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Six homing pigeons were trained on a variety of concurrent variable-interval schedules in a switching-
key procedure. Unlike previous work, reinforcer ratios of up to 160 to 1 and concurrent extinction
variable-interval schedules were arranged in order to investigate choice when reinforcer-frequency
outcomes were extremely different. The data obtained over 11 conditions were initially analyzed
according to the generalized matching law, which fitted the data well. The generalized matching law
was then fitted only to conditions in which the reinforcer ratios were between 1 to 10 and 10 to 1.
The deviations of choice measures from the other four more extreme reinforcer-ratio conditions
were significantly more towards equal choice than predicted by this second generalized matching
fit. A contingency-discriminability model, which predicts such deviations, described the data more
effectively than did the generalized matching law, and also correctly predicted the maintenance of
responding on both alternatives when one was associated with extinction.

Key words: concurrent variable-interval schedules, choice, generalized matching, contingency-dis-
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A considerable number of experiments
concerned with the quantitative analysis of
behavior and time allocation on concurrent
variable-interval (VI) schedules of reinforce-
ment have been reported in the last 36 years.
This work was summarized by Davison and
McCarthy (1988). Initially, it was thought that
relative behavior allocation equaled (or
matched) the relative reinforcers obtained
from the response alternatives (see the sum-
mary by Herrnstein, 1970). This relation is
termed the strict matching law. Later, consis-
tent deviations from strict matching became
obvious, and Baum (1974) replaced the strict
matching law by the generalized matching
law, in which behavior ratios were a power
function of obtained reinforcer ratios. In log-
arithmic terms, the generalized matching law
is written

B, (R1\a
'2 R211 1

where B and R denote behavior and reinforc-
er measures, respectively, and the subscripts
denote the two alternatives. The constant a is
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called sensitivity to reinforcement (Lobb &
Davison, 1975); it measures the change in
choice relative to the change in obtained re-
inforcer ratios. The second constant, c, is
called inherent bias; it represents a constant
proportional preference for one alternative
over the other as the independent variable
(here, relative reinforcer rate) is varied.
Equation 1 is usually fitted by transforming
the equation to a straight line by taking log-
arithms of both sides of the equation

log(B) = a lo(R) + log C. (lb)

The generalized version of the matching law
has generally fitted data well. However, re-
cently a number of problems have been re-
ported. These problems concern the constan-
cy, or otherwise, of the value of a. First, both
Alsop and Elliffe (1988) and Logue and Cha-
varro (1987) showed that the value of a was
not independent of overall reinforcer rate,
but increased with increasing reinforcer
rates. Thus, it is not simply the ratio of ob-
tained reinforcers that controls behavior al-
location. Second, Logue and Chavarro also
reported that sensitivity to reinforcer magni-
tude and reinforcer delay in the concatenat-
ed version of the generalized matching law
was not independent of the absolute values
of these independent variables. Third, Davi-
son (1988) showed that sensitivity to reinforc-
er magnitude was affected by overall reinforc-
er rate. Fourth, Davison and Hogsden (1984)
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showed that the relation between logs of be-
havior ratios and logs of reinforcer-magni-
tude ratios was not linear. Finally, Miller,
Saunders, and Bourland (1980) showed that
sensitivity to relative reinforcer frequency was
a function of the physical disparity between
the stimuli signaling the alternative re-
sponses. Taken together, these results suggest
that the sensitivity of choice to changes in the
rate, magnitude, or delay of reinforcers is not
an organismic constant. They show, rather,
that sensitivity varies as a function of the con-
textual environment. The generalized match-
ing relation, then, does not have a particular-
ly compelling status as a law. However, if
sensitivity is taken as a variable, the general-
ized matching law can have a useful descrip-
tive function.
An alternative to the generalized matching

law was offered by Davison and Jenkins
(1985). This contingency-discriminability
model was designed to account for Miller et
al.'s (1980) data. It assumes that changing the
disparity between the discriminative stimuli
changes the degree to which animals can dif-
ferentiate between the different responses
that led to different consequences. The mod-
el described Miller et al.'s data well and pro-
vided reasonable measures of the discrimin-
ability between the discriminative stimuli and
the reinforcer rates that they signal. The
model as offered was written

B2 (drR + R,J (2)

where the variables B and R are the same as
in Equation 1, and d, is a measure of the dis-
criminability between the alternative re-
sponse-reinforcer relations. The value of d,
can range from 1 (no discrimination) to in-
finity (perfect discrimination). Algebraic ma-
nipulation of Equation 2 provides an equiva-
lent equation that better indicates the
operation of the model:

