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De Villiers and Herrnstein (1976) have shown that the equation for simple action, derived
from the matching law, predicts change in behavioral output for some 40 experiments in
which the value of a single source of reinforcement has been varied. Using only the
positive-reinforcement studies they cite that used five or more different reinforcement
values, we found the high percentage of variance they report accommodated by this equa-
tion (94%) is predicated on instances of averaging rates of behavioral output before mak-
ing a least-squares fit of the equation. In our reanalysis, which minimizes rate averaging,
only 78% of the data variance is accommodated. This diminished data-variance accom-
modation can be improved by adding parameters that permit the equation's scaling con-
stant to change as a function of reinforcement. Although these parameters permit accept-
able levels of accommodation of data variance, they correspond to no obvious
psychological processes.These findings support the view that the equation for simple action
is an inadequate model for behavioral output.

Key words: equation for simple action, behavioral output, matching law, response rate,
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(1)

The matching law states that animals adjust
their operant output between two alternatives
(R1 and R2) so that, when expressed as a pro-
portion, it equals the proportion of reinforcers
(r1 and r2) each alternative provides. This law
is usually written in either of two equivalent
forms:

R, - ri

R1+R2 ri+r2

or

R1 r_
R2 r2

Equation 1, which has been successful in
describing large portions of the data on choice,
has been modified by Herrnstein (1970) to ac-
count for response rates to single schedules.
Central to this extension has been the inter-
pretation that even single-schedule procedures
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involve choice-between an explicit, ex-
perimenter-arranged reinforcement schedule
(r) and the reinforcements (re) endogenously
available to an animal (e.g., exploration,
defecation, etc.) that are outside of experi-
menter control. Called the equation for simple
action (de Villiers & Herrnstein, 1976), this
equation takes the form:

(3)R= kr
r + re

where k is a scaling parameter that converts
the matching-equation fraction r/(r + re) to
units representative of response-rate measures
(e.g., responses/min).

Equations 1 through 3 have as their virtue
the ability to organize large portions of the
literature on concurrent- and single-schedule
procedures by means of similar equations with
a unified conceptual base -that of viewing all
behavioral output in terms of choice. Buttress-
ing this conceptual parsimony is the finding
that these equations do an excellent job of ac-
counting for the choice and single-schedule
data to which they are applied (Baum, 1979;
de Villiers & Herrnstein, 1976).
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Regarding experiments with explicit choice
procedures, Baum (1979) assessed the portion
of the data variance accommodated by Equa-
tion 2 when its composite ratios were ex-
pressed in their logarithmic equivalents. To
increase the generality of this functional form,
he added two parameters, a and b, so that his
regressions could readily accommodate varia-
tions in slope and intercept within individual
data sets. Consequently, Equation 2 was
modified to the following form:

log RI = a log r + b. (4)R2 = gr2

Although the matching law (Equation 2)
predicts that a and b should equal one and
zero, respectively, Baum often found different
values when he calculated the values offering
the best fit with Equation 4. However, al-
though these parameters did vary from their
idealized values, he showed that their inclu-
sion permits the matching equation to account
for 90.4% of the data variance in 103 data
sets.

Baum's work complements the earlier efforts
of de Villiers and Hermstein. Their concern
was to assess the predictive adequacy of Equa-
tion 3 in accounting for total behavioral out-
put. Toward this end, they collected response-
strength measures from 40 experiments. Using
individual-subject data except where only
group data were available, they calculated the
values of k and re by means of a computer pro-
gram that searched for the smallest mean
squared deviation between the obtained
response rates and those predicted by Equa-
tion 3. In Table 7 of their study, they com-
pared Equation 3 with two other arbitrarily
selected, negatively accelerated, monotone-
increasing functional forms-the exponential
and power functions. Comparing fits for all
data sets where more than four different rein-
forcement values were used, they found that
Equation 3 accounted on average for 93.4% of
the variance, while the exponential and power
functions accounted for only 89.4% and
89.9%, respectively. Based on its superiority
of fit and its derivation from the matching law,
they argued that Equation 3 offers the best ac-

count of behavioral output on single schedules.
In the present report we test the predictive

adequacy of Equation 3 using the data sets
originally used by de Villiers and Herrnstein.
We will show that:

1. The 94% of the data variance they found
that Equation 3 accommodates is due to in-
stances of rate averaging before calculating the
percent-data-variance-accommodated statis-
tic. If rate averaging is minimized, only 78%
of the variance in behavioral output is accom-
modated.

2. The predictive adequacy of Equation 3
can be improved if k, the asymptote of
behavioral output, is permitted to vary mono-
tonically with reinforcement levels. This ade-
quacy can be improved still further if bitonic
variation in k is permitted.

3. k varies not only with scheduled rein-
forcement levels, but also with endogenous
reinforcement levels (re). In the data sets used
by de Villiers and Hermstein, significant cor-
relations between these putatively unrelated
variables can be noted.

Although the predictive success of the equa-
tion for simple action is noteworthy, its ade-
quacy can be questioned on both conceptual
and empirical grounds (e.g., see Timberlake,
1982). For example, one problem is its as-
sumption of reinforcer commensuration be-
tween the explicit schedule (r) and the en-
dogenous schedules (r.): Despite the proba-
bility that these schedules' reinforcers differ in
kind, Equation 3 scales them in equivalent
terms.

