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SUMMARY

1. It has been suggested that spontaneous quantal release of transmitter
at the neuromuscular junction is a Poisson process. One logical argument
against accepting the Poisson hypothesis is that so far relatively few
intervals between miniature end-plate potentials (min.e.p.p.s) have been
studied in any single experiment. Release is known to occur from many
sites on the nerve terminal, so many intervals must be studied before
drawing any conclusions about the timing of release from the individual
sites. Moreover, the statistical methods that have been used are relatively
insensitive to deviations from Poisson predictions.

2. The Poisson hypothesis is evaluated with respect to three major
criteria:

(@) The fit to the exponential distribution is analysed by five goodness
of fit tests which were applied to eleven sets of data, showing that it is
unlikely that the data sets were generated by an exponential distribution.

(b) The independence of intervals is assessed in two ways. First, the
autocorrelogram of intervals is constructed. This shows an excess of signi-
ficant positive correlations beyond the 59, limits of the Poisson expecta-
tion. Secondly, the unsmoothed power spectrum is calculated, and
compared to the Poisson prediction by means of the modified mean test.
Again, most sets deviate significantly from the Poisson expectation. It is
unlikely that the intervals are independent.

(c) The possibility of simultaneous occurrences is evaluated by con-
struction of the amplitude histogram of min.e.p.p.s. In all sets the Poisson
prediction for the frequency of multiples of the unit height was exceeded by
the empirical data sets. The over-all conclusion is that the process which
generates spontaneous releases is unlikely to be Poisson.
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INTRODUCTION

Fatt & Katz (1952) measured the intervals between 800 miniature
end-plate potentials (min.e.p.p.s) recorded with an intracellular micro-
electrode at the frog neuromuscular junction. The distribution of these
intervals closely resembled an exponential distribution.

P > 1) ¢ exp(—t/E(X)), (1)

where P (¢’ > t) is the probability of finding an interval longer than ¢ and
E(X) is the mean interval. Gage & Hubbard (1965) extended this approach
to the mammalian neuromuscular junction. They divided their records
into a series of short time bins of length At and then counted the number
of min.e.p.p.s in each bin. The number of bins with any number of events,
a, within them is given by:

. =2l e

a a!

, (2)

where E(x) is the mean interval and N, is the total number of bins. The
agreement between the observed and expected values was tested by the
x-square goodness of fit test. The deviation was not significant. These
studies suggested that spontaneous quantal release follows a Poisson
distribution.

None the less, there are reasons to question how well this conclusion has
been established. One question is logical. Acetylcholine (ACh) appears to
be released at scores or hundreds of sites on the nerve terminal. If all
sites release spontaneously, then scores or hundreds of min.e.p.p.s must be
observed before seeing a second release from any one site. Obviously many
min.e.p.p.s must be observed before concluding that release at any indivi-
dual site is completely random.

Moreover, detailed analysis of the 799 intervals of Fatt & Katz suggested
alternatives to the Poisson model (Cox & Smith, 1953; Lewis, 1964). One
possibility is that the series is generated by superimposing the output of
about 170 release sites, each site releasing on a periodic pattern (Cox &
Lewis, 1966; Hubbard, 1970). In high Ca?+ Ringer there is reported to be
a substantial deviation from the exponential distribution (Rotshenker &
Rahamimoff, 1970). In the locust, miniature excitatory potentials do not
occur at exponential intervals and frequently ‘bursts’ of events were
encountered (Usherwood, 1972). Cohen, Kita & Van der Kloot (1973a)
reported that the distribution of intervals between extracellularly recorded
min.e.p.p.s from the frog neuromuscular junction was not exponential.
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METHODS

Data recording. Min e.p.p.s were recorded from the sciatic nerve-sartorius muscle
preparation of the frog (Rana pipiens) with standard technique. The min.e.p.p.s
were photographed on film moving at 25 or 50 mm per sec or recorded on paper
moving at 25 or 125 mm per sec using a Brush recorder. The intervals from the
filmed record were measured to the nearest 1 msec, using & microfilm viewer. Two
min.e.p.p.s could be resolved if they were greater than 0-5 msec apart.