B1 _ /RI -pR + pR2\ (3

B2 \R2-pR2 +pR1(
In Equation 3, p is the inverse of the discri-
minability measure d4 in Equation 2. It de-
scribes the proportional confusion (the inverse
of discriminability) between the two reinforc-
er contingencies. The value of p can vary
from 0 (no confusion, and strict matching bi-

ased by c) to .5 (complete confusion, and no
control by changing reinforcer rates, biased
by c). Equation 3 asserts that, under less than
perfect contingency discriminability, the re-
inforcer tally on Alternative 1 loses a propor-
tion of reinforcers to Alternative 2, and a pro-
portion of the tally on Alternative 2 is lost to
Alternative 1. Thus, according to Equation 3,
the subject's behavior allocation is controlled
by the apparent reinforcers gained at the al-
ternatives rather than by the reinforcer tallies
(R1 and R2) measured by the experimenter.
Davison and McCarthy (1994) showed that
this approach was able to describe perfor-
mance on two- and three-key concurrent VI
schedules when the differences between the
colors signaling the alternatives were varied.
The model defined by Equation 3 is similar
to the model offered by Vaughan and Herrn-
stein (1987), and it is related to models of-
fered by Wearden (1983) and Burgess and
Wearden (1986).

If sensitivity to reinforcement (a in Equa-
tions 1 and lb) is taken as a variable rather
than a constant, Equations 1 and 3 provide
very similar predictions of choice as a func-
tion of alternative reinforcer rates over the
range of reinforcer ratios typically studied,
even though Equation 3 is nonlinear on log-
log coordinates (Davison & Jenkins, 1985).
One way to compare these models is to ar-
range very large differences between the two
reinforcer rates on concurrent VI VI sched-
ules, because the differences between the
predictions of Equations 1 and 3 increase as
the reinforcer ratio becomes more extreme.
Equation 3 is ogival, and predicts log behav-
ior ratios that, although continuing to in-
crease with increasing log reinforcer ratios,
become progressively less extreme than the
predictions of Equations 1 and lb. The avail-
able literature on concurrent VI VI perfor-
mance contains no systematic variation of log
reinforcer ratios greater than -1 or 1 (1 to
10, or 10 to 1) with which to compare the
predictions of the generalized matching law
and the contingency-discriminability model.
However, the literature does provide a num-
ber of reports of performance on concurrent
VI extinction schedules, and these are infor-
mative. Even when changeover delays (times
between changing over and subsequent re-
inforcer deliveries) are arranged, responding
does not seem to cease on the extinction al-
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ternative (e.g., Davison & Hunter, 1976). This
result is apparendy inconsistent with Equa-
tions 1 and ib, which predict exclusive
choice, but is consistent with Equation 3 if
the two response-reinforcer contingencies
are not perfectly discriminable (p > 0 in
Equation 3). According to Equation 3, if
there is any confusion between these contin-
gencies, reinforcers will apparendly be avail-
able on the extinction alternative. If confu-
sion is complete (p = .5), VI and extinction
response rates will be equal if there is no bias
(c = 1.0). More generally, if R2 = 0, then

B, (
c

1 -p) (4)

In the present experiment, we found the best
fitting values ofp by fitting Equation 3 to con-
current VI VI data, and used the obtained val-
ues to predict response ratios in a concurrent
extinction VI condition.
Whichever model of behavior allocation is

correct, it is clear that performance under ex-
treme reinforcer-rate differences must pro-
vide important confirmatory evidence. The
present experiment investigated choice over
a range of reinforcer ratios that extended
from the usual range to 160 to 1, and includ-
ed a concurrent extinction VI condition.

METHOD
Subjects

Six homing pigeons, numbered 21 to 26,
were maintained at 85% ±15 g of their free-
feeding body weights. They were experimen-
tally naive at the start of the experiment. Wa-
ter and grit were always available in their
home cages, and they were fed an appropri-
ate amount of mixed grain immediately after
the daily training sessions to maintain their
designated body weights.

Apparatus
The subjects worked in a standard sound-

attenuating experimental chamber that was
330 mm high, 300 mm wide, and 330 mm
deep. Two pecking keys, 20 mm in diameter,
were situated on one wall of the chamber, 130
mm apart and 260 mm above the grid floor.
The keys required about 0.1 N for operation.
Centered on the same wall, and 100 mm from
the floor, was a food magazine that contained

wheat. During reinforcement, the keys were
darkened and the food magazine was raised
and lit for 3 s. There was no chamber illu-
mination other than the lit keys and the mag-
azine light.

All experimental contingencies were con-
trolled by a remote PC-compatible computer
running MED-PCO software, and all data were
collected within the program.