This assumption of equivalence between
qualitatively different reinforcers permits the
application of the matching-equation fraction
from Equation 3 [r/(r + re)] to the rate data ob-
tained. However, this application is probably
inappropriate because the matching law some-
times does not hold when choice is between
different reinforcers. For example, Hursh
(1978) found that when monkeys chose be-
tween food and water (what Hursh called
"complementary" reinforcers), increasing rates
of food reinforcement led to increasing rates of
water-reinforced responding (see also Rachlin,
Kagel, & Battalio, 1980). This outcome,
which is incompatible with matching, only oc-
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curs between reinforcers that differ in kind.
Unfortunately, that is typical of situations
where Equation 3 is to be applied.

In addition to this problem, concern must
be expressed with using the percent-data-
variance-accommodated statistic as a means of
testing a moders adequacy. Anderson (1977)
has shown that additive models can sometimes
account for very high portions of the variance
in nonadditive data sets. Based on this out-
come, he questioned the inferential power of
correlational analysis in evaluating the ade-
quacy of a model. Moreover, he raised the
possibility that the same type of problem may
be present in de Villiers and Herrnstein's use

of this approach to test Equation 3 (see Ander-
son, 1978).
To date, little research has addressed these

problems with the simple action equation. In
particular, these problems have not been re-

flected in tests of the predictive adequacy of
Equation 3, and it is this that motivates the
present report. To anticipate our first conclu-
sion, we show below that Equation 3 does less
well in modeling behavioral output than has
been argued by de Villiers and Herrnstein.

TESTING THE ADEQUACY OF THE EQuATION
FOR SIMPLE ACTION

In order to test the adequacy of Equation 3
to accommodate variance in single-schedule
procedures, we make use of de Villiers and
Herrnstein's efforts by using as our data base
all studies using positive reinforcement from
Table 7 of their study. This table includes
only those studies that used five or more dif-
ferent values of the reinforcement variable,
and hence can provide an adequate test of a

two-parameter model such as Equation 3.
Many of the data from the studies in this

table had to be estimated from graphs. As a

consequence, there are unavoidable errors in
our estimates not only from their real values,
but also from de Villiers and Herrnstein's
estimates of their values. One way to test the
comparability of our data estimates with
de Villiers and Herrnstein's is to compare the
percentage of data variance Equation 3 ac-

commodates in our data estimates with theirs.

If our estimates are close to theirs, the variance
accommodated should be approximately the
same. To maximize comparability, we, like
de Villiers and Herrnstein, used a nonlinear
least-squares fit program (Wetherington &
Lucas, 1980) to determine the values of pa-
rameters in Equation 3.
As will be discussed, we handle some of the

data sets from Table 7 of de Villiers and
Herrnstein differently from the way they did.
For the purpose of assessing the comparability
of our data and curve-fitting program with
theirs, we present in Table 1 those data sets
that we and de Villiers and Herrnstein inter-
preted in the same way. Columns 1 through 4
of the table present, respectively, the study
(and, where appropriate, the condition and
subject) from which the data are derived, the
percentage of data variance accommodated
from de Villiers and Herrnstein, the same
statistic from our analysis, and the difference
between these two measures. With the excep-
tion of monkey Allen from the Schrier (1965)
study, all the differences in variance between
their analysis and ours are small. Excluding
this outlier, we account on average for 1.5%
less of the data variance than do de Villiers
and Herrnstein.
The analysis in Table 1 demonstrates that

in terms of scoring data from the graphs of dif-
ferent studies and fitting Equation 3 to those
data, we closely approximate de Villiers and
Herrnstein. However, as we see in Table 2,
the way we handle these data prior to fitting
Equation 3 to them affects the judgment we
reach regarding the predictive adequacy of this
equation.
Columns 1 and 2 of Table 2 present all the

positive-reinforcement data sets from Table 7
of the de Villiers and Herrnstein article, and
the percentage of the data variance accom-
modated by our analysis. Averaging the data
in Column 2 yields a mean percent-variance-
accommodated statistic of 78.1 %-a percen-
tage substantially lower than the 92.7% found
in the section ofTable 7 that related to positive
reinforcement from de Villiers and Herrn-
stein. This difference is due to three differences
in data-handling methods in the two studies.
First, de Villiers and Herrnstein averaged
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Table 1
Comparison of Variance Accommodation

% variance accommodatedfrom:
de Villiers &

Data Set Herrnstein Present Report Difference
Crespi
Zeaman
Keesey (1964)

low shock
high shock

Guttman
sucrose

glucose
Schrier (1963)
Logan

high drive
low drive

Pierce, Hanford, &t
Rat 1

Rat 2
Rat 3
Rat 4

Schrier (1965)
.33 cc

Monkey Ruth
Monkey Karen
Monkey Joan
Monkey Ken
Monkey Leo
Monkey John
Monkey Allen
Monkey Mae
.83 cc

