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Abstract
Purpose—Mesothelin is overexpressed on many pancreatic and ovarian cancers, mesotheliomas,
and other tumor types. Clinical trials are ongoing employing immunotoxins to target mesothelin, and
patients immunized with allogeneic pancreatic tumor cell lines have demonstrated immune responses
to previously defined mesothelin epitopes. The purpose of this study was to define novel mesothelin
cytotoxic T lymphocyte (CTL) epitopes, and more importantly, agonist epitopes that would more
efficiently activate human T cells to more efficiently lyse human tumors.

Experimental Design and Results—Two novel mesothelin HLA-A2 epitopes were defined. T-
cell lines generated from one of these epitopes were shown to lyse pancreatic and ovarian tumor
cells. Several agonist epitopes were defined and were shown to (a) have higher affinity and avidity
for HLA-A2, (b) activate mesothelin-specific T cells from normal individuals or cancer patients to
a greater degree than the native epitope in terms of induction of higher levels of IFN-γ and the
chemokine lymphotactin, and (c) lyse several mesothelin-expressing tumor types in a major
histocompatibility complex (MHC)–restricted manner more effectively than T cells generated
employing the native peptide.

External beam radiation of tumor cells at non-toxic levels was shown to enhance the expression of
mesothelin and other accessory molecules, resulting in a modest but statistically significant increase
in tumor-cell lysis by mesothelin-specific T cells.

Conclusions—The identification of novel CTL agonist epitopes supports and extends observations
that mesothelin is a potential target for immunotherapy of pancreatic and ovarian cancers, as well as
mesotheliomas.
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INTRODUCTION
Mesothelin, a glycosylphosphatidylinositol-linked glycoprotein, is a differentiation antigen of
mesothelial cells. The cDNA encodes a Mr. 69,000 precursor protein, which is proteolytically
processed into two components. One component, corresponding to the COOH-terminal portion
of the precursor, is a membrane-bound Mr. 40,000 protein known as mesothelin. The other
component is a Mr. 30,000, corresponding to the NH2-terminal secreted protein MPF
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(megakaryocyte potentiating factor) (1–3). In humans, mesothelin is expressed in normal
mesothelium and certain epithelial cells of the tonsil, trachea and fallopian tube (4). Mesothelin
is overexpressed in a vast majority of ductal pancreatic adenocarcinomas, mesotheliomas,
adenocarcinomas of the ovary, lung and stomach (5–14). Mesothelin has also been reported in
squamous cell carcinomas of the esophagus, lung and cervix (15).

The presence of mesothelin in many cancer cells makes it a potential target for cancer therapies.
A monoclonal antibody, K1, which recognizes mesothelin, has been developed and used in
preclinical studies (4,16). Later a high affinity anti-mesothelin antibody was isolated by phage
display (17) and after affinity improvement (18) was converted to a disulfide linked Fv and
fused to a 38 KDa portion of pseudomonas exotoxin A to make immunotoxin SS1(dsFv)-PE38
(3). SS1(dsFv)-PE38 selectively inhibited experimental human lung cancer metastases in nude
mice as well as demonstrated anti-tumor activity against tumor cells obtained from patients
with ovarian cancer and peritoneal mesotheliomas (19–21). Immunotoxins directed against
mesothelin are currently in clinical trials (22,23).

Mesothelin is also a potential target for T-cell direct immunity. Potential cytotoxic T
lymphocyte (CTL) epitopes of mesothelin specific for HLA-A2, A3 and A24 have recently
been reported. CD8+ T cell responses to these HLA-A2, A3 and A24 epitopes were detected
in patients vaccinated with granulocyte macrophage-colony stimulating factor (GM-CSF)–
transduced pancreatic cancer cell lines (24). These studies provided evidence of cross-priming
post-vaccination, which was directed against mesothelin-specific epitopes (24).