Procedure
The pigeons were slowly deprived of food

before being trained to eat from the food
magazine when it was presented. An auto-
shaping procedure was then used to train the
pigeons to peck keys transilluminated by red
light. When they were reliably pecking, they
were trained on VI schedules on the left and
right keys, and then on the switching-key con-
current schedule described below.
During the session, the left key was trans-

illuminated with one of two intensities of yel-
low light, and the right key was illuminated
by red light. In the switching-key procedure,
pecks on the left (main) key were reinforced
on various pairs of VI or extinction schedules
that were changed over conditions, and pecks
to the right (switching) key changed the in-
tensity of the left keylight and the associated
schedule. After a switching-key peck, there
was a changeover delay (Herrnstein, 1961) of
3 s, during which time no reinforcers could
be obtained for pecking the left key. Effective
changeovers could be emitted during the
changeover delay. The concurrent schedules
on the left key were arranged according to a
dependent-scheduling procedure (Stubbs &
Pliskoff, 1969). In this procedure, a reinforc-
er that had been arranged for one alternative
stopped the timing of the VI schedule asso-
ciated with the other alternative until that re-
inforcer had been obtained. An overall rein-
forcer rate of two per minute (VI 30 s) was
arranged on the main key throughout all
conditions while the relative frequency of re-
inforcers obtained on the schedule associated
with the brighter left-key alternative was var-
ied (see Table 1). Sessions commenced in
blackout, lasted until 40 reinforcers had been
obtained or until 45 min had elapsed, which-
ever occurred first, and ended in blackout.
A condition remained in effect for all 6

subjects until a stability criterion had been
met for each subject individually. The crite-
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Table 1

Sequence of experimental conditions, relative reinforcer
frequency in the presence of the brighter stimulus, and
the number of training sessions in each condition. The
overall reinforcer rate arranged was 0.0333 per second
(two per minute) throughout.

Probability of
reinforcement on

brighter
Condition alternative Sessions

3 .9000 28
4 .0476 22
5 .9756 20
6 .0124 23
7 .9938 30
8 .3333 21
9 .8000 20
10 .1000 22
11 .9000 20
12 .0000 33

rion was this: After 10 training sessions had
been completed on a condition, relative re-

sponse rates from sets of three sessions (start-
ing at 10, 11, and 12) were assessed for a

monotonic trend. Experimental conditions
were changed for all subjects when a mono-

tonic increase or decrease had been absent
on five occasions (not necessarily consecutive-
ly) for all of the subjects. Thus, a minimum
of 16 sessions was required per experimental
condition. The minimum number obtained
was 20 (see Table 1).
The data collected were the times of each

response and reinforcer event in each exper-

imental session. The data from the last five
sessions of a condition were used for analysis,
except in Conditions 7 and 12. In these con-

ditions, the data used were those from the last
five sessions before all subjects achieved sta-
bility, plus an additional 10 sessions (Condi-
tion 7) or an additional five sessions (Con-
dition 12). This procedure was used because
some subjects had not obtained any reinforc-
ers on the dimmer alternative when the usual
number of sessions' data had been collected.
It was used in Condition 12 to make certain
that performance was stable. In the first two
conditions, the intensities of yellow light on

the main key were 4.6 cd/M2 and 0.75 cd/
m2. These data are not analyzed here. From
Condition 3 on, these intensities were 0.9 and
0.75 cd/M2.

RESULTS

The data summed over the last five sessions
of each condition are shown in the Appendix.
Figure 1 shows log response ratios plotted as
a function of log obtained reinforcer ratios
for all subjects in Conditions 3 to 11, as ap-
propriate for Equation lb. Also shown are the
best fitting straight lines obtained by least
squares linear regression of Equation lb to
the obtained data. The parameters of the fit-
ted lines are given in Table 2. It is evident
from Table 2 that Equation lb described the
data well, with high proportions of the data
variance accounted for. The fitted lines had
lower slopes (a in Equation lb) than those
generally found in concurrent VI VI perfor-
mance (e.g., Baum, 1979; Taylor & Davison,
1983). Bias values were close to zero. The low
sensitivity values could, of course, have re-
sulted simply from using discriminative stim-
uli that were not maximally disparate, as was
done by Miller et al. (1980). In Figure 1,
there appears to be little evidence of system-
atic deviations, towards the ogivality predict-
ed by Equation 3, from the lines of best fit to
Equation lb. It could, therefore, be conclud-
ed at this point that Equation lb was an ef-
fective description of the present data. De-
spite this excellent fit, we conducted further
analyses because the effect expected from
Equation 3 might be relatively small, depend-
ing on the discriminability between the stim-
uli signaling the alternatives.