Monkey Ruth
Monkey Karen
Monkey Joan
Monkey Ken
Monkey John
Monkey Allen

99.5
82.1

96.6
98.6

93.7
98.7
95.4

99.1
92.8

Zimmerman
80.8
98.3
78.9
97.4

94.3
95.2
92.6
98.6
98.6
85.7
70.1
85.4

84.9
93.3
98.3
97.7
97.0
90.8

99.5
82.0

98.4
95.1

93.6
98.6
95.4

97.0
92.3

73.3
98.9
79.7
97.1

93.4
97.7
91.7
98.7
97.5
80.1
9.0

80.9

85.3
86.1
90.7
97.5
96.6
86.5

6.7
-0.6
0.2
0.3

0.9
-2.5
0.9

-0.1
1.1
5.6

61.1
4.5

-0.4
7.2
7.6
0.2
0.4
4.3

redetermined data points from the Catania
and Reynolds (1968) study and fit Equation 3
through these data. We did not average

redetermined points. Second, for several
studies (Conrad & Sidman, 1956; Keesey,
1962; Silver & Pierce, 1969) they used group-

mean data throughout their report despite the
availability of individual-subject data. When-
ever possible, we fitted Equation 3 to perfor-
mances of the individual subjects, not to the
group means. Third, even when they had indi-
vidual-subject data in prior tables, de Villiers
and Herrnstein calculated a group-mean rate
for each data point and fitted Equation 3 to
this set of averaged data for inclusion in

Table 7. In all cases, the percent-variance-
accommodated scores were higher when based
on averages of response rates rather than on
averages of individual subject's percent-
variance scores. Obviously, by presenting
individual-subject variances, we did not do
this.

It is apparent that one's assessment of the
predictive adequacy of Equation 3 depends on
how response-rate data are handled. Analyses
that emphasize averaging response rates will
account for more of the data variance than
those that do not. We believe this procedural
dependency diminishes the credibility of
de Villiers and Herrnstein's demonstration
that Equation 3 accounts for behavioral output
in single-schedule procedures.

REVISING EqUATION 3

What is needed are methods of improving
the statistical fit of Equation 3. One useful
technique is to compare the fit of any equation
with a family of alternative functional forms
for which the originating equation is a special
case. This approach has been used successfully
by Baum (1979) in generalizing the matching
law to many data sets, and holds the promise
of doing so with Equation 3.
Toward this goal we first note the two parts

of Equation 3: the proportionality hypothesis
of the matching law [r/(r + re)] and its scaling
constant k. In principle, we could add
parameters to permit variation in either or
both of these elements. For example, the pro-
portionality hypothesis could be altered to
make it equivalent to Baum's broadened
matching law by adding two parameters.
However, our attention focuses on k, largely
because we question the central assumption
that total behavioral output is fixed, which is
necessary to justify treating k as a constant
(see Herrnstein, 1974).
We question the assumption of constant

behavioral output, for there are good reasons
for supposing that the relation between ag-
gregate behavioral output and aggregate rein-
forcement rate should appear graphically
as an inverted U (see Hanson & Timberlake,
1983; Rachlin & Burkhard, 1978; Staddon,
1979). To illustrate this expectation, imagine
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Table 2
% Data Variance

(Col. 1) (Col. 2) (Col. 3) (Col. 4) (Col. 5) (Col. 6)
Equation 5-

Equation 3- Linear Regression
Nonlinear Regression on Reciprocals

(Unadjusted (Unadjusted Linear Regression on Reciprocals (Adjusted R2 x 100)
Data Set R2 x 100) R2 x 100) Equation 5 Equation 8 Equation 11

Catania & Reynoldsa
Pigeon 118 72.8 80.7 75.8 84.2 95.0
Pigeon 121 75.1 57.1 42.8 77.0 54.2
Pigeon 129 62.3 74.4 70.1 78.9 80.9
Pigeon 278 78.5 86.4 84.1 88.3 85.6
Pigeon 279 96.4 98.6 98.4 98.3 98.6
Pigeon 281 56.5 76.5 70.6 60.9 42.0

Crespi
rats (group mean) 99.5 98.3 97.8 100.0 100.0

Zeaman
rats (group mean) 82.0 69.1 61.4 93.7 96.9

Keesey (1962)b
-pulse frequency of brain stimulation
Rat 26 87.3 94.7 93.4 91.3 95.1
Rat 27 82.7 96.7 95.9 99.6 95.2
Rat 28 96.8 98.7 98.4 98.7 98.4
Rat 29 94.8 98.7 98.4 98.0 98.5
Rat 33 87.4 71.3 64.1 90.0 98.6
Rat 34 84.2 71.2 64.0 74.3 96.9
Rat 36 89.7 86.6 83.2 88.5 99.9
Rat 39 92.4 85.0 81.3 94.3 97.9
Rat 32 44.1 c c c c

Rat 38 89.0 95.9 94.9 93.3 95.4

-pulse duration
Rat 26 84.4 94.9 93.6 97.6 99.7
Rat 27 81.4 97.1 96.4 97.8 99.3
Rat 28 94.2 49.8 37.2 77.5 99.9
Rat 29 83.9 91.4 88.5 87.3 90.9
Rat 33 87.9 80.0 75.0 84.7 99.5
Rat 34 81.0 76.6 70.7 68.2 89.1
Rat 36 78.5 83.2 79.0 88.7 97.1
Rat 39 91.4 90.6 88.3 92.3 97.2
Rat 32 30.2 c c C c

