
Measurement of duration as a characteristic of a cohort is subject to biases
unless certain pitfalls discussed in this paper are avoided. The authors
discuss aspects of this problem and indicate its significance for
health studies.
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Introduction

THE duration of a condition is a fre-
quently studied longitudinal charac-

teristic of a cohort. It is an aspect of
experience that is of great analytic im-
portance in medicine, demography, and
doubtless many other fields. Certain
problems in the measurement of dura-
tion are common to a wide variety of
circumstances. In particular, in this pa-
per, it will be shown that unless certain
nonobvious pitfalls are avoided, dura-
tion measurement is subject to serious
biases.
A wide variety of duration variables

has been investigated. For example, in
demography and public health, duration
of life has been studied extensively. In
clinical situations, interest has focused
on the duration of the preclinical stage
of a disease," or on survival time, i.e.,
on duration of life after diagnosis of a
condition.2 The duration of hospital stay
is a variable of great concern in meet-
ing mnedical care needs.3 Other studies
have examined the duration between re-
currences of an event or condition
which can occur to a given individual
more than once. Thus, the lengths of the

intervals between episodes, or recur-
ences, of an illness (i.e., the durations
of remissions) have been investigated.4
Marriage can occur repeatedly to a given
individual, and its duration according
to marital order (first, second, third,
marriage for husband or wife) is of
interest.5 In demography, birth intervals,
i.e., the durations of intervals between
marriage and first birth, and between
successive births, are studied6 7 as one
aspect of natality analysis.

In exploring some of the problems
inherent in the measurement of dura-
tion, we will assume that the duration
variable has a distribution which does
not change with time, so that the dis-
tribution is the same for all incidence
groups, i.e., for all cohorts. When we
cannot assume identical distributions,
the difficulties that we will point out be-
come more severe. Hence, making this
assumption merely facilitates the presen-
tation.

In some cases, investigators have at-
tempted to measure duration from preva-
lence cases. Therefore, in the next sec-
tion, we consider what is known as the
stable disease model and review the rela-
tionship, well known in probability
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MEASUREMENT OF DURATION

theory but generally unfamiliar to epi-
demiologists, between the distribution
of duration in an incidence group and
the distribution of duration among cases
prevalent at a specified time. Implica-
tions of these results are briefly exam-
ined. Even when the assumption of a
stable disease model is tenable, it is
usually necessary to measure duration
by following an incidence group. Par-
ticularly when a condition occurs re-
peatedly, the duration of time for which
the cohort is followed is an important,
but often unrecognized, determinant of
the distribution of the observed duration
of the condition. In the third section,
the effects of this factor will be exam-
ined theoretically and numerically, using
results from a computer simulation
model for reproduction.

Duration of Prevalence Cases in a
Stable Disease

The stable disease model assumes8
that (1) the distribution of duration is
the same for all incidence cohorts; (2)
incidence is constant over time, i.e., the
same number of cases begin in each
time unit; (3) the disease has a finite
maximum duration.

These assumptions lead to constant
prevalence. Although it would perhaps
be more accurate to refer to this situa-
tion as a stationary disease model, since
the disease population reaches and re-
mains at a constant size, we will use the
customary terminology.
A simple example of a stable disease

is given in Figure 1. One-third of the
cases last one day; another third last
two days and the remainder, three days.
In other words, the probability distribu-
tion function (p.d.f.) of duration in each
incidence cohort is given by

1/3 x=1, 2, 3
f(x)= g (1)

{ 0 otherwise.
Mean duration, ,u, is two days and vari-
ance, o2, equals 2/3. When incidence is

equal to three per day, the illustrated
disease pattern follows. Since duration
is taken here as a discrete variable, it
is necessary to be quite precise in de-
fining a prevalent case. Cases newly in-
cident on a specific day are not counted
as being prevalent on that day. Letting
xm be the maximum duration described
under assumption (3), we see that preva-
lence becomes constant on Day xm+ 1
or, in our example, on Day Four. Then,
for example, on Day Six, prevalence
is equal to six cases (numbered 1 to 6
in Figure 1) and incidence is equal to
three (A, B, C), so that the well-known
relationship that prevalence is equal to
incidence multiplied by mean duration
indeed holds.