Figure 2 shows a further analysis according
to Equation lb. In this analysis, we fit Equa-
tion lb to the five obtained log reinforcer ra-
tios closest to a log reinforcer ratio of zero in
Figure 1. These points all fall within the
range of log reinforcer ratios between -1
and + 1 in Figure 1. If the generalized match-
ing law is as applicable to extreme choice as
it is to moderate choice, the four unfitted ex-
treme data points should not deviate in any
systematic way from the line fitted to the cen-
tral data. The fits obtained when Equation lb
was fitted to only the central data are shown
in Table 2. The slopes of the fitted line in-
creased for all 6 subjects (but only slightly for
Bird 21) compared with the overall general-
ized matching fit, indicating that the extreme
data did not lie on the same fitted line as the
central data. Furthermore, 18 of the 24 ex-
treme data points deviated from the fitted
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Fig. 1. Log response ratios as a function of obtained log reinforcer ratios for each subject. The straight line is

the line of best fit to Equation lb using linear regression; the parameters of this line are shown in Table 2.

line in the direction of less extreme choice,
as predicted by Equation 3. This result is sta-
tistically significant at p = .016 on a direc-
tional binomial test.
A finer analysis, using all the obtained data,

is shown in Figure 3. There, the residuals
from the fits shown in Figure 2 (predicted

data minus obtained data) are shown as a
function of the log obtained reinforcer ratios
for all subjects. Negative residuals to the left
of the graphs and positive residuals to the
right of the graphs indicate a deviation away
from the fitted line toward less extreme pref-
erence, as predicted by Equation 3. Such de-
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Table 2

Results of generalized matching (Equation lb), generalized matching to central data only,
and contingency-discriminability (Equation 3) analyses for each individual subject and for the
grouped data. For Equation 3, the logarithm of the bias parameter c is shown to facilitate
comparison between the models.

variance variance
SE of Intercept SE of accounted accounted

Subject Slope (a) slope (log c) estimate for p log c for

Generalized matching Contingency discriminability
(Equation lb) (Equation 3)

Group 0.49 0.03 0.03 0.11 98 0.12 0.02 99
21 0.54 0.03 0.00 0.11 98 0.09 -0.03 97
22 0.45 0.07 0.10 0.27 87 0.13 0.07 94
23 0.36 0.04 0.00 0.14 94 0.19 -0.01 97
24 0.53 0.03 0.08 0.15 97 0.07 0.09 98
25 0.60 0.05 0.04 0.21 95 0.06 0.00 97
26 0.49 0.02 0.04 0.08 99 0.14 0.04 98

Generalized matching (Equation lb)
to central data only

Group 0.60 0.03 0.04 0.04 99
21 0.55 0.04 0.03 0.08 98
22 0.63 0.05 0.03 0.09 98
23 0.48 0.02 0.00 0.03 100
24 0.71 0.02 0.09 0.03 100
25 0.69 0.11 0.05 0.18 93
26 0.55 0.02 0.06 0.03 100

viations are clear for Birds 22, 23, 24, and 25.
Furthermore, least squares linear regressions
of the residuals as a function of the obtained
reinforcer ratios gave positive slopes for all 6
subjects, which was statistically significant at p
= .016 on a directional binomial test.
Next, we fitted Equation 3 for all concur-

rent VI conditions for each individual subject.
Because the relation is nonlinear, this was
done using the optimizer in Quattro-Pro for
Windows®. The data used in these fits were
log response ratios, and thus the model was
Equation 3 transformed logarithmically. For
each individual, Equation 3 was solved for the
best fitting values of c and p on a criterion of
miminizing the mean square error between
obtained log response ratios and the log re-
sponse ratios predicted by Equation 3. The
results are shown in Figure 4, and details of
the fits for the group data and for each in-
dividual are shown in Table 2 for comparison
with the fits to Equation lb. As Table 2 shows,
the percentage of data variance accounted
for by the two equations was similar. However,
a comparison of Figures 1 and 4 shows that
the fits to Equation 3 accounted well for the
nonlinearities in the data from the individual

subjects. The group p value of .11 indicates
that about 11% of the reinforcers delivered
for each alternative were misallocated to the
other alternative. Estimates of c were similar
between the two analyses.

