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Abstract: This commentary reviews the arguments for and
against the use of p-values put forward in the Journal and other
forums, and shows that they are all missing both a measure and
concept of ‘‘evidence.”” The mathematics and logic of evidential
theory are presented, with the log-likelihood ratio used as the
measure of evidence. The profoundly different philosophy behind
evidential methods (as compared to traditional ones) is presented, as

well as a comparative example showing the difference between the
two approaches. The reasons why we mistakenly ascribe evidential
meaning to p-values and related measures are discussed. Unfamil-
iarity with the technology and philosophy of evidence is seen as the
main reason why certain arguments about p-values persist, and why
they are frequently contradictory and confusing. (Am J Public Health
1988; 78:1568-1574.)

Introduction

The series of articles’™ in the Journal on p-values and
confidence intervals has been a useful introduction to a
debate that has been conducted mainly in the philosophical
and statistical literature for the last 50 years. The main focus
of the Journal discussion was the appropriate roles and uses
for p-values, confidence intervals, and other statistical mea-
sures in summarizing the results of epidemiologic studies.
Where Fleiss generally defended the use of p-values,’
Walker,?> Thompson,> and Poole* criticized them.

Both Walker and Thompson urged the use of confidence
intervals (CI) instead of isolated p-values because they
convey more information, i.e., the actual magnitude of the
measured effect as well as the precision of the estimate. Poole
pointed out that the Cl is often used in a way that differs little
from the significance test—i.e., we simply look and see
whether or not the null value is included in the interval. He
discussed the needs of decision makers, and encouraged the
use of complete p-value curves as the most complete display
of what the data say while also freeing us from seemingly
arbitrary statistical dictates. All three of these authors shared
an aversion to rigid rules of interpretation that bypass
judgment (like the p < .05 threshold) or offend scientific
intuition (like adjustments for multiple comparisons).

It appears that what motivated those writers was a
feeling that something important about the data is not being
captured either by the p-value, or by the manner in which it
is used. All of the discussions, including Fleiss’s, reflected a
desire to have an index that objectively summarizes data and
that helps the scientist or decision maker interpret patterns.
It was obvious to all that the p-value is an imperfect statistical
summary index, but except for a hint in Poole’s essay, there
was not a discussion of alternatives. The commentators
decried the uncomfortable shackles of the p-value concept,
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but they were all forced to return to it in one form or another.
In the end, the issue was not what the p-value means, but how
it should be used.

Is there an alternative to the p-value? The answer is yes.
A substantial body of research over the last 40 years has gone
into the definition and measurement of the ‘‘weight of
evidence’’, which scientists can use to make decisions. But
this ‘‘weight of evidence’’ involves a very different concept
of the relationship between theory and observations than the
p-value represents. In this paper we will describe this
concept, show how it exposes the logical and inferential
problems inherent in p-values, and produces results in closer
accord with our scientific intuition. We believe that the
evidential concept is what Walker, Thompson, and Poole
were striving for, and that it offers a theoretical framework
upon which their recommendations for the use of p-values are
based, and upon which many others give the advice that
p-values should not be used at all.

Evidence is a property of data that makes us alter our
beliefs about how the world around us is working. Another
way to say this is that evidence is the basis upon which we
derive inferences. Can the p-value provide such a basis? To
answer that question, we need to explore the central logical
tenet that justifies its use: that if an observation is rare under
a hypothesis then it can be regarded as evidence against that
hypothesis.

Consider the following examples. Suppose one draws a
queen of spades and a seven of clubs from a well-shuffled
deck of cards. Under the hypothesis that the deck is a normal
one, this event is rare, with a probability of only .0004. Is this
evidence that the deck is not normal? Now suppose you’re in
a casino and see the numbers 3, 14, 6 and 27 come up
consecutively on a roulette wheel. Under the hypothesis that
the wheel is fair, the probability is only (1/38)* = .0000005;
should we interpret this as evidence against that hypothesis?
Finally, what if a previously unsuspected association shows
up in a study with a p = .01? Do we rush to publish?
(Unfortunately, while the answer to the first two questions is
probably ‘‘no’’, the last one may be ‘‘yes’’.)

