py, (viz. Equation 7) to obtain
an equation,
ij(Rl’ .o ,R{, .o ,R") = ij(Rl’ “ey R{', coy R,,),

which demonstrates that relative preference
for any two alternatives k,j does not depend
on the rate of reinforcement for a third alter-
native, i.

For experiments with two alternatives, As-
sumption B3 permits a direct derivation of the
value functions in Equation 5. Let Ry and R 7

be any pair of reinforcement rates that gener-
ates indifference:

Pyp(RY,R)) =1,
and define the values of R, and R; as
ViRy) = P12(R1’R§),
and
Va(R3) = Py (R, Ry).

Then, applying B3, we have
Pyy(R?,R,)P1p(Ry,RY)
P 12(Rf ’Rg)

— Vi(R,)
Py (R?,Ro)P15(RS,RY)

=1iRy)
T Va(Ry)’

P12(R1,R2) =

as required.

DERIVATION OF THE POWER LAW

I start with Assumptions Al, A2, and A3 be-
cause they lead to a proof that is closely related
to that of Allen (1981). Again, we have to as-
sume that there are at least three alternatives;
otherwise A3 has no force. By relative indepen-
dence, we are permitted to express the re-
sponse ratio, B;/B;, as a function of R; and R;
(viz. Equation 6). Applying relative homoge-
neity to Equation 6, and letting A = 1/R,,
shows, furthermore, that relative preference is
a function of the ratio, R;/R;:

Fy(R,R;) = F; AR,AR))

= Fy(Ri/Ry1)

= fy(R;/Ry), forall 1 =i,j=n, 9)
By substituting the functions f;;, fu, and f

into Equation 7, we obtain a version of Cau-
chy’s functional equation:
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fulRi/Ry) = fiy(Ri/Ry)fm(Ry/Ry),  (10)
commonly written as
f(xy) = g(x)h(y) (11)

(note: x = R,/R;,y = R;/R,).

If Equation 11 holds for all positive real
numbers, x,y, then the functions f, g, and & are
power functions with common exponent s but
distinct multiplicative constants, a, b, and ab
(see Appendix II): f(x) = ab x?, g(x) = a x5,
h(x) = b x2.

Applying this set of solutions to f;; in Equa-
tion 10 yields a power law with bias coefficient
Cye

B, fy(Ri/Ry) “u( R,) .

The bias coefficients can be different for differ-
ent pairs of alternatives, but they are mutually
constrained by the identity:

C“ = C{kc kj

In his derivation, Allen started with the as-
sumption that all relative preference functions
are identical, f; = fu, etc. This leads to a
stricter version of the Cauchy equation,
f(xy) = f(x)f(y), whose solutions are power
functions without a bias parameter. The only
consequence of permitting each alternative
pair to have a distinct relative preference func-
tion is to attach a bias parameter to the power
law.

This proof, like Allen’s, requires that there
be at least three concurrently available alter-
natives, which makes it irrelevant to most em-
pirical work on the power law. If, however, we
substitute Assumption B3 for Assumption A3
in the starting list of assumptions, then we can
construct a proof that works for the case n =2,
as well. Putting together Equations 5 and 9
yields:

(Recall that the right side of this equation fol-
lows from B3 and the left from A2.) Substitut-
ing the functions

f(x) = fiy(x),
g(x) = Vi(x),
h(x) = Vy(1/x)-1,
leaves us with the general Cauchy equation

(11,
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f(Ri/Ry) = g(R)h(1/Ry),

whose solution, we already know, is the general
power law, Equation 1.

THE TWO TYPES OF
(THEORETICAL) DEVIATION FROM
THE POWER LAW:
INHOMOGENEITY AND
NON-INDEPENDENCE

So far we have established that the power
law is the only behavioral law (having rein-
forcement rates as controlling variables) char-
acterized by the properties of relative homo-
geneity and independence. What does this
mean? The empirical interpretation of these
two assumptions is hindered by an ambiguity
—one has to decide whether to include un-
scheduled (and therefore unobserved) alterna-
tives in the total list of present alternatives
(Herrnstein, 1970). If one believes that no un-
scheduled reinforcers exist, then Assumptions
A2 and A3 have clear meaning: An experiment
in which all rates of reinforcement are propor-
tionally varied constitutes a direct test of rela-
tive homogeneity, while a direct test of relative
independence can be arranged with experi-
ments containing three or more alternatives.
If, on the other hand, one assumes that there
do exist contaminating sources of unscheduled
reinforcement, then a proportional increase in
reinforcement rates in concurrent-schedule ex-
periments becomes a test of independence,
rather than homogeneity, because it consti-
tutes an indirect manipulation of the rate of
unscheduled reinforcement relative to the rate
of schedule-delivered reinforcement. The no-
tion of relative homogeneity, however, is now
robbed of its operational definition; it is diffi-
cult to conceive of an experiment that would
proportionally increase scheduled and un-
scheduled (i.e, background) received rein-
forcement rates.