Several preclinical studies have demonstrated that the modification of CTL epitopes to render
them more immunogenic will result in enhanced anti-tumor responses. Recent clinical studies
in melanoma and colorectal cancer have also shown that vaccination with such agonist epitopes
can result in the generation of greater levels of T-cell responses in patients, which have
correlated with clinical responses (25,26). It has also recently been demonstrated that agonist
epitopes have the ability to stimulate T cells to produce more lymphotactin. Lymphotactin is
a member of the C-chemokine family cloned from activated pro-T cells (27,28). It is produced
by activated CD4+ and CD8+ T cells, natural killer cells, intraepithelial γδ T cells and mast
cells (29–31). Lymphotactin is a powerful chemoattractant for CD4+ and CD8+ T cells and a
moderate chemoattractant for natural killer cells (28,30).

The study described here reports the identification and characterization of a novel mesothelin
CTL epitope, and the generation of an enhancer agonist of this epitope. T-cell lines, generated
from a pancreatic cancer patient with the agonist peptide, showed high levels of lysis of
mesothelin-expressing tumor cells and enhanced IFN-γand lymphotactin production when
target cells were pulsed with the agonist peptide versus the native peptide. The studies reported
here also demonstrate that the use of non-toxic doses of external beam radiation of tumor cells
will enhance the expression of mesothelin and other accessory molecules and render tumor
cells more susceptible to mesothelin-specific T-cell killing. These studies thus provide the
rationale for the potential utility of the novel mesothelin agonist epitope, alone or in concert
with previously defined mesothelin epitopes, in peptide- and/or vector-mediated
immunotherapy protocols for the treatment of mesothelin-expressing tumors.

MATERIALS AND METHODS
Cell Cultures

The human pancreatic adenocarcinoma cell line CFPAC-1 (32) (HLA-A2 positive and
mesothelin positive), a human colon carcinoma SW1463 (HLA-A2 positive, mesothelin
negative), a human ovarian adenocarcinoma cell line OVCAR-3 (HLA-A2 positive,
mesothelin positive) and a human pancreatic adenocarcinoma cell line AsPC-1 (HLA-A2
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negative and mesothelin positive) were purchased from American Type Culture Collection
(Manassas, VA). Three HLA-A2 positive and mesothelin positive peritoneal mesothelioma
cell lines (YOU, ROB and ORT), a human epidermoid carcinoma cell line A431 (HLA-A2
negative, mesothelin negative), and A431.H9 cell line. A431 cells transfected with pMH107,
pcDNA3.1(+) vector containing a full-length mesothelin cDNA are designated as A431.H9.
A431.H9 is a stable transfected cell line (33), were obtained from Dr. Raffit Hassan (NCI,
NIH). The cultures were free of mycoplasma and were maintained in complete medium [RPMI
1640 (Invitrogen Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine
serum, 2 mM glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin (Invitrogen Life
Technologies)]. The C1R cell line is a human plasma leukemia cell line that does not express
endogenous HLA-A or B antigens (34). C1R-A2 cells are C1R cells that express a transfected
genomic clone of HLA-A2.1 (35). These cells were obtained from Dr. William E. Biddison
(National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD). The 174CEM-
T2 cell line (T2) transport deletion mutant (36) was provided by Dr. Peter Cresswell (Yale
University School of Medicine, New Haven, CT). C1R-A2 cells and T2 cells were mycoplasma
free and were maintained in RPMI 1640 complete medium and in Iscove’s modified
Dulbecco’s complete medium (Invitrogen Life Technologies), respectively.

Peptides
The amino acid sequence of mesothelin was scanned for matches to consensus motifs for HLA-
A2 binding peptides. We used the computer algorithm from the BioInformatics and Molecule
Analysis Section of NIH (BIMAS), developed by Parker et al. (37), which ranks potential MHC
binding peptides according to the predictive one-half-time dissociation of peptide/MHC
complexes. The HLA-A2 allele was chosen because it is the most commonly expressed class
I allele. Nine-mer and 10-mer peptides were synthesized if they conformed to the respective
consensus motif. A panel of 10-mer mesothelin peptides (Table 1) and analogs with one, two
or three amino acids substitution of P-547-556 peptide and MUC-1 peptide (38) were made by
American Peptide Company (Sunnyvale, CA) with purity >90%.