TaBLE 1. Composition of Ringer solutions (mm)

Tris Neo-
buffer stigmine

Set* NaCl KCl  CaCl, MgCl, pH = 7-4 Sucrose  (gfl.)
A,B,C 100 2 2:5 3 8 0 10-¢
D 100 2 2-5 3 8 50 10-¢
E 100 2 2-5 3 8 90 10-¢
F 100 2 2-5 3 8 100 10-8
G 100 2 1-0 0 8 100 10-¢
H (3-8°C) 100 2 2:5 3 8 100 10-¢
I 100 2 2-5 3 8 150 10-¢
J (10°C) 100 2 0-8 0 8 220 10-¢
K 100 20 1-0 0 8 100 10-¢
L 50 2 2:5 3 8 100 10-¢
M 92 10 2-5 3 8 0 10-¢
N 100 2 2-5 15 8 0 10-¢
(0] 100 2 2:5 18 8 0 10-¢
P,Q 100 2 2:5 35 8 0 10-¢

* Data was recorded at 20° C, if not otherwise noted.

The standard Ringer contained 100 mM-NaCl, 2 mM-KCl, 2:5 mM-CaCl,, 3 mm-
MgCl, and 8 mM-Tris maleate buffer pH = 7-4 (Danforth & Helmrich, 1964). For
solutions used see Table 1. In most experiments the temperature of the preparation
was kept steady (at 20° C, unless stated to the contrary) by circulating tempera-
ture-controlled water through chambers surrounding the bath.

The data sets evaluated in this analysis were recorded during several studies on
various properties of the spontaneous release system. They were used in this study
because no external variable was known to have changed the rate of release during
the recording, and because they were of sufficient length for detailed analysis.

Statistical methods. The statistical methods we have used are standard for time
sequence analysis and are described in detail by Cox & Lewis (1966). A number of
methods have been used, because at present there is little information on the best
approach to use in practice. In part this arises because some tests are useful for
detecting one type of deviation from the null hypothesis, while other statistics have
greater power against other alternatives.

The Poisson distribution. Suppose that a series of N events is distributed over a
period of time #,. The intervals between the events are x,, z,,..., ,. The mean inter-
val E(z) is the sum of all the intervals divided by their number. The problem is to
decide whether or not the events are distributed in time as a Poisson process, which
has four necessary criteria.
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(1) The distribution of intervals between events should fit an exponential of the
form: F(z) «c exp(—x[E(x)) where F(x) is the probability of having an interval of
length greater than z.

(2) The time of occurrence of an event is totally independent of all past events.

(3) The chance of two or more events occurring simultaneously is negligible.

(4) The probability of occurrence of events is not changing with time, so there are
no trends in the series.

In this paper we will evaluate the empirical distributions in terms of criteria
(1)-(3). The fourth requirement, the absence of trends, is evaluated in Cohen et al.
(1973b) where alternatives to the Poisson model are discussed.

Goodness of fit tests. In order to investigate the exponential requirement of a
Poisson process, goodness of fit tests must be employed. We calculated five different
goodness of fit statistics for each set of experimental data.

(@) x-square. A common approach to goodness of fit statistics is to set up time
bins, each of length Af, and to count the number of intervals that fall within each of
the bins, and then to compare the actual number with the expected number, n,
calculated from the equation:

n = N (exp(—¢t|E(x)) — exp (- (t+At)/E(x)))

where N is the total number of events. The actual and predicted values are compared
by using the y-square goodness of fit test. The problem with this approach is the
arbitrariness in choosing the duration of the time bin.

(b) Cumulative distribution. The binning can be avoided by calculating the pre-
dicted cumulative distribution from the Poisson equation

n’ = N(1—exp (—t/E(x)))

where N is the total number of events and n’ is the total number of events shorter
than ¢. The goodness of fit of the data to the prediction can be tested by using the
Kolmogorov—Smirnov or the Anderson—Darling statistics.

(¢) Durbin’s transformation. The disadvantage of the above approach is that the
power (the ability to reject a false null hypothesis) is low. The power can be increased
greatly by using a simple transform (Sukhatme, 1937; Durbin, 1961; Lewis, 1964)
which involves studying the intervals between intervals. A Poisson series trans-
formed in this manner falls on a straight line of slope 1 from 0 to 1. In effect this is
also a method of filtering the data that minimizes the influence of long term trends
in the data set.

(@) Kolmogorov—Smirnov. The empirical fit to the predicted Poisson line is readily
tested with a one-sided Kolmogorov-Smirnov statistic, in which the maximum
deviation from the predicted cumulative distribution function is found (Cox &
Lewis, 1966). .

(e) Modified mean test. Another readily computed statistic on data transformed
by Durbin’s method is the modified mean test (Lewis, 1964).

(f) Sherman’s statistic. A rather different approach is to use the easily computed
statistic devised by Sherman (1950) as a test of goodness of fit to the exponential
distribution

_ % e —E@)

0= B Anr DEE

A table of the distribution for small sample sizes is given by Bartholomew (1954).
The expected value is 1/e.
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If an empirical distribution has an omega statistic which is significantly less than
1/e, the data set must contain an excess of intervals near the mean interval length,
and a lack of intervals at either extremely long lengths. A distribution which devi-
ates in this manner from the exponential expectation is said to be ordered.