Information about the detailed dis-
tribu,tion of duration cannot come sim-
ply from prevalence and incidence data,
but requires actual duration measure-
ments. Using a cross-sectional approach,

STABLE DISEASE

ZC6,Cx

4 27

DAYS (X )

Figure 1-Simple example of the stable
disease model. Each line in the figure
represents a case. The line runs from
the day of incidence through the last
day of the illness
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the duration of prevalence cases, which
differs from that of incidence cases,
could be measured at a given point in
time, t.
Two related variables may be studied

among prevalence cases: (1) the dura-
tion, U, of the open interval between
the onset of the disease and t, and (2)
the total duration, T, of cases which are
prevalent at time t and are then fol-
lowed to their conclusion. U has been
measured with the idea that the length
of the open interval for prevalence cases
represents half the total duration of in-
cidence cases. Unfortunately, this is not
the case. Turning again to Figure 1, we
find that if the open interval is meas-
ured at Day Six, the open interval is
three days for Case 1; two days for
Cases 2 and 3, and one day for Cases 4,
5, and 6, i.e., the p.d.f. is

% u=l
u=2

h(u)= (2)
'/6 u=3
0 otherwise,

with mean #= 12/3 days. Obviously

u# is greater than AX
2

T, the total duration of the preva-
lence cases, is

Case No. Duration in days
1 3
2 2
3 3
4
5
6

1
2
3.

Therefore, the p.d.f. of T is:
I% X=1

x=2
g(x)= (3)

x'=3
0 otherwise,

and the mean duration, Pu*, of preva-

lence cases is greater than Mx, spe-

cifically, ,u* =21/3 days.
Explanations for these related phe-

nomena can be reached through the
use of renewal theory. The stable dis-

ease model, because of its constant in-
cidence and unchanging distribution of
duration, satisfies the definition of a
renewal process.9-11 Results from re-
newal theory can be applied to clarify
the relations between the distributions
f (x), h(u), and g(x) at any time
t>xm. It can be shown (and proofs are
given in Appendix 1), that when the
distribution of duration of incidence
cases is given by f(x), the p.d.f. of U,
the length of the open interval, is

Xm
z f(x)

h(u) =x=u
AX

with mean

ju4= lg2 + 2 + 2 . (5)
2 2.u 2

The p.d.f. of T, the duration of preva-
lence cases, is given by

g(x)= xf(x) x=O, 1, 2

with mean
00

XfX) 2 2

A* = x2f(x) -= +.u.
x=O ps Ps

2

IAX + T- -

/LX

(6)

(7)

Comparison of (5) and (7) shows that
1 +1

2 + 2- (8)

where the term 1/2 comes from the fact
that we are dealing with a discrete dis-
tribution.* From (6) we see that preva-
lence cases can be considered a "length-
biased" sample because the probability
of a case being prevalent at a given
time is proportional to its duration
times its probability. Therefore, the mean
duration of prevalence cases is greater
than that of incidence cases and the
mean open interval is greater than half
the mean duration of incidence cases.
Although Zelen and Feinleibl have made

* Results comparable to (4)-(7) for con-
tinuous distributions can be found in the books
by Cox and Feller, cited in References 9-11.

(4)
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ingenious use of these and other rela-
tionships derived from renewal theory
to estimate related duration variables in
a two-stage disease model, these results
generally have been difficult to apply.
In addition, the assumption of a con-
stant number of incidence cases is
rarely valid. Consequently, it is usually
necessary to follow an incidence cohort
in order to obtain accurate measures of
duration parameters. The remainder of
this paper considers the effects on dura-
tion measurement of the specific point
in time at which the measurements on
the cohort are made.