Flow Cytometric Analysis
Dual-color flow cytometric analysis was performed on T-cell lines by using the following
antibody combinations: anti-CD56-FITC/anti-CD8-PE, anti-CD8-FITC/anti-CD45RA-PE,
anti-CD8-FITC/anti-CD27-PE, and anti-CD8-FITC/anti-CD28 PE. Antibodies were all
purchased from BD Biosciences (San Jose, CA). Staining was conducted simultaneously for
1 hour at 4° C; cells were then washed three times with cold Ca2+ and Mg2+ free phosphate-
buffered saline (PBS), resuspended in the same buffer, and immediately analyzed using a
FACScan and the CELLQuest program (BD Biosciences). Data were gathered from 10,000
live cells, stored and used to generate results.

The procedure for analysis of DCs was similar to the one described above. The following
antibody combinations were used: anti-MHC-class II-FITC/anti-CD80-PE, anti-CD58-FITC/
anti-CD54-PE, anti-MHC class I-FITC/anti-MHC class II-PE, and anti-IgG1-FITC/anti-
IgG2a-PE (isotype controls). Antibodies to MHC-class I and II were purchased from Serotec
(Oxford, UK); other antibodies were purchased from BD Biosciences. The method described
by Fan et al. (19) using K1 antibody was used for the analysis of mesothelin expression on
tumor cell lines. The cells were immediately analyzed using a Becton Dickinson FACScan
equipped with a blue laser with an excitation of 15 mW at 488 nm. Data were gathered from
10,000 live cells, stored and used to generate results.

Results were expressed in percent of positive cells and mean fluorescence intensity (MFI). MFI
was used to express the levels of fluorescence determined by measuring the average for all the
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cells in the gated fluorescence dot plot. The MFI value was collected in log scale on the
FACScan.

Peptide Binding to HLA-A2
Binding of mesothelin peptides and the mesothelin analogs to HLA-A2 molecules was
evaluated by the upregulation of HLA-A2 expression on T2 cells as demonstrated by flow
cytometry (39).

Culture of DCs from PBMCs
HLA-A2 normal donor peripheral blood mononuclear cells (PBMCs) were obtained from
heparinized blood. PBMCs were separated using lymphocyte separation medium gradient
(Organon Teknika, Durham, NC), as described previously (40). Dendritic cells (DCs) were
prepared using a modification of the procedure described by Sallusto et al. (41).

Generation of T-cell Lines
Modification of the protocol described by Tsang et al. (42) was used to generate mesothelin-
specific CTLs. To generate T-cell line T-1991-P-547, autologous DCs were used as antigen-
presenting cells (APCs). Autologous non-adherent cells were then added to APCs at an
effector-to-APC ratio of 10:1. Cultures were then incubated for 3 days at 37° C in a humidified
atmosphere containing 5% CO2. The cultures were then supplemented with recombinant
human IL-2 at a concentration of 20 units/ml for 7 days; the IL-2 containing medium was
replenished every 3 days. The 3-day incubation with peptide and 7-day IL-2 supplement
constituted one in vitro stimulation (IVS) cycle. Primary cultures were restimulated with
autologous DCs as described above on day 11 to begin the next IVS cycle. Autologous DCs
were used as APCs for three IVS cycles. Irradiated (23,000 rads) autologous Epstein-Barr virus
(EBV)–transformed B cells were used as APCs after the third IVS cycle. For the restimulation
with EBV-transformed B cells, peptides at a concentration of 25 μg/ml were used to pulse the
autologous EBV-transformed B cells at an effector-to-APC ratio of 1:3 for restimulation.
Cultures were then incubated for 3 days at 37° C in a humidified atmosphere containing 5%
CO2. After removal of the peptide containing medium, the cultures were then supplemented
with recombinant human IL-2 at a concentration of 20unit/ml for 7 days. T-cell lines from
patient 55 (T-55-P-547, T-55-P-554L/556V, T-55-P-548M/554L/556V, T-55-P-548L/554L/
556V) were generated by stimulation of PBMCs with autologous DCs pulsed with the P-547
or the agonist peptides using the same stimulation protocol as described above. The markers
used for the analysis and identification of DCs were CD11c, MHC-class II, CD80, CD54, CD58
and CD83. CD3 was also used as a negative marker.

Cytotoxic Assay
Cytotoxicity assays were used as described previously (42).