These scenarios show that we do not automatically
interpret events that are rare under a specific hypothesis as
evidence against that hypothesis. Life is full of rare events to
which we accord scant attention. What does make us react is
a plausible competing hypothesis under which the data are
more probable. Suppose you find out that the person who
handed you the cards owns a trick deck with only sevens and
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queens. Suddenly, your draw becomes strong evidence in
favor of the trick deck alternative vs the normal deck
hypothesis. In the casino, you note that the four numbers on
the wheel are adjacent, suggesting another hypothesis that
makes the observed sequence more probable—that the wheel
is weighted or biased in some way. Finally, suppose a
reviewer proposes a plausible biological explanation for the
association you measured. It is only the existence of this
alternative that elevates the data to the status of reportable
‘““‘evidence’’ against chance and, for biology, being at work.

Even though we often use the p-value as part of a
hypothesis-testing procedure in which we can ‘‘reject the
null’’ and ‘‘accept the alternative’’, the p-value itself has no
information about that alternative; it is defined as the prob-
ability of what we saw, plus ‘‘more extreme’’ results, only
under the null hypothesis. That the p-value fails to represent
evidence because it depends only on one hypothesis is hardly
a new idea in statistical circles. It has been around for over
50 years, as reflected in the quote below from Gossett (the
inventor of the t-test) from the 1930s:

. . .[a significance test] doesn’t in itself necessarily prove
that the sample is not drawn randomly from the population
evenifthe . . . [p-value]is very small, say .00001: what it does
is to show that if there is any alternative hypothesis which will
explain the occurrence of the sample with a more reasonable
probability, say .05 . . . you will be very much more inclined
to consider that the original hypothesis is not true. (in
Hacking®, p 83)

The p-value is not adequate for inference because the
measurement of evidence requires at least three components:
the observations, and two competing explanations for how
they were produced. In scientific research, these competing
explanations usually take the form of the null and alternative
statistical hypotheses. No matter how rare our data are under
the null hypothesis, they remain mere numbers, not yet
inferential ‘‘evidence’’, until we can propose another hy-
pothesis that also explains them.

Philosophic Issues

The issue posed above relates to a fundamental philo-
sophic question; can non-relative, purely negative evidence,
which the p-value represents, play a role in scientific evalu-
ation of theories? The philosopher Karl Popper would say
yes. His view is that science moves forward by successive
disproofs that do not require competing theories.® The 20th
century philosophers Karl Hempel and Rudolf Carnap felt
that formal induction was an essential part of the scientific
process.”® Induction carries with it a concept of positive,
relative evidence, whereby a theory is not just ‘‘falsifiable’’,
but might be made more likely (relative to another theory) by
observations. The philosophical debate is complex, and its
details are beyond the scope of this paper. But it is important
to recognize that a statistical index (representing absolute or
relative evidence) can carry with it a specific view of the
scientific process. Our contention is that the conflict between
the inductivist view, which many scientists informally hold,
and the one embodied by the p-value usually goes unrecog-
nized and is the source of much confusion.

Consequences of the P-value Definition

The most widely recognized practical consequence of
the p-value’s dependence on only one hypothesis is that a
huge effect in a small trial or a minuscule effect in a large trial
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can result in identical p-values. To the extent that we believe
the size of an effect is an essential part of the evidence relative
to the hypothesis of ‘‘no effect’’, then the p-value is inade-
quate for measuring the strength of evidence.® The move
toward confidence intervals is an effort to deal with this issue
by focusing on the effect size.