Duration Measured in a Cohort
Intuitively, it is obvious that, un-

less a cohort is followed until every
member has reached the end of the con-
dition, the observed distribution of
duration will be incomplete. The higher
values of duration, X, will not be ob-
served and the mean, X, of observed
completed intervals will be less than pux,
the true mean of the distribution. Re-
ferring again to Figure 1, consider the
cohort starting on Day 1, labeled U, V,
and W. If duration is measured on Day
3, only V and W will have completed
the interval. Their mean duration is one
and a half days. Only if duration is
measured on Day 4, or later, after the
intervals for all members of the cohort
have ended, i.e., at some t>xm, will the
true mean of two days be observed.
When duration of a condition can be

long, this problem is especially impor-
tant. Investigators studying birth inter-
vals have encountered some of its facets
in attempting to analyze data and in
developing probability models for re-
production.'2'13 Birth intervals can be
thought of as the result of a number
of underlying factors that lead to a dis-
tribution, denoted by fi (x), of the dura-
tion of the interval between the (i - 1) th
and the ith live birth. For our current
purpose (to examine the effect of the

time at which duration variables are
measured), birth intervals are used only
as an example.

Consider the interval, Y, between
marriage and the fourth birth in a mar-
riage cohort. This interval has four seg-
ments, as illustrated in Figure 2. Let
us denote by

Xi the length of the interval from mar-
riage to first birth

Xi the length of the interval from
(i-1)th to ith birth, i>2

fi(x) the p.d.f. of Xi, .1
Y the length of the interval between

marriage and fourth birth, where
4

Y=2 Xi
i=1

and h4 (y) the p.d.f. of Y.

Then the mean, or expected value of Y,
is

EY= EX1+ EX2 +EX3+ EX4. (9)

If we make the simplifying assump-
tion that the Xi are independent, then
Var Y is the sum of the variances of
the Xi, and h4 (y), which is given
in Appendix 2, is the convolution
of the fi (x) . It is important to
stress that h4 (y) is the distribution
which would result if all women were
followed to their fourth birth. The p.d.f.,
when women are followed for a shorter
specified length of time, is also derived
in Appendix 2. This distribution is diffi-
cult to study analytically. A Monte Carlo
simulation program developed by Ridley
and Sheps, REPSIM A,14 was used to
obtain numerical results for the mean
time to the fourth birth, when a marital
cohort was followed for 5, 10, 15, and

Figure 2-Interval from marriage to the
fourth live birth (i.e., to the fourth
"episode")

IST.
MARRIAGE BIRTH

2 ND. 3 RD. 4 TH.
BIRTH BIRTH BIRTH

Kx-X1KxIJ§42K-I7
p.d.f. f (X) f2(x) f3(x) f4(x)
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Table 1-Mean interval to the fourth birth, by duration of a marriage,
in a marital cohort of l,OOOa women

Marital duration 5 yr 10 yr 15 yr 20 yr

1. No. of women of parity 4+ 5 527 986 1,000
2. Mean interval to 4th birth (in mo) 50.8 98.9 116.9 118.6

a. Expected value= 118.0.

20 years, and the following assumptions
concerning the Xi were made:

1) Xi has a distribution fi(x) with mean
16.3 months and variance 32, and

2) the Xi, i>2, have identical distributions,
denoted f(x), with mean 33.9 months
and variance 214.

Then Y has distribution h4 (y) with
mean 118.0 months and variance 674.

In Table 1, simulated results are pre-
sented which show the effect of measur-
ing intervals before all members of a
cohort have completed that interval. Line
1 shows the number of women reaching
parity 4. After 5 years of marriage, only
5 women have had four or more births.
This number increases to 1,000 as mar-
ital duration increases to 20 years. The
mean observed value of Y is only 50.8
months at 5 years, a value far below
its theoretical expectation of 118
months. This observed mean increases
with marital duration to 118.6 months
at 20 years. The difference from the true
expected mean (118.0 months) is due to
the fact that we are dealing with simu-
lated results.
The results for the individual inter-