Detection of Cytokines
Supernatants of T cells exposed for 24 hours to peptide-pulsed autologous DCs, in IL-2-free
medium at various peptide concentrations, were screened for secretion of IFN-γ using an
ELISA kit (BioSource International, Camarillo, CA) and lymphotactin using an ELISA assay
(43). The results were expressed in pg/ml.

Chemotaxis Assay
Chemotactic responses were examined using the method described previously (44). Briefly,
blind Well Chambers (Neuroprobe, Gaithersburg, MD) with polyvinylpyrrolidone-free 5μm-
pore size polycarbonate filters previously coated on one side with mouse Collagen IV
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(Trevigen, Gaithersburg, MD) were used. Supernatants from unstimulated T-55-P547 cells or
T-55-P547 cells activated for 24 hours with 25 μg/ml of either P547 or P547-2 peptide were
added to the lower chambers, and healthy donor PBMCs (7.5 x 104 cells, 75 μl in complete
RPMI medium containing 1% human AB serum) were added to the upper chambers. As
negative and positive controls, the lower chambers were loaded with medium alone or
recombinant lymphotactin (50 ng/ml in complete RPMI medium containing 1% human AB
serum), respectively. After incubation for 4 hours at 37 °C, filters were removed from the
chambers, fixed and stained with Diff-Quik stain (Dade Behring Inc., Newark, DE). Blocking
assay was performed using anti-lymphotactin antibody (R&D Systems, Inc., Minneapolis,
MN). The number of cells associated with the lower side of the membranes was evaluated by
direct counting of at least six 40X objective fields for the standard samples or at least nine 40X
objective fields for the experimental samples.

Irradiation of Tumor Cells
Human tumor cell lines CFPAC-1, OVCAR-3 and AsPC-1 were irradiated as previously
described (45,46). Tumor cells were harvested in log-growth phase and were placed on ice and
irradiated at 10 and 20 Gy by a cesium-137 source (Gammacell-1000; AECL/Nordion, Kanata,
Ontario, Canada) at a dose rate of 0.74 Gy/min. Control samples were also placed on ice but
not irradiated. Irradiated and nonirradiated cells were then washed in fresh media and seeded
in 75-cm2 cell culture flasks. Cells were harvested for surface marker determination after 72
hours in culture by flow cytometry.

Vaccinia Virus Infection of Epidermoid Carcinoma Cells
A recombinant vaccinia vector encoding HLA-A2.1 was used for the infection of A431 and
A431.H9 cells. This recombinant virus was constructed by the insertion of the HLA-A2.1 gene
into the BamHI J region of the genome of the Wyeth strain of vaccinia virus as described
(47). The gene is under control of the vaccinia 40k promoter (48). Target cells at a concentration
of 1 x 107/ml in complete RPMI-1640 medium supplemented with 0.1% bovine serum albumin
were incubated with equal volume of vaccinia virus (108 pfu/ml) in the same medium at 37°
C for 1.0 hours. The cells were then adjusted to a concentration of 5 x 105/ml in complete
medium and incubated for 3 hours at 37°C.

Statistical Analysis
Statistical analysis of differences between means was done using a two-tailed paired t test (Stat
View statistical software, Abacus Concepts, Berkeley, CA).

RESULTS
The primary amino acid sequence of human mesothelin was analyzed for consensus motifs for
novel HLA-A2 binding peptides. One 10-mer peptide and one 9-mer peptide were identified,
subsequently synthesized and investigated for binding to the HLA-A2 molecule in a T2 cell
binding assay. The amino acid sequences and the positions of these peptides are shown in Table
1. The MUC-1 peptide and a CEA HLA-A3 binding peptide (CAP-7) were used as a positive
and negative control, respectively. Two of these peptides (P21-29 and P547-556) were shown
to have positive binding in the T2 assay. Experiments were then conducted to compare the
ability of the P21-29 and P547-556 peptides to bind HLA-A2 at various peptide concentrations.
As seen in Figure 1, the P547-556 peptide bound to HLA-A2 at higher levels than did the
P21-29 peptide at concentrations of 50μg/ml, 25μg/ml, 12.5 μg/ml and 6.25 μg/ml. The
P547-556 peptide (designated as P547) was thus chosen for further study.