Rat 38 84.5 64.4 46.6 91.1

- pulse intensity
Rat 26 57.8 90.0 87.5 85.0 96.9
Rat 27 79.4 91.3 89.1 85.7 99.8
Rat 28 44.8 92.4 90.5 87.9 96.4
Rat 29 77.2 93.6 92.0 90.5 100.0
Rat 33 94.1 95.6 94.5 99.5 99.3
Rat 34 86.0 58.1 47.6 84.5 92.2
Rat 36 81.0 89.8 87.3 96.1 94.2
Rat 39 66.0 82.3 71.3 99.3 77.9
Rat 32 78.9 75.0 68.7 89.4 99.3
Rat 38 86.4 75.4 69.2 79.2 98.1

Keesey (1964)
-low intensity of
brain stimulation
rats (group mean) 98.4 95.7 94.3 91.4 97.5

- high intensity
rats (group mean) 95.1 84.9 79.8 92.2 83.0
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Table 2 Continued
(Col. 1) (Col. 2) (Col. 3) (Col. 4) (Col. 5) (Col. 6)

Equation 5-
Equation 3- Linear Regression

Nonlinear Regression on Reciprocals
(Unadjusted (Unadjusted Linear Regression on Reciprocals (Adjusted R2 x 100)

Data Set R2 X 100) R2 X 100) Equation 5 Equation 8 Equation 11
Guttman

-sucrose
rats (group mean) 93.6

- glucose
rats (group mean) 98.6

Conrad & Sidman'
- 48-hr deprivation
Monkey 8 66.2
Monkey 7 56.0
Monkey 6 18.1
- 72-hr deprivation
Monkey 8 40.1
Monkey 7 4.5
Monkey 6 4.0

Schrier (1963)
monkeys (group mean) 95.4

Schrer (1965)
-.33 cc sucrose
Monkey Ruth 93.4
Monkey Karen 97.7
Monkey Joan 91.7
Monkey Ken 98.7
Monkey Leo 97.5
Monkey John 80.1
Monkey Allan 9.0
Monkey Mae 80.9
-.83 cc sucrose
Monkey Ruth 85.3
Monkey Karen 86.1
Monkey Joan 90.7
Monkey Ken 97.5
Monkey John 96.6
Monkey Allan 86.5

Logan (p. 58)
-low drive

rats (group mean) 97.0
-high drive

rats (group mean) 92.3
Silver & Pierce"

Rat 1 64.0
Rat 2 67.5
Rat 3 88.2
Rat 4 93.2
Rat 5 76.5
Rat 6 50.2

Pierce, Hanford, & Zimmerman
-cue light only
Rat 1 73.3
Rat 2 98.9
Rat 3 79.7
Rat 4 97.1

MEAN 78.1
'de Villiers & Herrnstein averagbde Villiers & Herrnstein presen
'Zero rates in their reciprocal ca
dAdjusted R2 can be negative.

89.0

97.9

85.5
49.4
8.9

43.2
6.1
4.2

97.0

95.6
95.7
91.6
99.4
98.0
82.0
9.0

92.0

91.6
84.9
98.6
98.8
97.0
90.4

97.5

97.4

90.6
98.2
97.7
91.6
81.9
97.5

86.8

97.4

81.9
36.8

-13.9d

29.0
-17.4d
-19.7d

96.0

94.2
94.3
88.8
99.3
97.2
76.0

-21.3d
89.4

88.9
79.8
98.2
98.4
96.9
87.2

96.6

96.6

87.5
97.6
97.0
88.8
75.9
96.6

94.3

98.4

89.0
61.8

- 7.0d

27.4
46.8
25.1

99.4

97.2
91.4
96.8
99.0
94.3
81.7

-70.6d
87.5

89.9
92.2
98.1
99.3
97.9
81.0

99.6

95.8

98.6
97.2
96.6
99.3
75.2
95.0

97.9

99.6

95.7
60.8
11.0

30.4
35.6
1.8

99.8

99.9
97.5
94.0
99.7
99.5
88.3
73.4
84.8

98.9
83.0
99.6
99.8
96.3
98.3

99.9

94.1

98.2
94.9
95.9
99.8
100.0
99.5

93.7 91.7 100.0 100.0
89.0 85.4 98.5 100.0
93.1 90.8 99.9 99.9
99.7 99.6 99.8 99.8
82.5 77.7 85.0 89.8