vals, the Xi, are also affected, as shown
in Table 2. As duration of marriage in-
creases, the number of women of parity
3 or more (line 1) also increases. The
mean of the interval between the second
and third births is given on line 2. This
quantity, X3, increases with marital
duration as does X4, shown on line 5.
Comparison of X3 and X4 shows that, at
every marital duration where not all
women have had at least four births, X3
is greater than X4. At 20 years, these

values are the same, within sampling
error due to simulation. This results from
the fact that, at shorter marital dura-
tions, only women with relatively short
intervals can have a large number of
births. In fact, if we look at the mean
of X3 for women who have had at least
four births (line 7), we find it is shorter,
at every marital duration except 20
years, than X3, but longer than X4.
Sheps, et al.,15 have explored this prob-
lem in much greater detail, and have
given further results related to the open
interval since the most recent birth.

Conclusions
Although our discussion has used

birth intervals as an example, it is
equally applicable to the measurement
of variables, such as the duration of
the interval between successive hospitali-
zations for mental illness, duration of
successive marriages, duration of resi-
dence, and the like.
To summarize, let us consider single

episode duration variables first. Two
points are clear. Prevalence cases are a
biased sample. In the stable disease
model, the cases with longer duration
are more likely to be included in a
sample of prevalence cases. In a cohort,
the bias, unless all cases are followed
to their conclusion, is in the opposite
direction.

If a condition occurs repeatedly, the
observed duration of any given interval
or episode depends upon the length of
follow-up, with the mean duration in-
creasing until all members of a cohort
have completed that interval. Also, only
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MEASUREMENT OF DURATION

Table 2-Mean interval between second
third and fourth birth, by duration of
of 1,000 womenb

and third birth and between
marriage, in a marital cohort

Marital duration 5 yr 10 yr 15 yr 20 yr

1. No. of women of parity 3+ 124 940 1,000 1,000

Interval between second and
third birth, X3, for women of
parity 3+

2. Mean, X3 19.4 34.0 34.7 34.3

3. Variance 41.0 185.3 204.9 212.6

4. No. of women of parity 4+ 5 527 986 1,000

Interval between third and fourth
birth, X4, for wvomen of
parity 4+

5. Mean, X4 12.6 27.0 32.7 34.4

6. Variance 3.8 112.6 192.2 223.0

Interval betwveen second and third
birth for women of parity 4+

7. Mean 13.4 29.3 34.3 34.3

8. Variance 2.2 133.9 193.3 212.6

b. The distribution of the intervals between successive births are independent snd have
theoretical means and variances:

EXi=16.3 months
Var Xi =32

EX i = 33.9
Var Xi =214 i>2

individuals with short durations for each
episode can have a large number of epi-
sodes in a given time period.

These findings show that the effect of
time of measurement can produce a
spurious difference, particularly for a
recurring condition, even when the dura-
tion of each episode has the same theo-
retical distribution; or it can perhaps
mask true differences. It should also be
emphasized that great care must be
taken in defining the duration variable
of interest. Variables such as the dura-
tion of a current episode or of the most
recent episode, even for an identifiable
cohort, are mixtures of durations of
first, second, and succeeding episodes.
If such variables are used, their struc-
ture must be taken into consideration in
any analysis or when making compari-
sons between groups.
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APPENDIX 1

Distribution of Prevalence Cases in a
Stable Disease Model

Notation and Definitions
I(t) number of cases with incidence at t.

1(t) is assumed to be constant.
i.e., I(t) =I, all t>0. These cases
are not counted as prevalent at
time t

X(t) variable dturation of cases in cohort
wvith incidence at t

f (x) probability distribution function
(p.d.f.) of X(t), which is assumed
to be the same for all t

us mean duration of cases in an inci-
dence cohort, i.e.,

xz= f(x)
x=1

xm maximum value of X(t), i.e., f(x)
0 for all X>Xm

2
a, variance of duration, i.e.,

2 00 2
a= 2: (x-,A.) f(x)
x=1

P(t) numniber of cases prevalent at t

Ult

h(ult)
Tlt

g(xlt)

variable duration of open interval for
cases prevalent at t

p.d.f. of Ult
variable total duration of cases

prevalent at t
p.d.f. of Tlt.