If an empirical distribution has an omega statistic which is significantly greater
than 1/e the data set must contain an excess of either very short or very long inter-
vals, and a lack of intervals near the mean length. A distribution which deviates in
this manner from the exponential expectation is said to be clustered.

(9) Dispersion test. The dispersion test (Cox & Lewis, 1966, pp. 158—160) compares
the mean number of events in a series of time bins to their variance, and in doing so
serves as a rough indicator for the presence of time trends in the generating series, as
well as examining the goodness of fit to the exponential. A significant dispersion
statistic implies not only poor fit to the exponential, but also a possible moving mean.

The evaluation of independence. To assess the degree to which the intervals in the
empirical series are independent of past history, autocorrelation coefficients were
calculated as described by Cohen et al. (1973a). An excess of significant autocorre-
lation coefficients suggests that the events are not independent. However, more
exact tests against non-independent alternatives are then needed, which involve
substantial amounts of computation. After some trial, we adopted a method in which
the series autocovariances, c;, for the series were calculated first (Cox & Lewis, 1966,
pPp- 89-90). The autocovariances were then used in the calculation of the unsmoothed
power spectrum, which is a Fourier series with the autocovariances as the coefficients.

1 ! ,
In(w,) = = (co+2 .21 ¢; cos (ng)),
]=

where o, =mpfl and p = (1,...,1), I =INT((n—-1)/2).

For an uncorrelated distribution the values of In(w,) should equal /27 for all
values of the frequency, w,. A statistical test of the absence of correlation can be
constructed by forming a ratio of the sum of all In(w,)’s up to any value of p
divided by all values of In(w,).

1
2 In(wy)

p=1

gy ==
Y In(w,)
=1

The g;’s should form a uniform distribution for an uncorrelated process. The distri-
bution of g;’s could be evaluated by any of the goodness of fit tests deseribed pre-
viously using the (0, 1) distribution as the theoretical prediction. We used Durbin’s
transformation and then the modified mean statistic. We checked our computational
method by using the computer to generate series of random exponentially distributed
interval lengths; the g;’s from these series were distributed as expected by chance.

RESULTS

Fit to the exponential distribution. Five goodness of fit tests were used to
estimate the probability that if the intervals between min.e.p.p.s are
exponentially distributed the observed deviations could occur by chance.
Table 2 summarizes the analysis of eleven sets of data. Included in the
Table are the results from series recorded in normal Ringer, high K+
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Ringer, low Na+ Ringer, hypertonic Ringer, and hypertonic Ringer at low
temperature.

The over-all conclusion, on the basis of any of the tests, is that the data
is unlikely to be generated by an exponential process. With each test more
than half of the examples are outside of the 59, confidence limits. There
is no obvious reason to favour one test above any of the others. The
x-square goodness of fit test, used to compare binned interval lengths with
Poisson predictions, has the advantage of familiarity and clearly is quite
powerful ; its main disadvantage is the arbitrary choice of bin size. The
Kolmogorov—Smirnov test and the modified mean test are both performed
on transformed data. One advantage of this approach is that it is believed
to minimize the effects of long term trends in the data. The dispersion test
appears to be slightly less powerful than the others and had the further
disadvantage that it involves an arbitrary choice of the time bin.

The results with Sherman’s omega statistic raise a problem for further
analysis. If the statistic is significantly below the expected value for an
exponential series (1/e) the intervals are more ordered than a random
series with a constant mean. If the values are significantly above 1/e there
is clustering of events in the series. In our results two of the sets that
deviate significantly from the exponential appear by this criteria to be
more ordered than a Poisson distribution, while four of the sets appear to
deviate significantly as a result of clustering. This may mean that there are
different factors at work that can change the min.e.p.p. frequency away
from the exponential, or perhaps min.e.p.p.s are generated by a process
that is both more ordered than Poisson but which also tends to produce
clustering.

The sets with more intervals are more unlikely to be exponential. We
explored the effects of set length by taking one of our examples and cal-
culating the statistics on the first 400 intervals, then on the first 1000, then
on the first 1500, and finally on the entire 2349. Table 3 shows that with
400 intervals the data cannot be distinguished from the exponential at the
19, significance level. With 1000 intervals two of the statistics are signi-
ficant, while at 1500 and again at 2349 intervals, all statistics reject the
null hypothesis at the 19, level. These results emphasize the need for
substantial amounts of data.