Figure 5 shows the residuals from the fits
shown in Figure 4 plotted as a function of the
log obtained reinforcer ratios. Positive devia-
tions to the left of the graphs and negative
deviations to the right indicate deviations to-
wards more extreme choice than predicted
by Equation 3, in the direction of Equation
lb. For the four extreme points, 14 of the 24
data points deviated towards more extreme
choice (p > .05 on a binomial test), and lin-
ear regressions showed that 4 of the 6 sub-
jects' deviations had negative slopes (nonsig-
nificant at p = .05). Note that Equation 3 was
not fitted to the central data points only (as
Equation lb was) because the parameters of
the confusion model are mainly determined
by the end points.
The data from Condition 12, in which ex-

tinction was arranged for one alternative,
could not be analyzed in the same quantita-
tive way because the log obtained reinforcer
ratio was infinite. The data from this condi-
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Fig. 2. Log response ratios for each subject as a function of log obtained reinforcer ratios. The straight line is

the line of best fit to Equation lb by least squares linear regression to the five central data points with log reinforcer
ratios between -1 and + 1. The parameters of the fit are shown in Table 2.

tion, in terms of absolute log response ratios, DISCUSSION
are shown in Figure 6. For all of the subjects,
responding on the alternative associated with The results obtained here supported the
extinction was maintained strongly in Con- contingency-discriminability approach over

dition 12. the generalized matching approach in ac-
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Fig. 3. The deviation of the obtained log response ratios from those predicted by the fitted lines in Figure 2 as

a function of the obtained log reinforcer ratio.

counting for choice, particularly extreme
choice. In fitting a straight line (e.g., Equa-
tion lb), systematic deviations of extreme
data points from the line should not appear
when only central data are used to fit the line.
However, such deviations were found here.

Log choice measures, across the range stud-
ied here, were thus not linearly related to log
obtained reinforcer ratios. Equation 3 natu-
rally predicts nonlinearity and data deviations
from Equation lb in the direction we found.
Hence, qualitatively, Equation 3 is a descrip-
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Fig. 4. Log response ratios as a function of obtained log reinforcer ratios, also showing the predictions of Equation

3 when this equation had been fitted to the data. The parameters of the fit are shown in Table 2.
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Fig. 5. The deviation of the obtained log response ratios from those predicted by the fitted lines in Figure 4 as

a function of the obtained log reinforcer ratio.

tion that is more likely to be correct. It is
more difficult to conclude that Equation 3 is
quantitatively better than Equation lb. As Fig-
ure 1 and Table 2 show, when fit to all the
data, Equation lb fits well on a criterion of
variance accounted for, and in this fit (but

not in the fit to only the central data), the
nonlinearities are not startling. This is be-
cause, in Figure 1, the nonlinearities predict-
ed by Equation 3 occur for both the central
data (towards more extreme choice) and for
the extreme data (towards less extreme
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PREDICTED DATA VI schedules (Davison & Hunter, 1976) in
OBTAINED DATA that the subjects continued responding to the

extinction alternative, in many cases quite
strongly. Generalized matching (Equations 1
and lb) predicts the cessation of responding
to the extinction alternative, whatever the val-
ues of a and c. The maintenance of respond-
ing to the extinction alternative in Condition
12 shows that Equations 1 and lb cannot ac-
curately describe the present data. Equation
4, derived from Equation 3, does predict that
responding should be maintained on the ex-

tinction alternative, and the amount of such
responding should be predictable from the
values of p and c obtained from the fits of
Equation 3 to the individual-subject concur-
rent VI data. These predictions were calculat-

21 22 23 24 25 26 ed, and are shown in Figure 6 alongside the
SUBJECT obtained absolute log response ratios. Five of

the 6 subjects showed a larger preference to
olute values of log response ratios obtained teV lentv hnwspeitdbh
12 (concurrent extinction VI schedule) and
dicted for this condition from Equation 4. fits to Equation 3 (that is, the p values ob-

tained from the fits to Equation 3 were gen-
erally overestimated). Although the differ-