Prevalence at Time t
We will first derive an expression for P(t)

and showv that, as t 00, P(t) approaches a
constant.

Consider Figure 3, the open interval Ult,
for a case with incidence at t-7. Obviously, its
duration is at least 7 time units. In general,
a case with incidence at t-x is prevalent at
t if its duration is x, x+1, x+2, ... Hence,
the number of cases with incidence at t-x
w%hich are prevalent at t is given by

00
I(t-x) 2i f(y).

y=x
(1.1)

By summing (1.1) over all possible values of
x, we find

t-1 00
P(t)= 2I tI(t-x) 2 f(y)].

x=l y=x

Changing the order of summation,
so c

P(t)= I [f(x) I: I(t-y)]
x=l y=l

00

=1 2: cf(x)
x=l

(1.2)

(1.3)

(1.4)

c = min (t-l,x),
since I(t-y)=I for all (t-y)>0. As t+ 00,
c+ x, so that

00
P(t) +P=I 2:xf(x)

= ,I1.
Then

(1.5)

I= P/,us. (1.6)
(1.6) is one version of the well-known stable
disease relationship between incidence, preva-
lence, and mean duration. Since we have
assumed f(x)=0 for x>xm, (1.5) and (1.6)
hold for all t>xm.

Figure 3-Open interval, UlIt, for a case
with incidence at t-7

t-7 t
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P.d.f. of Open Interval for Cases Prevalent at t
The number of cases with open interval

UIt=x is given by (1.1). Letting F(x)=
00
2 f(y), we find from (1.1) and (1.2) that
y=x

the p.d.f. of Ult is

h(ult)= I(t-u)F(u) = F(u)
P(t) t-1

2 F(u)
u=1

(1.7)
Expanding the denominator of (1.7), we see
that as t+ 00,
t-1
2 F(u)-*>f(l)+2f(2)+..+nf(n)+...

u=1
00

=2 uf(u)
u=1
= Ax. (1.8)

Therefore, as t + 00

h(ult) + F(u) (1.9)
IL

The mean open interval, as t 00, becomes
00 00 u
Y: uF(u) Z: f(u)[2 xI

u=1 u=l x=1

00
2, u(u+l) f(u)

u=1
2IAx

00 2 2 2 00
2: u f(u)-.U.+iL,+ 2; uf(u)

u=1 u=l

21A,
2 2

ax¢ +.ax +.ax
2.ux

2
AX -1 asX -1 (1.10)
2 24, 2

P.d.f. of Cases Prevalent at t
Note that, in (1.3), the expression within

brackets is equal to the number of prevalence
cases, at t, with total duration x. Therefore

c
f(x) Z I(t-y)

g(xlt)- Y=1
P(t)

_ I cf(x)
P(t)
P cf(x)

P(t) I"
(1.11)

c=min (t-1, x)

The last equality follows by substitution from
(1.6).

Finally, as t -* 00, c + x and P(t) +P so that

g(xlt) - g(x)= jxf (1.12)

Then, as t + 00, the probability of a preva-
lence case having duration x is constant for
all t and proportional to the duration x times
the probability, f(x), that an incidence case
has duration x. The mean duration of preva-
lence cases is

* 00 1 2 1
pu= 2 xg(x)=-2x f(x) =- E(X )

x=1 AX 1LX

2

=.a,+ -.X (1.13)

Again, since f(x)=0 for x>x., (1.8)-(1.10)
and (1.12)-(1.13) hold for all t>xm.

APPENDIX 2

Distribution of Duration of Intervals
in a Cohort

Assumpfions
We will derive results for the general case

where the Xi are lengths of intervals between
successive events in a process and are mutually
independent.