Another problem with using the p-value to measure evi-
dence is caused by its inclusion of ‘‘more extreme values’’ in its
calculation. With a p = .03 we are taught to say, ‘‘If the null
hypothesis were true, and we repeated this experiment many
times, we would observe a difference this big or bigger 3 per cent
of the time.’’ But the ‘‘bigger’’ values in the tail of a distribution
are not just more extreme, they are unobserved. In other words,
the rarity of what we did see is assessed by combining it with
the probability of results that didn’t happen—in Jeffreys’ words,
‘A hypothesis that may be true may be rejected because it has
not predicted . . . results which have not occurred.”’!°

Aside from being a logical conundrum, the above issue
results directly in a practical problem, because what is ‘‘more
extreme” depends on how an experiment was conducted.
Suppose we consider two trials: a fixed sample-size trial
comparing two treatments on each of 10 people, and another
one using the same treatments and the same 10 people, except
that this time the plan is to stop as soon as treatment A is better
than treatment B in seven of the patients. Now suppose the
seventh patient showing a preference for A is the tenth patient
in both trials. In the fixed-size trial the ‘‘more extreme’’ results
are those with eight or more preferences for A. In the other trial,
the ‘“‘more extreme’’ area consists of situations where it takes
less than 10 patients to reach seven preferences for A. These
regions can have quite different probabilities, so these experi-
ments will have different p-values even though they yielded
identical results on the identical subjects.

The only difference between the two trials above was
what the experimenter would have done if the observations
had been different; would s/he have stopped the trial after
only seven patients if all seven had shown a preference for A?
If the scientist died without telling anyone what s/he would
have done, traditional teaching would tell us that we could
not calculate a valid p-value. In studies where p-values (or
CIs) are used we must somehow learn the investigator’s
possibly hidden actions and intentions during the trial, so
‘““‘what the data say” is often obscured by questionable
answers to unanswerable questions.®

The above difficulties are not just encountered when
conducting trials. The most familiar example of the p-value
dependence on our state of mind is in the choice of one vs
two-sided statistical tests. Even though two-sided tests are
used most of the time, students are taught that if they would
not consider a difference in one direction a possibility, they
can legitimately use a one-sided p-value, which is half the
size. Again, the data are the same, but the p-value is changed
by a profoundly subjective consideration. A similar situation
arises when multiple comparisons are made. In summary, the
p-values can be equal in situations where we feel the evidence
is very different (different effect magnitude in trials with
different sample sizes), or different in situations where we
would think the evidence should be the same (same data in
trials with different stopping rules).

The Likelihood Axiom

We will now look at an alternative basis for inference,
the likelihood function. It is a measure that has few of the
difficulties inherent in the p-value, and unlike the p-value, has
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a sound theoretical foundation as a basis for inference.'!"'2 It
is defined as follows, with ‘‘c’’ designating an arbitrary
constant, characteristic of the statistical model being used:

Likelihood (H | Data) = c*Prob(Data | H) = c*f(Data | H)
Discrete case Continuous case

In the notation above, H represents a specific hypothe-
sis, and “‘f(Data | H)*’ is the probability density function of
the data under H. The entire likelihood function is obtained
by calculating the likelihood over the range of hypotheses,
which are usually defined in terms of some average charac-
teristic of a population. At first glance, the likelihood may
look simply like a relabeled probability. But a likelihood is
profoundly different from a probability in that the data are
regarded as fixed and it is the hypotheses that are variable,
whereas probabilities are calculated assuming a fixed hypoth-
esis and random data. Likelihoods also do not obey the laws
of probability. Finally, as signified by the arbitrary constant,
anisolated likelihood does not have a unique value—the scale
of the likelihood function is arbitrary.

We need a prescription for how to use and interpret the
likelihood function. This is found in the ‘‘Likelihood Ax-
iom”’, stated by Edwards:

Within the framework of a statistical model, all the
information which the data provide concerning the relative
merits of two hypotheses is contained in the likelihood ratio
of those hypotheses on the data, and the likelihood ratio is to
be interpreted as the degree to which the data support the one
hypothesis against the other."

This axiom tells us that the evidence supporting one
hypothesis versus another is represented by the ratio of their
likelihoods. The likelihood’s arbitrary constant means that
we cannot speak of the absolute support (or lack thereof) of
a single hypothesis by any set of data, and so we cannot use
the data to ‘“‘reject’’ it. The relative support is uniquely
defined however, since the constant cancels out when we
take a ratio.