Ded redetermined data points before calculating R2. We did not.
t group mean data only. We present individual subjects.
use regression to be unsolvable.
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reinforcer levels for all activities as 'infm-
itesimal," "intermediate," and 'infinite." At
infinitely small or large reinforcer levels, ag-
gregate behavioral output should be very low-
in the former case because high response rates
are unproductive of reward and in the latter
case because only minimal responding is nec-
essary to produce reinforcer levels in excess of
the animal's needs. Ony when reinforcement
levels are "intermediate" do we have reason
to expect consistent reinforcement-related re-
sponding from an animal. Thus, we predict a
bitonic function: upward sloping in the rein-
forcer range infinitesimal to intermediate, and
downward sloping in the range intermediate to
infinite.
The bitonic functional form is inconsistent

with the constancy of k. Yet fixed values for
this parameter have characterized not only
Equation 3, but also many of the other theo-
retical accounts that model behavioral output
(e.g., Killeen, 1981; Rachlin, 1978; Staddon,
1977, 1979). Only McDowell and Kessel's
(1979) linear system analysis (see also
McDowell, 1980; McDowell & Wood, 1984)
posits an account in which k varies; yet, in
their account, k is limited to increasing
monotonically with reinforcement amplitude.
Our attempt to improve the statistical fit of

Equation 3 takes into account our expectation
that k must vary. Our approach in this search
is both systematic and general. In our first set
of evaluations we let k vary monotonically,
either increasing or decreasing with reinforcer
levels. This will improve the statistical fit to the
extent that the experimental data have been
generated preponderantly over either the in-
creasing or decreasing range for k. In our sec-
ond set of evaluations of functional forms we
relax the monotonicity constraint, thus allow-
ing an improved fit to data generated over
both the increasing and decreasing ranges of k.
In both sets of evaluations, the relative predic-
tive adequacy of Equation 3 is assessed be-
cause this equation is always a special case of
the family of functions being evaluated.
To permit k to vary monotonically with

reinforcer levels, we first restate Equation 3 in
inverse form, because this makes the equation
more mathematically tractable:

I/R = I/k + r/kr = l/k (1 + r./r). (5)
Because k represents total output, it should

be expressed most generally as a function of
both r, and r. However, inasmuch as r, cannot
be observed directly, we defer testing for any
relationship between k and r6 until a later sec-
tion of the paper, and assume for the present
that r. is a random variable independent of r.
We can then express k as a function of sched-
uled reinforcement only. Since we have no a
priori expectations as to the precise functional
form of the (k, r) relationship, we choose, for
ease of estimation:

l/k=Po+P3/r. (6)

In this equation, k approaches 1/Po as a limit
as r approaches infinity; k is an increasing
function of r when Pi > 0, and a decreasing
function of r when Pi < 0. These two
possibilities in (I/k, 1/r) space are shown in
Figure 1.

Obviously, the constancy of k requires
P1 = 0. To determine whether this result
obtains, we substitute Equation 6 into Equa-
tion 5:

IIR = (Po + P1/r)(1 + rJ/r) =
Po + (Pi + f3or.)(1/r) + l3r.(l/r)2.

The estimating equation is thus

IIR = a0 + al(l/r) + a2(1/r)2
where a0 = Po, a1 = Pi + (bro and a2 = Plre

(7)

(8)

>0

RI<

I/r
Fig. 1. Portrayal of k as an increasing or decreasing

function of reinforcement value (r) when variables are
stated in their reciprocals for Equation 6.
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I/k

k 4p,

r 2P2
Fig. 2. Portrayal of k as an increasing then decreas-

ing function of reinforcement value (r) when variables
are expressed in reciprocal form for Equation 9.

Equation 8 generalizes Equation 3 by allow-
ing k to be either an increasing (pi > 0) or a

decreasing (pi < 0) function of r over the
range of (k, r) data available, but it does not
allow k to be an increasing and then a decreas-
ing function of r over different ranges of the (k,
r) data. Such flexibility would be an important
capability to have if, as suggested earlier,
behavioral output is a bitonic function of rein-
forcement. Therefore, we generalize Equation
8 to allow this, at the cost of an additional
degree of freedom, by assuming:

1/k = Po + Pi/r + P32/. (9)

For example, if the relationship between 1/k
and 1/r is as illustrated in Figure 2 (i.e.,
(30PJ2 > 0, (1 < 0), then k is an increasing
function of r up to a maximum at r = -2p2/p1
and then falls, approaching I/Po asymptotically
as a limit as r approaches infinity.

Substituting this function into Equation 5,
we get

IIR = (Po + PI/r + P2/r2)(1 + r./r) = Po +
(Pl + POr.)(1/r) + (P2 + Pire)(1/r)2 + P2r.(I/r)3. (10)

The estimating equation for Equation 10 is,
therefore,

1/R = ao + al(l/r) + a2(I/r)2 + a3(h/r)3, (1 1)

and the hypothesis that k is a constant requires
af2 and a3 to equal zero.

To recapitulate, we are seeking a replace-
ment for Equation 3 that improves the per-
centage of variance accommodated in the data
from the studies presented in Table 2. Al-
though such a goal could be approached by
testing any arbitrary functional formn, we have
restricted our search to equations for which
Equation 3 is a special case. Two versions are
offered, presented in order of greater general-
ity. Expressed as estimating equations, they
are Equations 8 and 11. Both of these equa-
tions permit k to be monotone increasing or
decreasing with reinforcement rate; Equation
11 also permits bitonicity.