Studies were then initiated to determine whether mesothelin-specific T-cell lines could be
established from PBMCs from an apparently healthy donor. Autologous DCs were used as
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APCs. The specificity of the mesothelin-specific T cells generated (designated T-1991-P547)
was analyzed after IVS cycle 3 (see “Materials and Methods”) for the ability to release IFN-
γand the chemokine lymphotactin after stimulation with autologous DCs pulsed with the P547
peptide. When T-1991-P547 cells were stimulated with autologous DCs pulsed with P547
peptide, the T cells produced 391 pg/ml IFN-γand 78 pg/ml lymphotactin, whereas the use of
autologous DCs pulsed with control CAP1-6D peptide or DCs alone did not result in any IFN-
γand lymphotactin production (i.e., less than 16 pg/ml). As determined by flow cytometric
analysis, the T-1991-P547 cell line was 98.7% CD8 positive, 62.2% CD45RA positive, 1.1%
CD28 positive, and 0.5% CD27 positive. The T-1991-P547 cell line was then analyzed for the
ability to lyse mesothelin positive and HLA-A2-positive human tumor cell lines. AsPC-1
(HLA-A2 negative and mesothelin positive pancreatic cancer cell line) was used as a negative
control. The expression of HLA-A2 and mesothelin on CFPAC-1, OVCAR-3, AsPC-1,
SW1463 and C1R-A2 cell lines was analyzed by flow cytometry. As shown in Table 2, both
CFPAC-1 cells and OVCAR-3 cells were lysed by the T-1991-P547 cells. No lysis was
observed against AsPC-1 cells. T-1991-P547 cells lysed CFPAC-1 cells to a greater degree as
compared with OVCAR-3 cells. This may partly be due to the fact that a higher percentage of
CFPAC-1 cells were expressing mesothelin as compared with OVCAR-3 cells.

Analysis of the primary and secondary HLA-A2 binding anchor amino acid residues at
positions 1, 2, 8 and 10 of the P547 peptide revealed that modification of amino acids at these
positions could potentially enhance the binding ability of the peptide to the HLA-A2 molecule.
For this reason, eight different analogs of P547 peptide were synthesized, as shown in Table
1, and were investigated for their binding ability to T2 cells along with the native P547 peptide.
The CEA peptide CAP-7, which has previously been shown not to bind to T2 (42), was used
as a negative control. As shown in Table 1, three of the eight analogs bound to HLA-A2 at
higher levels than the native peptide. They were designated P547-2, P547-3 and P547-4.
Experiments were then conducted to compare the ability of these three analogs to bind HLA-
A2 at various concentrations. As shown in Figure 2A, all bound to HLA-A2 at higher levels
than did the native P547 peptide at all concentrations. These results indicated that these three
analogs with modification in the primary anchor position 2 (position 548 of the mesothelin
peptide) and position 10 (position 556 of the mesothelin peptide) as well as the secondary
position 8 (position 554 of the mesothelin peptide) were potential agonists of peptide P547.

We then examined the stability of the peptide-MHC complex for P547 (native), and P547-2,
P547-3 and P547-4 agonist peptides. The peptides were incubated with T2 cells overnight, and
the unbound peptides were washed off and the cells were then incubated with Brefeldin A to
block delivery of new class I molecules to the cell surface. Cells were analyzed for the presence
of peptide-HLA-A2 complexes at various time points. As shown in Figure 2B, all three HLA-
A2 agonist complexes were more stable than the P547-HLA-A2 complex over the 8-hour
observation period, with P547-4 slightly more stable than the P547-2 and P547-3 complexes
over the same period of time. These data indicated that both the binding to the MHC molecule
and the stability of the peptide-MHC complex were greater for the P547-2, P547-3 and P547-4
agonist peptides than the native P547 peptide.