We have to be clear here about what it is
that we wish to derive. If, along with Allen
(1982), we wish to derive the unrestricted
power law—the proposition that power func-
tions hold for all possible alternative pairs, in-
cluding unscheduled ones—then we have to
assume unrestricted homogeneity and indepen-
dence (Assumptions A2 and A3). The ambig-
uity in the assumptions is then balanced by
the ambiguity in the conclusions, for what em-
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pirical significance can be attached, for exam-
ple, to the statement that

B, _ (R,\*

7= &) -
where B, and R, stand for unscheduled, and
therefore unobserved, response and reinforce-
ment rates?

Fortunately, it is possible to maintain an
agnostic position about background reinforc-
ers and still preserve the power law derivation.
The only thing one needs to assume is that
unscheduled reinforcement, if it exists, does
not affect relative preference between observ-
able alternatives; that is,

0Py _

3R, ="

which is plausible enough. Once relative pref-
erence is protected against variation in back-
ground reinforcement, then it no longer mat-
ters (for deriving the power law between
observed alternatives, that is) whether or not
background reinforcers are included in the list
R,, .., R,

The empirical power law for the case n = 2
now stands or falls with two entirely verifiable
propositions. Homogeneity implies that rela-
tive response rate is some determinate function
of relative reinforcement rate,

B 1 R]
'B—2 = fre (E) ’
and independence (B3) implies that log re-

sponse ratio is an additive function of rein-
forcement rates,

B
log B_; =log V1(R,) — log Va(R2).

Given sufficient variation in reinforcement
rates, failure of the power law indicates failure
of at least one of these two primitive proper-
ties.

What sort of experimental conditions might
promote selective violation of homogeneity or
independence? Using qualitatively different
reinforcers is one possibility. Let us for the
moment borrow the terminology of economics
and classify reinforcers along a dimension of
necessity/luxury, so that reinforcers that are
prepotent when the overall rate of reinforce-
ment is high define the “luxury” end of the
continuum, and those that are prepotent in
lean experimental environments define the
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“necessity” end. In other words, the reinforc-
ing power of necessities diminishes substan-
tially with increases in absolute reinforcement
rate, while that of luxuries remains steady.
Now, homogeneity will not obtain unless the
two types of reinforcers delivered by the con-
current schedules fall roughly in the same re-
gion on this continuum. This can be clearly
illustrated by generalizing the general match-
ing law so as to allow for different exponents
on the two reinforcement rates:

- n(R) (12)

This equation satisfies independence but does
not satisfy homogeneity, unless the two expo-
nents are equal:

Pi;(ARLAR;) = A (4:—%)P15(Ry,R,).

The exponents, s; and s,, measure how fast the
effectiveness of reinforcement decreases with
reinforcement rate and are therefore crude in-
dices of luxury/necessity. It would be worth-
while in future fitting of the power law to start
first with a linear regression of Equation 12,

log(B,/B;) = s;log R, — s.log Ry + log ¢y,

and then proceed with a statistical test of the
homogeneity condition, s; = ss.

In order to produce violations of indepen-
dence, we would have to find reinforcers that
interact in interesting ways, such as, for exam-
ple, salty and bland foods. With this combina-
tion, it is conceivable that the relationship be-
tween relative preference (B,/B;) and relative
consumption (R,/R;) is bitonic—increasing
when relative consumption of salty food (R,)
is low and decreasing when it is high.

The derivation presented in this paper does
not satisfy our curiosity about one very impor-
tant point, which is why the power law fits
such a large body of data. What it does, in-
stead, is push the issue one level back and
makes us wonder, in turn, why homogeneity
and independence should hold for these same
data. The answer may have as much to do with
the way we design experiments as with the be-
havioral principles that are the object of our
study. Relative independence (A3), for exam-
ple, is virtually a normative criterion for a
good choice experiment; certainly, if I wish
to measure preference between two alterna-
tives, ¢ and j, I will avoid procedures in which
preference is sensitive to the presence of a
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third factor, k. Therefore, in trying to evaluate
the significance of any formal derivation of the
power law, we should keep in mind that the
power law reflects an interaction between the
subjects’ behavior and those semi-articulated
principles that guide our selection of particu-
lar reinforcers and procedures over others.
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APPENDIX I

Solution of Sincov’s functional equation (after Aczel,
1966, p. 303). Let

F(x2)=G(xy)H(y2),
and for some particular values x° and z° define:
h(z) = F(x°,2),
80) = G(x"),
H(x) = F(x"2°)[F(x2°).

Then

as required.

APPENDIX II

Solution to the general Cauchy equation. Starting
with

fxy) = g(x) g0),

we substitute

x'=log x
y' =logy,
and
F2) = log f(e"),
G(2) =log g(e"), ™
H(z) = log h(e*),
to obtain

F(x' +y)=G(x") + H(y'").
If we let G(0) = a, and H(0) = b, then
G(x)=F(x")—b,
Hy)=F(y)—a,

allowing us to write

F(x' +y)=F(x)+Fy)—a—b.

Substituting for Q(z) = F(z) — a — b, we get a functional
equation,

Q(x" +5) = Q(*) + 0",
whose solution (Allen, 1981) is
Q(x) = sx.
This implies that the solution to F(x) is
F(x)=sx+a+b.
Substituting back into (*) yields the power function:

f(x) = eF(log®
= et1logs+a+d)

= (e (e)x".
Similarly, we can show that

8(x) = (e°)x*,
and

h(x) = (e)x*.