le fitted straight line tends to ob- ences between the obtained and predicted
deviations, but they become clear, data were not significantly different on a sign
ps even overenhanced, when the test, these results could indicate a quantitative
nodel is fitted (Figure 4). Further, problem with Equation 3. It is worth men-
confusion, parameters obtained tioning that Equation 3, in a relative form
g Equation 3 had sensible values, rather than a ratio form, could have been fit-
c, or bias, parameters (Table 2). ted to all conditions of this experiment in-
ted earlier that the generalized cluding Condition 12, with a consequently
elation was a useful description of more accurate estimate of p inclusive of ex-
n though it had some theoretical tinction conditions. This was not done, be-
We believe that the present re- cause we wished to investigate how well con-
rests that the generalized matching current extinction VI performance could be
s, however, a poor description of predicted from concurrent VI VI perfor-
ioice, and that a better and more mance. In summary, the fact that responding
escriptor of choice across a wide was strongly maintained in extinction argues
lues is offered by Equation 3. We against Equations 1 and lb and for a different
ier that Equation 3, and the asso- quantitative approach. The amount of re-
cn of contingency discriminability, sponding maintained in extinction did not
ffective molar theory of choice be- clearly indicate whether or not Equation 3
cifies how the effect of a reinforc- was the appropriate alternative approach.
tial on choice is modulated by a Can the generalized matching relation be
Ltive-stimulus differential to saved? One argument that might be offered
quantitative value of choice. The against our interpretation of the present data
contingency discriminability, or its comes from results reported by Todorov, Cas-
ntingency confusion, defines the tro, Hanna, Bittencourt de Sa, and Barreto
that affect the value of this mea- (1983). They showed that sensitivity to rela-
ay that sensitivity to reinforcement tive rates of reinforcers progressively de-
tions 1 and lb) does not. creased with an increasing number of expo-
ilts from Condition 12 replicated sures to different concurrent VI VI schedules.
!sults from concurrent extinction As Table 1 shows, we progressively increased
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the reinforcer-rate differential on the two al-
ternatives up to Condition 7. If the effect that
Todorov et al. described was operating here,
then sensitivity to reinforcement should have
fallen, as it did. However, an analysis of trends
in point estimates of sensitivity carried out
over all successive conditions (N = 6 subjects,
k = 9 conditions) showed a statistically non-
significant trend (z = 0.09, p > .05), and this
trend was also nonsignificant for each indi-
vidual. As a more direct comparison, Condi-
tion 11 was a direct replication of Condition
3, done after considerable exposure to other
conditions. The values of point estimates of
sensitivity were smaller in Condition 11 than
in Condition 3 for 3 of the 6 subjects, and
were therefore not significantly different on
a binomial test. Thus, there was no strong ev-
idence in the present data that sensitivity falls
with increasing exposure to concurrent VI VI
schedules as described by Todorov et al. It
may be that, in fact, Todorov et al.'s finding
of decreased preference with increasing ex-
posure to experimental conditions is partly
accounted for by the present finding of de-
creasing sensitivity with increasing reinforcer
differentials, because Todorov et al. did ar-
range the more disparate reinforcer-rate con-
ditions later in their training sequence.

It has generally been argued that change-
over delays are important in obtaining high
sensitivities to reinforcement (Herrnstein,
1961), but, on the other hand, quite a num-
ber of experimenters have reported typical
high-sensitivity values with no changeover de-
lay at all (see Davison & McCarthy, 1988, for
a review). It was because of this lack of clarity
that we used a substantial (3-s) changeover
delay in the present experiment. The ar-
rangement of a changeover delay could, per-
haps, be used to explain the present results.
A changeover delay might force subjects at
least to spend time, and perhaps to emit re-
sponses, on the lower reinforcer-rate alter-
native, when that alternative had been con-
tacted. The dependent-scheduling procedure
used here could possibly have amplified such
an effect. However, we explicidy arranged the
procedure so that subjects could exit from ei-
ther alternative before the changeover delay
had elapsed, so they were not forced to spend
more than a minimal amount of time on the
lower reinforcer-rate alternative.
We need to confront the possibility that the

present results could have been caused by a
failure to continue conditions to stability, es-
pecially at extreme reinforcer ratios. Our de-
fense against this possibility is twofold. First,
assuming that the change in behavior alloca-
tion following a transition between condi-
tions would be a negative or positive hyper-
bola or exponential curve, we assessed
stability using a procedure that was sensitive
to trends, of whatever size, and not to abso-
lute changes in relative responses. We did not
accept stability for an individual subject until
a monotonic trend across three sessions had
been absent on five occasions, and we did not
accept stability in the condition until the per-
formance of each of the subjects had met this
individual criterion. This constitutes a sensi-
tive stability criterion, one that should be no
easier to satisfy at extreme choice than at
equal choice. Second, there is ample evi-
dence (e.g., Davison & Hunter, 1979; Hunter
& Davison, 1985; Shull & Pliskoff, 1967) that
stability on concurrent VI VI schedules is
achieved in three to seven 45- to 60-min ses-
sions. Although these results did not provide
information on the effects of large disparities
in reinforcer rates, Mazur (1992) showed that
the rate of approach to asymptotic perfor-
mance on concurrent VI VI schedules in tran-
sition was not systematically related to the dif-
ference in the VI schedule reinforcer rates.
The numbers of training sessions arranged in
the present experiment (Table 1) were thus
considerably in excess of the number that
previous reports have suggested are neces-
sary.