The likelihood ratio (LR) has a close relationship with
fundamental measures in other sciences (information in
communications theory, entropy in physics, odds ratio in
epidemiology) and its rediscovery by Alan Turing in the 1940s
was the key to his breaking the German Enigma code in
WWIL.* Having already defined likelihood, the mathemati-
cal definition of the LR is straightforward:

Likelihood ratio (For H, vs H, | Data) =

c*Prob(Data | Hy) _ c*(Data | Hy)
c*Prob(Data | H,) c*f(Data | H,)
Continuous case

Discrete case

The LR is equivalent to the ratio of the data’s probability
under one hypothesis compared to its probability under
another hypothesis. Graphically, it is simply the ratio of
heights of the two hypothesized probability distributions at
the observed data point (Figure 1). Thus we can restate the
likelihood axiom in plain language: The hypothesis better
supported by the data is the hypothesis which better predicts
the data.

Suppose two geneticists make different claims about the
inheritance pattern of a rare disease in a family. One claims
that the disease is transmitted in a fashion corresponding to
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Height under H1 =B
LR (Hovs. HO) =A/B

Height under Ho= A
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FIGURE 1—A Graphical Representation of the Calculation of the Likelihood
Ratio (LR) for Two Simple Hypotheses Given Experimental Data under a Single
Statistical Model

Even though these curves represent probability distributions, the likelihoods are
defined only at the observed data point, and this has arbitrary scale, hence the
y axis has no units. The one-sided p-value corresponding to these data would be
the proportion of the area under the H, curve to the right of the data point.
Different stopping rules can affect the shape of these curves and hence change that
area, but the ratio of heights at the data point will remain the same.

a 75 per cent chance of transmission, whereas the other
claims a 25 per cent chance. The parents then have a child
who has the disease. What is unknown now is not whether the
child will have the disease, but which hypothesis was the
better one. We compare the two predictions through the LR,
which equals 1/3 (=.25/.75), aresult in favor of the 75 per cent
prediction by a factor of three. The way we express this is that
the observation (disease present) is evidence supporting the
hypothesis of a 75 per cent chance of disease (with its
underlying biologic explanation) in favor of a 25 per cent
chance.

The likelihood function and ratio is not affected by the
reasons for stopping an experiment, nor by the number of
other comparisons. Finally, and perhaps most important, the
likelihood ratio has the same meaning in trials of different
designs and sizes.

Evidence vs. Belief

If we say one hypothesis has a higher likelihood than
another, we only mean that it is better supported by the
evidence, not that it is more ‘‘likely’’ (i.e., probable) to be
true. This distinction between what the evidence says and
what we believe is a subtle but critical one. In the previous
example, the hypothesis that the disease had a 100 per cent
chance of transmission is best supported by the fact of the
child having the disease. This does not mean that we should
believe the 100 per cent hypothesis, since it may be quite
implausible biologically. This issue also arises in the labels
assigned to ‘‘borderline’’ p-values (e.g., between .05 and
.15), which often correspond to LRs in the weak-moderate
range. Although to the author the data may represent a
““trend’’, to some readers it may be a non-association. These
labels reflect belief, not evidence. The frequent disputes
about them could probably be minimized by saying, ‘‘The
statistical evidence is moderate (or,the LR = . .. .),and we
believe it represents a real phenomena because. . .”’, with a
biologic or epidemiologic discussion to follow.

Another way to understand the distinction between
belief and evidence is to look at the role the LR plays in Bayes
Theorem, which can be written as follows:

Final Odds = Initial odds x Likelihood ratio

Or, taking logs:
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p-value Support
for p=0 vs. p=10
}LR = Ratio of|
heights p=27 0.75
(LR=2.1)
p=.05, support=-1.6
p=.12 15
(LR=4.5)
p=.05, support=- 0.1
p:.03 3
(LR=20)

Average & -10
drop in BP

p=.05, support=4.3

FIGURE 2—P-Value and Likelihood Measures of Evidence Provided by the same Observed Difference

in Experiments of Three Different Sizes

The curves are the likelihood functions of the average fall in blood pressure from a drug given an observed
four-point average drop. The LR for any pair of hypotheses is the ratio of curve heights at those hypotheses
(it is calculated here for p. = 0 vs p = 10). Positive support is evidence for no effect, a negative one is
evidence for a ten point effect. Support corresponding to the p = .05 point is also marked on each curve.