TESTING ALTERNATIVE FUNCTIONAL FORMS
The next question is whether these more

general functional forms improve the fit be-
tween predicted and observed rates of behav-
ioral output. This requires dealing with two
issues.
The first issue is the alternative weighting of

error terms inherent in redefining Equation 3
in reciprocal form (Equation 5). To illustrate
the problem, assume we have a relationship
that can be written in two or more forns- for
example, a nower function:

R = aor'l vs log R = log ao + a1 log r,

or Equations 3 and 5:

R = krl(r + r.) vs 1/R = 1/k + r/kr.

Although the two forms of the power function
are mathematically identical, the values of a0
and a, estimated using the nonlinear form
may differ systematically from the values ar-
rived at when the equation is estimated in log-
linear form. Because the estimating procedure
chooses values for ao and a1 that minimize the
sum of the squared deviations from the
predicted values, estimating in log form will
reduce the weight given to errors associated
with larger values of r and R. Similarly,
estimating Equation 5 involves minimizing the
sum of the squared deviations between actual
and predicted IIR rather than actual and
predicted R, and thus once again reduces the
weight given to the errors at high (r, R) com-
binations. Which weighting procedure is pref-
erable depends on the assumed nature of the
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error term: If measurement error is propor-
tional to the size of the observation, a formula-
tion such as a log-linear or reciprocal, which
deflates large error terms, is preferable to for-
mulations such as the nonlinear power form or
the nonlinear Equation 3 because these latter
formulations would place too much emphasis
on minimizing errors at the higher range of
observations.

Although Wetherington and Lucas argue
that this issue has been resolved in favor of the
nonlinear method, the proper test-determin-
ing the nature of the error term- requires
more data points per subject than are avail-
able. In any case, we need not be concerned
with the answer such a test would provide,
because only ordinal accuracy is needed to
discriminate among our alternative models.
For these purposes, estimation in the recip-
rocal form of the equation for simple action is
sufficient.
A second issue is how to determine whether

or not the addition of extra terms to an
estimating equation significantly improves its
predictive ability. There are several possible
criteria, but we present here only two of the
most commonly used.
The first approach is to compare the R2

statistics achieved under the different func-
tional forms. As the reader is no doubt aware,
however, the unadjusted R2 must increase
when additional terms are added unless these
additional variables are perfectly uncorrelated
with the dependent variable. Ultimately, of
course, as the number of independent variables
equals the number of observations, R2 = 1.
Thus the usual procedure is to adjust the R2
for additional terms in the following way:

R2= 1 -(1 -R2) [(N- 1)/(N-K)],
where N=the number of observations and
K = the number of estimated coefficients in-
cluding the intercept (see Pindyck & Rubin-
feld, 1976, p. 59).
Columns 3 and 4 of Table 2 present the per-

centage variance accommodated (R2 x 100) on
an unadjusted and adjusted basis, respec-
tively, for linear regressions based on Equa-
tion 5. Columns 5 and 6 present the adjusted
R2 x 100 for Equations 8 and 11, respectively.

Comparisons among these data show two
things. First, the linear regressions of Equa-
tion 5 (Column 3), on average, account for
4.4% more of the data variance than do the
nonlinear regressions of Equation 3 (Column
2): 82.5% versus 78.1%, respectively. Sec-
ond, with few exceptions, Equation 8 does a
better job of accounting for the data variance
than does Equation 5, and Equation 11 is
superior to either of these alternative equa-
tions. Averaged over all experiments, the
mean adjusted percentage variance explained
by Equations 5, 8, and 11 are, respectively,
77.7%, 85.0%, and 89.8%.
The second approach is to compute the F

statistic for the null hypothesis that all the coef-
ficients of additional terms are zero (i.e., that
a22=0 in Equation 8 or that a2=a3=0 in
Equation 11) and then determine the asso-
ciated significance level (i.e., the probability
that we falsely reject the hypothesis that a2 = 0
or a2 = a3 = 0). If this probability is sufficiently
small (less than .05), we customarily reject the
hypothesis that k is a constant.
One advantage of this second approach is

that it facilitates dealing with a major problem
with the data: the low degrees of freedom in
the data sets derived from Table 7 of
de Villiers and Herrnstein. When the
numbers of observations are as few as those in
most cases from this table, the data will not
allow differentiation between any but the
simplest of hypotheses. The traditional solu-
tion to this problem is to pool data sets.
However, for these data sets pooling cannot
be performed directly because each animal
is assumed to have its own parameter values.
Therefore, we cannot pool to estimate a 'pop-
ulation" r* or k function. We can, how-
ever, perform some joint tests. In parti-
cular, we can define the probability that each
individual animal's k is indeed a constant by
performing a joint F test on any set of ex-
periments that are believed to have a good deal
in common. Thus we can take the sum, over
these experiments, of the difference between
the sum of the squared errors with Equation 5
(equivalent to Equation 8 with a2 restricted to
equal zero, or to Equation 11 with a2 and a3
restricted to equal zero) and the sum of the
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squared errors with Equations 8 or 11, and
compute the F statistic:

nt n n

I SSEi -E SSEi dfi
i1I (restricted) i1 (unrestricted) iI

Fj = .J ~~~n nJ
SSEi

iI (unrestricted)

where SSEi(stricted) = sum of the squared errors
(i.e., deviations of actual from predicted values)
in Experiment i when the specification is
restricted so that a2 = a3 = 0(i.e., Equation 5);
SSEi(unr,tricted) = sum of the squared errors when
the specification allows a2 0, or a2 and
a3 0; n = number of experiments in the
group; j = number of restrictions: j = 1 when
Equation 8 is restricted to become Equation 5
(aR2 = 0);j = 2 when Equation 11 is restricted to
become Equation 5 (a2 and a3 = 0); and
dfi = degrees of freedom for the regression equa-
tion in the ith experiment.