Independence of intervals. In a set of events generated by a Poisson pro-
cess each event has no influence on the occurrence of future events. One
method of testing for independence is by calculating autocorrelation
coefficients. Usually we calculated the coefficients for the first 50 lags; an
example is shown in Fig. 1. Two points are clear from the Figure. First,
there is a greater than chance number of autocorrelation coefficients that
exceed the confidence limits. Secondly, there is a tendency for runs of
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TaBLE 3. The effect of set length on statistical significance from set C

Set Kolmogorov- Modified Sherman’s
length  y-square Smirnov mean statistic Dispersion
400 51-82 0-914 P =039 0-376 71-4
32 df 50 df
1000 61-89 1-63** P = 003 0-382 123-2%*
39 df 50 df
1500 91-24** 2-37** P < 0-01** 0-391** 214-0*%*
39 df 50 df
2349 125-42%* 3-26** P < 0-01%* 0-394** 344-0**
39 df 50 df

** Beyond 19, confidence limit of Poisson prediction.

i 0|II’ ll \l |I|‘ |||”|, Al nl.‘llll| ||l'Lag
il

Fig. 1. The autocorrelation between intervals, calculated for lags 1-50 and
displayed as an autocorrelogram. The method of calculation is described in
the text along with the relationship used to calculate the 59, significance
limits, which appear on the graph as the nearly horizontal lines above and
below the zero line. Note that seven of the fifty autocorrelations exceed the
59, by chance limits. Also note the runs of consecutive positive or negative
autocorrelations. This is common to all of our autocorrelograms. There are
more positive than negative significant autocorrelation coefficients. This is
also characteristic of all our autocorrelograms of intervals.
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positive autocorrelations or negative autocorrelations to be clustered
together. The clustering was found in all of the data sets analysed in this
manner. Table 4 shows an analysis of the first fifty autocorrelation coeffi-
cients for each of eight sets of data. There is an excess of coefficients above
chance in all sets. Further, there is a greater number of positive significant
coefficients than negative ones. This is also characteristic of the data sets.

It is unfortunately difficult to quantify the deviation of series of auto-
correlation coefficients. Asymptotically the coefficients should be normally
distributed, but the small sample distribution is not known, and the use of
longer series involves an arbitrary decision about the number of lags to be
included in the calculation. For this reason we turned to statistics based on
the power spectrum of intervals to obtain estimates of the probability that
the min.e.p.p.s are distributed independently. The disadvantage of this
approach is the very substantial amount of computation involved in the
estimates.

TaBLE 4. Autocorrelation coefficients of intervals (to lag 50)

No. No. No. No.

% No. outside outside % No. outside outside
outside outside of 59, of 59 outside outside of 19  of 19,
of 5% of 5%  limit limit of 19, of 19  limit limit

limit  limit (positive) (negative) limit limit (positive) (negative)
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The results of the computations on eight sets of data are shown in
Table 5. The results again indicate the low probability that min.e.p.p.s
are generated by a random process.

Stmultaneous occurrences. In a Poisson distribution there are no intervals
with length zero, since substitution of interval length zero in eqn. (1) yields
a probability of ¢’ < ¢t equal to zero. Nevertheless, it is well known that
occasionally min.e.p.p.s appear with an amplitude that is a multiple of the
unit quantal size (Liley, 1956a, b, 1957).

One possible explanation for these ‘giant’ min.e.p.p.s is based on the
assumption that the set is truly Poisson. Since the resolution time for two
min.e.p.p.s is roughly 0-5 msec, any two events occurring at shorter
intervals would be recorded as a single event of twice the normal amplitude.
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The number of events with different multiples, m, of the unit quantal size
would then be predicted by:

ny = (E,%;))'"—IN if t < E),

TaBLE 5. The probability of independence of data sets as tested by the modified
mean test computed on an unsmoothed power spectrum after Durbin’s trans-
formation

0]
@
o

Probability

0-012*
< 0-01**
< 0-01%*
< 0-01%*

0-06

0-945
< 0-01**
< 0:01%*

Zo«wrmowk

* Beyond 59, confidence limit of Poisson prediction.
** Beyond 19, confidence limit of Poisson prediction.

Number

0 1-35
Min. e.p.p. amplitude (mV)
Fig. 2. The frequency distribution of amplitudes of 353 min.e.p.p.s recorded
in 18 mm-MgCl, Ringer (Set 0). The amplitudes are grouped in brackets
of 0-054 mV. Note the large skew in the histogram for large amplitude

min.e.p.p.s. The number of large amplitude min.e.p.p.s greatly exceeds
the Poisson prediction (see Table 6).
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where 7, is the number of events containing m quanta. Liley (1957) used
this approach to examine the amplitude distribution of a number of sets of
min.e.p.p.s recorded from the rat neuromuscular junction under different
experimental conditions. In all sets there was an excess of ‘giant potentials’
above the Poisson predictions.