See text and Appendix for more details.

Final log odds = Initial log odds + Log Likelihood Ratio
(Final Beliefs) (Initial Beliefs) (Weight of Evidence,
Support)

Bayes Theorem is a mathematical identity; it describes
how probabilities are changed by new statistical evidence.
When probabilities are based on the frequency of random
events, such as the chance of illness in a member of a population
with a known disease prevalence, Bayes Theorem is indisput-
able. When the probabilities are measures of belief in a statis-
tical hypothesis, the application of Bayes Theorem is called
‘‘Bayesian Inference’’ and is more controversial. However, the
controversy centers on the appropriateness of probability as a
measure of belief, not on the representation of evidence. The
LR is the only way in which data enter the equation, and is
clearly separated from the subjective factors that affect our
initial odds. Nothing resembling a p-value is involved.

Bayes Theorem is a very useful tool to compare the
quantitative meaning of LRs and p-values when the under-
lying probabilities are known. In such situations, when we
compare p-values to Bayesian calculations on the same set of
data, strong arguments have been made that the p-value
almost always overstates of the degree of conflict with the
null hypothesis.'*'¢

Bayes Theorem lies at the heart of quantitative decision
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analysis, making the LR the way to represent data as
evidence in such analyses. Even when the decision maker
does not want to use a formal decision calculus, we would
submit that the LR or likelihood function remains the most
appropriate data summary. This is in accord with Poole’s
point that the p-value is inappropriate for decision making.*

Support and Weight of Evidence

Before using the LR in a statistical problem, we need to
have some way of interpreting the numerical results. A
commonly used scale is the logarithm of the LR,!”"!® because
this converts the likelihood ratio into a difference, and makes
evidence additive, just as we naturally think of it. The log LR
is called the ¢ ‘su? rt’’, a word we will henceforth use in that
technical sense.’” A rough guide to support interpretation is
shown at the top of the next page, which is partly based on
the Bayesian calculations referred to earlier.

The above scale and some of the previous discussion of
the meaning of the LR in real situations may sound uncom-
fortably vague. It might be helpful to see it as similar to
temperature measurement. Few would argue that a thermom-
eter does not measure thermal energy objectively. However,
we all know that it is only a crude index of the subjective
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0 units support

= Moderate evidence
= Strong evidence

-2 units support
-3 units support
-4 units support

No evidence for alternative vs null hypothesis
-1 unit support = Weak evidence for the alternative vs null

= Extremely strong evidence

(LR=1)
(LR=1/2.7=0.37)
(LR=1/7.4=0.14)
(LR=1/20=0.05)
(LR=1/55=0.02)

Informal guide to interpretation of support of the null over the alternative hypothesis. The
range of negative units is displayed because this corresponds to the familiar situation when
we are measuring increasing statistical distance away from the null. Positive units of support
would indicate evidence for the null vs. the alternative hypothesis.

experience of ‘‘heat’’. How hot we feel on an 80° day depends
on such factors as the humidity, the wind, the clouds, our
ability to sweat, and our acclimatization. But the temperature
still remains an invaluable objective, reproducible guide to a
critical aspect of that subjective experience. The LR is a
measure of evidence and a guide to belief in the same way the
temperature is a measure of thermal energy and a guide to the
sensation of heat. Neither the feeling of 80° nor the meaning
of LR = 10 can be described exactly in words; both scales
acquire their meaning through use and experience.!?

We will now go through an example of how evidential
measures can be used in practice. We have chosen one
involving multiple experiments and the issue of therapeutic
equivalence to emphasize the contrast with traditional mea-
sures. We hope to draw attention to the ways we think about
these results, as well as the mode of calculation. The
formulae underlying the numbers are outlined in the Appen-
dix.