Table 3 presents the results of the F tests for
the hypothesis that a2 = 0 (comparing Equa-
tion 8 with Equation 5), and a2 and a3 = 0

(Equation 11 vs. Equation 5). For 7 of 19 com-
parisons, the hypothesis that a2 = 0 could be
rejected at the .05 confidence level; and for 1 1
of 19 comparisons of Equation 11 with Equa-
tion 5, we can reject the hypothesis that a2 and
a3=0.

The results from Tables 2 and 3 make clear
that permitting monotonic and bitonic change
in k improves the capacity of Equation 5 to ac-
commodate data variance across the many
studies catalogued by de Villiers and Herrn-
stein. This condusion is not only incompatible
with their equation for simple action, it also
contradicts data they present in support of the
constancy of k (see p. 151 from de Villiers &
Hermstein).

Table 3
Significance Tests for Equations 8 and 11 versus 5

# of Significance for Test of:
Data Set Observations a2 = 0 a2 and a3 = 0

Catania & Reynolds 40 < .001 (F = 5.90) < .001 (F = 7.75)
Crespi 5 .002 (F=422.14) .015 (F=2148.67)
Zeaman 6 .019 (F = 33.52) .040 (F = 23.76)
Keesey (1962)

pulse frequency 54 .311 (F = 1.24) .028 (F = 2.53)
pulse duration 47 .001 (F = 5.06) < .001 (F = 19.88)
pulse intensity 60 < .001 (F = 7.57) < .001 (F = 42.60)

Keesey (1964)
low intensity 5 .643 (F = .29) .351 (F = 3.56)
high intensity 5 .162 (F = 4.73) .190 (F = 13.31)

Guttman
sucrose 7 .051 (F = 7.56) .031 (F = 13.85)
glucrose 7 .122 (F = 3.82) .031 (F = 13.54)

Conrad & Sidman
48-hr deprivation 18 .318 (F= 1.35) .287 (F= 1.62)
72-hr deprivation 18 .104 (F = 2.75) .349 (F = 1.39)

Schrier (1963) 5 .056 (F = 16.45) .145 (F = 23.22)
Schrier (1965)

.33 sucrose 40 .775 (F =.59) .122 (F = 2.26)

.83 sucrose 30 .564 (F = .84) .015 (F = 6.60)
Logan

low drive 5 .044 (F=21.11) .110 (F=41.13)
high drive 5 .567 (F = .45) .758 (F = .37)

Silver & Pierce 30 .065 (F = 2.74) .030 (F = 4.95)
Pierce, Hanford, & Zimmerman

cue light only 20 < .001 (F = 41) < .001 (F = 132.56)
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Table 4
Correlation Between k and r,

Correlation Significance
Data Set log k log r, Coefficient Level

Catania & Reynolds
Pigeon 118 2.02
Pigeon 121 1.91
Pigeon 129 1.86
Pigeon 278 1.89
Pigeon 279 1.84
Pigeon 281 1.82

Keesey (1962)
-pulse frequency
Rat 26 1.31
Rat 27 1.48
Rat 28 2.40
Rat 29 2.50
Rat 33 1.53
Rat 34 1.37
Rat 36 1.46
Rat 39 1.51
Rat 32 1.61
Rat 38 1.84

duration
1.37
1.35
1.79
1.43
1.24
1.17
1.26
1.37
0.76
2.24

intensity
1.39
1.34
1.26
1.41
1.13
1.81
1.12
1.18
2.41
1.44

0.79
2.34
0.99
0.74
1.08
0.71

1.52
1.92
3.37
3.50
2.29
2.00
2.09
2.14
3.55
3.29

0.22
0.18
0.94
0.60

-0.10
-0.22
-1.00
-0.10
1.09
2.11

0.04
0.04
0.15
0.57
0.26
0.18

-0.40
-0.05
2.08
1.09

k AS A FUNCTION

As noted above, we expect A
of total reinforcement- that i
r*. Unfortunately, since we c

directly, we cannot test for
between k and r* using data
experiments. Suppose, howev
a sample of animals that, fo

.07 .89

.79 <.01

Table 4-Continued
Correlation Between k and r.