Since its introduction by Davison and Jen-
kins (1985), a number of models either iden-
tical to or similar to the contingency-discri-
minability model have been proposed.
Vaughan and Herrnstein (1987) suggested
Equation 3 to account for performance on
concurrent VI VI schedules in which the al-
ternatives were signaled by slides containing
trees and those containing no trees. As they
stated, Equation 3 "seems a more reasonable
way [than Equation lb] to formalize the un-
dermatching due to stimulus confusions" (p.
13). Burgess and Wearden (1986) discussed a
modification of Herrnstein's (1970) equation
that assumed a confusion between contingent
and noncontingent reinforcer rates when
some reinforcers were delivered indepen-
dently of responding. Their model is concep-
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tually identical to Equation 3. It is evident,
then, that some researchers have focused on
discriminative stimuli as the source of con-
fusion, whereas others have focused on con-
fusion about reinforcers. However, if behav-
ioral control by a contingency is concerned
with both the antecedent stimuli and the con-
sequential reinforcers, then logically the con-
fusion must be between two or more com-
plete three-term stimulus-behavior-rein-
forcer contingencies. In other words, an in-
ability to discriminate the stimuli will cause
confusion about reinforcer differentials, and
an inability to discriminate reinforcer differ-
entials will, via a partial failure of differential
reinforcement, cause confusion about stimuli.
Subsequent to Davison and Jenkins's

(1985) paper, the contingency-discriminabil-
ity model has been used successfully in ana-
lyzing stimulus disparity effects in two-alter-
native concurrent VI performance (Alsop &
Davison, 1991) and in three-alternative con-
current VI performance (Davison & McCar-
thy, 1994). The concurrent-schedule model
has also been extended to signal-detection
performance in which sample-stimulus discri-
minability and contingency discriminability
play separable parts (Alsop, 1991; Davison,
1991; McCarthy & Davison, 1991). Although
all these papers have shown Equation 3 to be
viable, in the sense of providing an adequate
fit to the data, they were unable to test the
generalized matching law (Equations 1 and
lb) differentially against the contingency-dis-
criminability model (Equation 3), because
both provide equally good fits to convention-
al, nonextreme data (Davison & Jenkins,
1985). The present research provided the
first differential test. As Davison and Jenkins
showed, Equation 3 fits standard, nonex-
treme, concurrent-schedule data as well as
Equations 1 and lb do. Davison andJenkins
also argued that the confusion measure of
Equation 3, unlike sensitivity (a) in Equations
1 and lb, clearly defines the independent
variables (stimulus disparity, free delivery of
reinforcers) that change the parameter's val-
ue. Given the problems with generalized
matching outlined in the introduction, and
the finding here that the contingency-discri-
minability model has also passed its first crit-
ical test, we submit that the model deserves
serious consideration as an alternative to gen-
eralized matching.

There is one area in which Equation 3, the
contingency-discriminability model, is less ef-
fective than Equations 1 and lb, the gener-
alized matching relation. The former model
has not, as yet, been concatenated to deal
quantitatively with controlling variables other
than reinforcer rate. When individual rein-
forcers rather than the rates of identical re-
inforcers are different, it is unclear how to
conceptualize them in an extended version of
Equation 3. For example, if different rein-
forcer magnitudes are arranged for different
operants, these may not only have different
reinforcer values, they may also have different
discriminabilities. Thus, varying reinforcer
magnitudes may confound variations of both
reinforcer values and reinforcer discrimina-
bilities. This, perhaps, is evidenced by the dif-
ferential outcomes effect in conditional dis-
criminations (Trapold, 1970), with the
apparent increase in signaling-stimulus discri-
minability actually resulting from an increase
in contingency discriminability. It will be par-
ticularly difficult to deal with both the psy-
chophysical measurement of reinforcement
value and the psychophysical measurement of
contingency detection in a single quantitative
model of choice. This is left for further re-
search to determine.

Finally, we think it important that extreme
choice be adequately described and predict-
ed by choice theories for practical, applied
reasons. Many of the practical applications of
such models are, explicitly, in conditions of
extreme choice. Davison (1992) has argued
that theories of behavior allocation, such as
Equation 1, should allow a practitioner to cal-
culate how much in the way of resources
needs to be allocated to changing behavior
in a particular situation. Such a calculation
should allow the avoidance of both the allo-
cation of insufficient resources to produce
the desired change and the allocation of
more resources than are necessary. Applying
the generalized matching approach to such
problems, as discussed by Davison, would be
efficient (in terms of amount of behavior
change obtained for resources used) in the
10 to 1 through 1 to 10 reinforcer-ratio range,
but outside that range, generalized matching
could be seriously in error. It would also be
very seriously in error if the settings in which
the behavior occurred were less than opti-
mally discriminable, which may occur fre-
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quently. According to the present approach
(using Equation 3), it would be quite easy to
find situations in which relatively extreme
predictions from the two approaches differed
by 100% or more. For quantitative applied
work on extreme behavior allocations, then,
Equation 3 should be used. However, because
Equation 3 is nonlinear, more baseline ma-
nipulations of reinforcer rates are required to
obtain its parameters prior to any therapeutic
intervention.
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APPENDIX

Data for each subject summed over the final five sessions of each experimental condition,
except in the case of Conditions 7 (the final 15 sessions) and 12 (the final 10 sessions), after
stability had been achieved. The data from the latter two conditions have been divided by 3
and 2, respectively, to make these data commensurate with the data from the other conditions.