Example: Blood Pressure Regulation

Let us assume that a new drug is developed that can
lower systolic blood pressure. Figure 2 shows the likelihood
curves of three trials of different sample sizes, all of which
show that the drug lowers the pressure by four points more
than the standard therapy. Here are three scenarios using
different analytic methods.

I. (N = 30) P-value Approach—The p = .27 is non-sig-
nificant, so investigator A publishes his paper which “‘fails to
reject’’ the hypothesis that the two drugs have equal effect.
Scientist B writes a letter to the editor noting that the 95 per
cent confidence interval (—3.2 to 11.2) was very wide, i.e.,
the trial had low power relative to differences he would deem
clinically significant, and that larger trials are needed to show
the difference he is sure exists. The experiment, in the end,
is judged inconclusive.

Evidential Approach—The investigator doing this trial
makes an explicit judgment about the minimum treatment
difference that he would deem clinically important, because
this is necessary both for the LR calculation and his own
assessment of the importance of the result. He feels that the
minimum clinically significant blood pressure drop is 10
points. He only has enough money to study 30 patients in
each group. The difference of four points produces an LR
(H, | H) = 2.1, Support = 0.75. We have weak evidence
in favor of the ‘‘no difference’’ hypothesis (H,) vs the 10 point
difference (H,).

One reviewer of the study feels that a five-point drop is
clinically important, and notes that the evidence favors this
hypothesis (Support(n = 0 vs. p = 5) = —1) even though
he acknowledges that the evidence is still weak. He corre-
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sponds with the author and they discuss the bases for these
two different clinical judgments.

II. (N = 60) P-value Approach—Scientist A decides to
redo the experiment with more people, this time in consul-
tation with a statistician and with very high power, 97 per
cent, so he is sure his trial will ‘‘detect’’ a difference of at least
10 points if there is one. He measures the same four-point
difference that the first study did, and the p-value drops from
.27 to .12. To him this represents more evidence against H,
than in the first study, and he is annoyed that he did not enroll
just a few more people to reach ‘‘significance’’. The statis-
tician makes the unwelcome point that the scientist already
used up his allotted alpha = .05 error in the first experiment,
and this second one could not have produced an overall
significant result no matter what it showed.® The 95% CI is
-1.1t09.1.

Evidential Approach—The support in favor of H, vs H,
increases from 0.75 to 1.5, moderate evidence for no effect vs
a 10-point drop. We have more evidence for no difference,
not against it, as the p-value seemed to indicate. (Note that
with twice as many people showing exactly the same differ-
ence, the support measures exactly twice as much evidence.
The support for p. = 0 vs p = 5 would also double, now
equaling —2.) We can add the evidence from the previous
experiment for a net total of 2.25 (.75 + 1.5) units of evidence
for no effect vs a 10-point drop.

III. (N = 120) P-value Approach—Firing the statisti-
cian, and doubling the sample size again, scientist A observes
the same four-point difference, which is now significant at
p = .028. He rejects the null hypothesis and publishes in a
reputable journal. He does not mention the previous studies
lest he be accused of ‘‘multiple looks’’. Someone writes a
letter to the editor complaining that this statistically signifi-
cant difference is not necessarily clinically significant. The
95% Cl is 0.42 to 7.6.

Evidential Approach—The LR=20, with support = 3,
strong evidence of no difference vs a 10-point difference. This
investigator publishes an interpretation opposite to the one
above in a competing reputable journal. The previous two
studies are cited as additional supporting evidence.