Correlation Significance
Data Set log k log r, Cojficient Level
Schnrer (1965)

-.33 cc sucrose
Monkey Ruth 2.03 1.20
Monkey Karen 1.92 0.92
Monkey Joan 2.18 1.84
Monkey Ken 1.97 1.36
Monkey Leo 2.05 1.66
Monkey John 1.79 0.13
Monkey Allan 1.71 -1.00
Monkey Mae 0.84 1.48

.11 .80
-.83 cc sucrose
Monkey Ruth 1.91 0.72
Monkey Karen 1.84 1.13
Monkey Joan 2.78 3.15
Monkey Ken 1.93 1.28
Monkey John 1.88 0.78
Monkey Allan 1.78 0.85

.97 <.01

Silver & Pierce
Rat 1 0.99 1.15
Rat 2 0.93 1.46
Rat 3 1.21 1.62
Rat4 0.80 1.24
Rat5 0.90 1.20
Rat6 0.96 1.56

.62 .19

.54 .11 sons, have different rates of re. For any subsetof experiments that have a great deal in com-
mon, it is not unreasonable to assume that this
r* distribution is uncorrelated with other deter-
minants of k. A cross-sectional regression be-
tween r. and k will then provide an unbiased
estimate of the relationship between r* and k at
the mean values of the other determinants of k.
We regressed log k against log r* for all

studies in Table 2 where k and r* were defined
go0 < .01 for five or more subjects. A log-log regression

was chosen because we would expect the rela-
tionship between k and r* to be proportional

OF r, rather than linear. Table 4 presents the studies
k to be a function and subject names from which the data are de-
is, of both r and rived (Column 1), the logs of k and r* defined
annot observe r* by Wetherington and Lucas' nonlinear least-
any relationship squares method applied to Equation 3 (Col-
from individual umns 2 and 3), and the correlation coefficient
rer, that we have between log k and log r* and its associated
)r whatever rea- significance level for the pooled data within
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each study (Columns 4 and 5). As is apparent,
k often does not show the constancy predicted
by the equation for simple action. Instead, it
tends to increase with increases in re, and this
relationship is highly significant in three of
seven cases (see also McSweeney, Melville, &
Whipple, 1983).

GENERAL DISCUSSION

This report reevaluates de Villiers and
Herrnstein's demonstration that the equation
for simple action accounts for virtually all vari-
ation in behavioral output in studies in which
reinforcer value has been parametrically man-
ipulated. To summarize our major findings:

1. The high proportion of the data variance
de Villiers and Herrnstein found accommo-
dated by Equation 3 (94%) is predicated on
particular ways of averaging rate data. When
the same data sets are not averaged prior to
calculating the R2 statistic, the percent vari-
ance accommodated is much lower (78%).

2. To improve the predictive adequacy of
Equation 3, we generalized it by permitting its
scaling constant, k, to vary. In one form
(Equation 8), k was permitted either to in-
crease or decrease with scheduled reinforce-
ment in monotone fashion. In a still more flex-
ible form (Equation 11), k could not only in-
crease, but could subsequently decrease as
reinforcement was increased. For both of these
latter equations, Equation 3 could be derived
as a special case. When Equation 5 (which is
Equation 3 in reciprocal form) was compared
with these more general functional forms, it
was inferior in accommodating data variance.
The best job was done by the equation allow-
ing bitonic change (Equation 11), followed by
the equation permitting monotonic change
(Equation 8). If the matching law is assumed
to be correct, these results are incompatible
with the definition of k being a constant as
stated in Equation 3.

3. Because total output can be expected to
be a function of endogenous as well as sched-
uled reinforcement levels, we tested for a rela /4
tionship between k and rv, using cross-sectional
data from homogeneous groups of experi-
ments. As anticipated, the results showed a

consistently positive, and in several cases highly
significant, relationship between k and r6.
The analysis we offer here is reminiscent of

one offered by Baum (1979). In his report he
showed that the matching law (Equation 1)
could effectively accommodate variation in
choice data only if it were generalized by the
addition of two parameters- one to permit var-
iation in slope and the other to permit vari-
ation in intercept (Equation 4). Like Baum,
we have added parameters to a matching-de-
rived function to improve its fit to existing
data. However, we cannot offer a rationale for
the use of these parameters other than the
observation that they maintain the integrity of
the equation they generalize. Particularly
troublesome is the variation in the value of k.
Because k equals the total amount of behavior
an animal can produce, scaled in terms of the
scheduled operant, its variation violates the for-
mal properties of its derivation (see Herrn-
stein, 1974). With a variable k, Equation 3
becomes an arbitrary and inadequate formula-
tion of rate effects.
Our finding that k varies with both sched-

uled and endogenous reinforcement rates is a
critique not just of one particular form of an
equation for simple action (i.e., one where k is
assumed constant), but of the rationale for ex-
tending the matching law into any equation
for simple action. An equation for simple ac-
tion consists of two parts: an assumption about
choice proportions (in this case the matching
law) -and an assumption about total output.
Thus, any tests of this equation are really joint
tests of the matching law and of a particular
functional form for the relationship between k
and the levels of r and re. But inasmuch as we
have no theory that implies a particular func-
tional form for this relationship, the question
of which form performs best seems of little in-
terest.
We have shown the empirical successes of

the equation for simple action to be limited. Its
central assumption of the constancy of k is em-
pirically violated and, in its orginial form, this
equation does a less adequate job in accommo-
dating variance for individual subjects' data
than was previously believed. Because of these
problems, we favor no longer applying this
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matching-based equation to the prediction of
single-schedule rate effects. Such a distinction
would acknowledge the growing body of evi-
dence (e.g., Duncan & Silberberg, 1982;
Hursh, 1978) that matching principles contrib-
ute little to the explanation or prediction of
behavioral output.
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