TABLE 6. Analysis of the amplitude distribution of min.e.p.p.s comparing the
expected number of ‘giant’ min.e.p.p.s with the Poisson prediction

No. of doubles No. of triples No. of quadruples
A A A
r N s N s Al
Set Expected Observed Expected  Observed  Expected  Observed

B 1-08 7 < 0-01 1 < 10 0
M 2-0 5 < 0-01 0 < 104 0
N 2-6 5 0-02 4 < 10 1
(0] 1-5 27 0-02 15 < 10— 9
P 2-4 6 0-03 3 < 104 0
Q 10-0 13 0-30 0 < 1073 1

We have made similar observations at the frog neuromuscular junction.
An example is shown in Fig. 2. From the amplitude histograms the number
of apparent multiples can be estimated. Only experiments in which the
resting potential exceeded 80 mV were evaluated. If the resting potential
decreased by more than 109, the experiment was discarded. Table 6
compares these estimates with the Poisson prediction. In every set the
number of multiples clearly exceeds the Poisson predictions.

The four data sets in high Mg2+ concentrations shown in Table 6 were
recorded for two reasons. First, many of the min.e.p.p. sets were recorded
in the process of studying e.p.p.s whose quantal content was reduced in
order to avoid a post-synaptic action potential. Secondly, although all sets
which were studied showed an excess of multiquantal releases some sets
contained a complicated distribution of min.e.p.p. amplitudes in which it
was unclear where the unitary distribution ended and the doublets began.
The sets recorded in high Mg?* concentrations did not show these bimodal
distributions; therefore, they were used.

DISCUSSION

This paper re-examines the hypothesis that min.e.p.p.s are generated by
a Poisson process. In a Poisson distribution the events are exponentially
distributed. Powerful goodness of fit test show that when sufficient data is
obtained the min.e.p.p.s recorded from the frog neuromuscular junction
are unlikely to fit this criterion.

In a Poisson process the events are independent. A statistical analysis
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of the occurrence of min.e.p.p.s shows that the positive autocorrelations
are above the level expected if the releases were completely independent.
The lack of independence is also shown by the deviation of the power
spectrum from the predicted levels for a system without interactions. Since
the occurrence of min.e.p.p.s does not fulfil the independence criterion, the
generating process for spontaneous release cannot accurately be described
as Poisson, nor can it be described by any independent trend-free distri-
bution function (a renewal process).

In a Poisson process there are no simultaneous events. Possibly this
criterion is also violated in spontaneous release by the high rate of appear-
ance of ‘giant’ min.e.p.p.s. The ‘giant’ min.e.p.p.s might arise because
transmitter-containing vesicles fuse before release, but it is also possible
that during or immediately following the release of one quantum there is a
greatly enhanced chance of getting a second release at the same site, or of
activating a release from a second adjacent site. This is essentially the idea
of ‘drag’ postulated by Rotshenker & Rahamimoff (1970).

Because of the failure to meet these criteria, we believe that it is inac-
curate to describe spontaneous quantal release as a Poisson process. There
are some obvious reasons for the difference between our conclusions and
the acceptance of the Poisson hypothesis by most previous investigators.
In the first place, we have studied large numbers of intervals. It is clear,
as was shown in Table 3, that a short series is likely to appear to be Poisson,
but if sufficient data is used the Poisson hypothesis is rejected. Most of the
past studies involving large amounts of data have relied upon statistics
with low power for distinguishing between a Poisson process and reason-
able alternatives. Furthermore, at least some previous investigators have
selected in advance the data sets that would be analysed, carefully choosing
sequences that appeared to be uniform in time (Fatt & Katz, 1952). This is
a difficult problem. In time series analysis it is perfectly legitimate to reject
data in which some uncontrolled factor is causing a shift in time in a
parameter of the generating process. But unless there is a good reason to
suppose that such a factor is at work, simply rejecting data that by eye
does not appear to be random can seriously prejudice the results. This is
particularly true with min.e.p.p.s, where the selected sets may represent
a fraction of the data. We have chosen to accept all data in which an
uncontrolled variable was not identified, and in the next paper we shall
describe tests to see whether or not there is a Poisson generating process
whose parameter is changing in time.

We conclude therefore that the evidence is against spontaneous release
being either a Poisson process or a process based on any independent
distribution function.
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