Discussion

In this example we focused on the evidence for one
particular alternative—a 10-point drop. In Figure 2 we see
that the alternative for which there is maximum evidence is
the observed four-point difference. As mentioned in the first
scenario, we may want to look at the evidence for other
alternatives. Or, we may want to look at an average likeli-
hood calculated over a range of hypotheses and compare it to
the likelihood at the null. In this way, the likelihood approach
encourages data exploration. Which alternative to focus on
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for inference depends on scientific judgment. If differences on
the alternative cannot be resolved, it becomes clear why the
interpretation of the data will be different. In this way LRs
prevents the debate about the meaning of the ‘‘evidence’
from becoming a technical statistical argument (e.g., about
power), and translates it into an area that the investigators
have direct experience with—the minimum important differ-
ence.

Even though the investigator may be interested only in
a narrow range of alternatives, the entire result, as Poole
suggested, should always be reported. This result can be
represented by either the complete support curve (Figure 2),
or a four to five-point summary.'® When using a Gaussian
distribution in a fixed sample size experiment, the point
estimate with a 95 per cent CI is akin to a three-point
summary: the point that gets highest support and the two
points that receive about two units less su?port than the
maximum (the two-unit support interval).!> Because the
experiments above satisfied those requirements, appeals to
CIs produced interpretations qualitatively similar to those
achieved by using likelihood. When there are multiple looks
or the data are not Gaussian, the correspondence with the
likelihood can be weakened or lost.

Even when two people agree on the amount of evidence,
their choice of what to believe might still be different
depending on their separate assessments of the biologic
plausibility of the measured effect. Finally, what to do, (i.e.,
prescribe the drug or not) would depend on their own
complex calculation of the various tradeoffs (utilities) in-
volved; side effects, efficacy, compliance, etc. Many of these
judgments are present in standard applications of p-values (in
the form of asssumptions and choice of error probabilities),
but they are so automated that most people are unaware they
are being made.

Link between P-Values and Evidence

In the preceding example we saw that for any result, we
could calculate an LR and a p-value. The power of the study
set the correspondence between the two. The reason low
p-values seem to mean something in practice is that in the
range of 70-95 per cent power, where most experiments are
done, low p-values (<.02) correspond to moderate-strong
support (2-2.5 units) for the alternative. (The alternative is
defined here as the ‘‘minimum difference’’ used in the power
calculation if the observed difference is less than that. If it is
greater, than the alternative can be simply the difference we
observe.) The support drops below that when the power gets
higher, because the same p-value represents a smaller effect
as we increase the sample size.

This phenomenon is shown in Figure 2, where the
sample sizes of 30, 60, and 120 correspond to powers of 78,
97, and 99.9 per cent, respectively, and the p = 0.05 point is
marked in each instance. The p = .05 point never corre-
sponds to more than moderate support for the alternative (vs
the null), and it becomes very strong evidence for the null
when the power is very high. This is why some people say
that it is possible for a trial to be ‘‘too powerful”’, although
we now see that this reflects a problem with the p-value, not
the size of the trial. If we use the LR , the larger the trial, the
more evidence we will measure, and the issue of being ‘‘too
powerful’’ does not exist. P-values have a crude correspon-
dence with evidence because of the sample sizes we tend to
use, but we cannot reliably interpret a p-value as evidence
until we translate it into an LR.
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Conclusions

We hope this essay makes it possible to view the issues
underlying the debate about statistical measures in a different
light. Walker, Thompson, and Poole appealed to many
likelihood concepts, but were constrained by a non-likeli-
hood technology in making their recommendations. Walker
focused mostly on the scientific context and methods with
which the data is gathered,? which are critical to know what
to believe on the basis of the evidence. He also downplayed
the importance of adjustments for multiple comparisons,
which use of the LR achieves. Thompson focused mainly on
the way we should represent data—as confidence intervals.3
By pointing us away from rigid dependence on p-values, and
toward effect magnitude, he faced us more in the direction of
an evidential concept. He also sensed that a p-value *‘sub-
stantially below .05 . . . provides potentially useful informa-
tion’’, which the LR often bears out.

Fleiss, while concerned about some of the ‘‘abuses’
p-values are prone to, is loathe to abandon the only objective
standard he sees for data analysis®. It should be clear from
this paper that p-values are neither completely objective nor
the only alternative. His advocacy of ‘‘cautious’’interpre-
tation of p-values is not adequate protection from the vagar-
ies of that index. We should be wary of any technology,
however cautiously used, that fosters the illusion that we can
make an inferential leap from data to conclusions without
explicitly including judgment.