Responses Time(s) Reinforcers Change-

Subject Condition Bright Dim Bright Dim Bright Dim overs

21 3 7,260 2,374 4,099 1,289 182.00 18.00 335
4 1,784 10,933 751 4,828 13.00 187.00 454
5 8,342 1,230 4,594 593 197.00 3.00 237
6 600 8,745 335 4,754 1.00 199.00 130
7 7,528 529 4,685 272 198.00 2.00 196
8 3,255 3,794 2,531 2,846 83.00 117.00 525
9 8,618 3,097 4,436 1,418 169.00 31.00 506
10 3,633 13,470 1,454 5,005 15.00 185.00 358
11 10,748 2,250 4,771 952 182.00 18.00 380
12 684 9,535 340 5,143 0 200.00 157

22 3 6,288 1,520 5,789 1,585 174.00 26.00 96
4 899 6,312 913 6,775 10.00 190.00 36
5 4,654 463 4,960 552 198.00 4.00 29
6 1,706 4,850 2,222 5,253 1.00 193.00 16
7 5,585 726 5,570 819 197.67 2.33 16
8 3,973 7,395 2,852 5,215 67.00 133.00 93
9 7,103 2,362 5,464 1,738 168.00 32.00 95
10 1,993 6,612 1,479 4,607 19.00 181.00 85
11 8,645 2,356 6,343 1,749 177.00 23.00 56
12 386 4,135 469 5,044 0 200.00 3

23 3 9,792 2,355 4,663 1,235 190.00 10.00 114
4 3,237 12,312 1,081 3,990 7.00 193.00 183
5 11,765 3,522 4,430 1,323 195.00 5.00 90
6 2,448 11,879 823 4,102 2.00 198.00 98
7 10,289 2,259 4,827 1,081 199.00 1.00 62
8 6,655 7,288 2,963 2,926 83.00 117.00 306
9 10,025 4,736 4,384 2,189 163.00 37.00 164
10 4,404 11,997 2,097 5,388 23.00 178.00 209
11 10,284 4,044 4,490 1,732 178.00 22.00 151
12 1,445 11,034 633 5,180 0 200.00 29

24 3 6,483 1,029 5,906 1,394 154.00 16.00 165
4 1,697 8,219 2,460 4,239 9.00 173.00 299
5 9,010 716 4,782 414 198.00 2.00 193
6 506 6,590 1,317 4,326 1.00 182.00 119
7 10,258 450 5,483 256 200.00 0.33 65
8 4,950 6,255 3,517 3,561 66.00 127.00 271
9 8,457 2,511 4,702 1,513 166.00 35.00 261
10 2,371 8,082 1,541 4,369 23.00 177.00 171
11 8,850 1,736 4,677 1,146 174.00 26.00 198
12 349 8,317 214 5,176 0 200.00 175

25 3 14,604 1,858 5,850 569 177.00 23.00 63
4 1,188 13,720 652 5,880 8.00 192.00 89
5 11,722 1,154 5,443 621 191.00 9.00 104
6 726 10,677 307 4,891 1.00 199.00 113
7 12,835 990 5,489 332 198.67 1.33 62
8 6,166 11,767 2,504 4,352 66.00 134.00 150
9 11,532 4,995 4,358 1,649 152.00 48.00 266
10 3,714 13,818 1,199 5,181 18.00 182.00 165
11 11,828 3,472 4,911 1,031 180.00 21.00 166
12 974 12,432 355 5,222 0 200.00 47
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APPENDIX
(Continued)

Responses Time(s) Reinforcers Change-

Subject Condition Bright Dim Bright Dim Bright Dim overs

26 3 8,845 2,658 4,416 1,170 177.00 24.00 149
4 2,745 10,002 1,246 4,431 8.00 192.00 187
5 12,745 2,194 5,564 976 196.00 5.00 10
6 1,681 11,673 824 5,008 5.00 195.00 37
7 13,138 1,615 5,311 731 198.00 2.00 25
8 8,069 9,567 3,773 4,357 81.00 119.00 121
9 11,674 4,771 5,317 2,355 156.00 36.00 167
10 3,662 10,211 1,567 4,987 20.00 180.00 134
11 12,145 3,630 4,955 1,343 172.00 28.00 265
12 1,275 11,326 524 4,959 0 200.00 56