Notation and Definitions
Xi length of interval from start of

process to first event
Xi length of interval following (i- l)th

event to ith event

f,(x) p.d.f. of length of the ith interval
x'l minimum value of Xi, i.e.,

x'-1
2 f,(y)=O and fi(x'i)>O

y=l
Y length of interval from start of

process to fourth event, i.e.,
4

Y= I Xi
i=l

h,(x) p.d.f. of length of interval from start
of process to ith event, i.e., hiL(x)
=fi(x) is the p.d.f. of Xi

hi(x) is the p.d.f. of 2 Xi
1=1

xF
H,(x) = 2 hi (x)=Pr[ 2 Xi < xI

y=1 j=1
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t the time at which the measurement
of interval duration is made

t1 the minimum t such that hi(t)>0,
i

i.e., t1 = I x'
j=1

Xi it ith interval when measurement is
taken at time t (given that the
ith event has occurred)

Ylt length of interval from start of
process to fourth event when meas-
urement is taken at time t (given
that the fourth event has occurred)

tm the time when all members of the
cohort have experienced the fourth

4
event(tm < 2 xt,m where xi,m is

i=1
the maximum value of X,)

Expected values will be indicated by E
preceding the variable, e.g., EX,.

Distribution of Interval to ith Event

The distribution of 2 Xj, the time to the
j= I

ith event, is the convolution of the fj(x), j=1
... i. Then
hi (x) =f 1 (x)

x
h2(x)= 7: hl(x-z)f2(z)

z= 1

x

hi (x)~= hi_1(x-z)fj(z). (2.1)
z=

4
Specifically, the p.d.f. of Y= 2: Xj is

j=1
x

h4 (x ) =I2 h3 (x-Z)f4 (z).(2.2)
z=1

Distribution of Interval to Fourth Event When
Measurement Is Made at t
The distribution of Ylt agrees with that of

Y only when t is sufficiently large so that all
members of a cohort have experienced the
fouirth event, i.e. when t > t.. Otherwise the
p.d.f. of Ylt is

h (ylt) = h4 (y) y<t, t<tm (2.3)

hh(z)
z=l

wvith expected value
t
2: yh4(y)

EYlt= Y=1'
t
2 h4(y)

y=l

t<tm (2.4)

Obviously, EYlt KEY for t<tm. The extent
of the bias varies depending upon the specific
distribution h4 (y).

Distributions of Intervals Between Events
The behavior of Xlt is analogous to that of

Y. For Xi, i>2, the p.d.f. of Xilt is

fi(XIt) = i (x)Hi-(t-x)
Hi (t)

x<t-ti_1
(2.5)

Again, fi (xlt) agrees with f1 (x) only if t is
sufficiently large so that all members of a
cohort have the ith event with probability 1,
i.e., so that- Hi(t)=l and fi(x) =0 for all
x>t-ti..i Otherwvise, ti-ti <i.xi `t-ti-i

If fi (x) >0 for x>t-ti-1, Hi (t) <1 and
for the defined (relatively large) values of
x, fi (x) is not included in the numerator of
(2.5). Hence EX, It <EX,. On the other hand,
if fi(x)=0 for all x>t-t,-1 and Hi (t) does
not equal 1, Hi-1(t-x) <l at least for x
greater than some value q. (Otherwise, if
Hi(t-x)=l for all x, then Hi(t)=1 and
f. (tlx) =fi (x).) Consider the distribution of
Hi (t):

t
Hi(t)= 2: fi(x) Hi-.(t-x). (2.6)

x=1
It follows from (2.6) that, when Hi (t-x ) <1
for x>77, the weight given in (2.5) to ft(x)
decreases with increasing x, and EXlit<EXi.
Also, if for some i, EXi>EXi_j, EXit is not
necessarily greater than EXijlt.
With increasing t, Hi (t) is nondecreasing

and tends to unity. EX, It then tends to in-
crease until it reaches its maximum value, EX,.

In the case where all f,(x)=f(x), let j be
the lowest index such that EXjlt<EX. Then
for i>j, the relative weight given to f(x) for
large x in (2.5) decreases with increasing i,
and EXijt decreases with increasing i>j.
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