Poole clearly came the closest to embracing an evidential
perspective in his complete rejection of CIs and single
p-values, and discussion of the decision making technologies
vs those that provide information for decision makers.* He
mentioned that a complete likelihood function can be pre-
sented, but did not explain the profoundly different philoso-
phy behind its use. He offered as a solution the complete
p-value curve, with the idea that this tells us in a non-
prescriptive way what parameter values are supported by the
data. This is in the spirit of the likelihood approach, but it
suffers from all the problems of interpreting p-values as
evidence:

® It does not solve the problem of p-value dependence

on the stopping rule and other comparisons (and the
consequent incompatibility with Bayes Theorem).

® Using p-values limits us to thinking that our belief in

a hypothesis can only be weakened by the data, not
also strengthened by it.

® There is no standard way to compare parameters

having different p-value ‘‘support’’. This makes the
interpretation of a highly significant small effect in a
large trial particularly problematic.

® P-values overstate the degree of conflict with the null

hypothesis.

In the approaches recommended by Thompson, Walker,
Poole and others for the use of p-values or Cls, they are
attempting to give them some of the properties that the
likelihood ratio (LR) already has. This is part of an effort to
make evidential sense out of indices not designed to measure
evidence. It is hoped that a better understanding of likelihood
methods and the philosophy of inductive inference will make
thought and discussion about the meaning of observed
patterns an integral part of the statistical process, and move
us permanently away from the notion that in the data lie
absolute proofs and truths that statistical technologies can
reveal. Unlike the p-value, the use of evidential measures
forces us to bring scientific judgment to data analysis, and
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shows us the difference between what the data are telling us
and what we are telling ourselves.
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APPENDIX

Derivation of Figure 2

The systolic blood pressures of the compared popula-
tions were set as having a o> = 200, thus the distribution of
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| Kellogg Foundation Funds 3-Year ‘Healthy Cities Indiana’ Project |

The W. K. Kellogg Foundation recently awarded nearly a half-million-dollar grant to the Indiana
University and the Indiana Public Health Association to fund Healthy Cities Indiana, a three-year
project to support six cities in their efforts to promote a healthier life for their citizens and develop
solutions to community health problems. The six cities will be selected from those around the state which
express a serious interest in the project.

The five major elements of Healthy Cities Indiana are:

® Assessment of current city health status,

o Formulation and adoption of action-based city health plans,

® Development of solutions to problems on a community-wide basis,

® Mutual support collaboration and shared learning among the six cities,

o Sharing of information with policy makers and others interested in healthy cities.

Dr. Beverly Flynn, professor and chair of the University’s Department of Community Health
Nursing, will serve as a project director of the $464,200 grant which will fund workshops for city officials,
provide technical support from the Department of Community Health Nursing faculty and staff, and help
the cities develop a network for information exchange and shared learning experiences.

According to Dr. Flynn, the complex problems facing urban areas need to be worked out through
intense cooperation between health professionals and community leaders. ‘‘Factors such as unemploy-
ment, poor housing, access to health care, AIDS, and environmental and occupational conditions
continue to affect the health of our citizens,’’ she said. It is through the process ‘‘of working together
that appropriate solutions to problems can be found,”” Dr. Flynn emphasized.

The Healthy Cities movement is widespread in Canada and Europe,”’ she said, but has not been
demonstrated in the US. Dr. Flynn has met with project leaders in Canada and England and feels that
much can be learned from those experiences. In the Healthy Cities Indiana project, community leaders
will become involved in learning new concepts, understanding broad categories of data, and blending
these concepts and data into new solutions to community health problems. The project will continue
through July 1991. For further information about the project, contact Dr. Flynn or Melinda Rider,
associate project director, at Indiana University School of Nursing, 610 Barnhill Drive, Indianapolis,
IN 46223. Tel: (317) 274-2129.
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