Studies were then undertaken to compare the ability of the P547-2, P547-3 and P547-4 agonist
peptides to activate the T-1991-P547 cells, which were generated with the native peptide. As
seen in Table 3, pulsing of APCs with P547-2 peptide led to greater levels of both IFN-γand
lymphotactin production by T-1991-P547 cells as compared with P547-3, P547-4 or the native
P547 peptide. Studies were then conducted to compare the ability of the agonist peptides
P-547-2, P547-3, P547-4 and the native P574 peptide at various peptide concentrations to
activate T-1991-P547 cells in the production of lymphotactin. As shown in Figure 3, at
concentrations of 3.13 μg/ml and higher, the pulsing of APCs with P547-2 led to the highest
level of lymphotactin production by the T-1991-P547 cell line.
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The T-1991-P547 cell line was derived from an apparently healthy individual using the native
P547 peptide. Studies were then conducted to determine whether additional T-cell lines could
be generated from a patient with pancreatic cancer (patient 55) using the native or the three
agonist peptides. Four mesothelin-specific T-cell lines were subsequently established and were
designated T-55-P547, T-55-P547-2, T-55-P547-3 and T-55-P547-4. The T-cell lines were
generated by stimulation of PBMCs from patient 55 using autologous DCs. The ability of these
T-cell lines to lyse mesothelin positive and HLA-A2 positive tumor cells was then investigated.
As can be seen in Figure 4, all four T-cell lines were able to lyse the mesothelin positive and
HLA-A2 positive CFPAC-1 cells and OVCAR-3 cells but showed no lysis against AsPC-1
(mesothelin positive, HLA-A2 negative) and SW1463 (mesothelin negative, HLA-A2
positive) cells. These results demonstrate the HLA-A2 and mesothelin specificity of the lysis.
Furthermore, T-55-P547-2 cells, derived using P547-2 agonist peptide, demonstrated greater
lysis of tumor cells than the T cells derived using the native P-547, or the agonist P547-3 and
P547-4 peptides. This was seen at three different effector-to-target (E:T) ratios.

Experiments were then conducted to evaluate the ability of T-55-P547-2, T-55-P547-3 and
T-55-P547-4 cells to produce lymphotactin when stimulated with the corresponding peptide.
As shown in Table 4, a higher level of lymphotactin production was observed when T-55-
P547-2 cells were stimulated with the agonist P547-2 peptide as compared with T-55-P547-3,
T-55-P547-4 and T-55-P547 when stimulated with the corresponding peptide. Lymphotactin
has been reported to enhance chemotaxis responses of various immune cells. A chemotaxis
assay was thus performed (see “Materials and Methods”) to confirm the functional activity of
the lymphotactin in the supernatants of the mesothelin-specific T-cell line stimulated with
APCs pulsed with the P547-2 agonist peptide. T-55-P547 cells were used in this study. As seen
in Figure 5A, supernatants from T-55-P547 cells stimulated with P547-2 peptide clearly
enhanced migration of PBMCs over the responses to the supernatants from the native P547
peptide and the no peptide control. Purified recombinant human lymphotactin was also used
as a positive control in the assay. To ascertain that the observed chemotactin responses were
due to the presence of lymphotactin, a chemotaxis assay was performed with and without anti-
lymphotactin antibody. As seen in Figure 5B, the addition of anti-lymphotactin antibody
inhibited the migration of PBMCs induced by the purified recombinant lymphotactin as well
as the migration of PMBCs induced by the supernatants from T-55-P547 cells stimulated with
APCs pulsed with the agonist peptide P547-2.

To further characterize the P547-2 peptide, an additional T-cell line was established from a
colon carcinoma patient (patient 35) using P547-2 agonist peptide-pulsed autologous DCs.
This T-cell line was designated T-35-P547-2 and was 97.4% CD8 positive, <1% CD56
positive, 33.1% CD45RA positive and 29.0% CD27 positive. The T-35-P547-2 cell line was
shown to produce IFN-γ(100 pg/ml) and lymphotactin (459 pg/ml) when stimulated with
autologous DCs pulsed with P547-2 agonist peptide. As seen in Table 5, the T-35-P547-2 cell
line also showed lysis of the mesothelin positive and HLA-A2 positive CFPAC-1 cells and
OVCAR-3 cells at various E:T ratios but showed no lysis of the mesothelin positive and HLA-
A2 negative AsPC-1 cell line. In addition, the T-35-P547-2 cell line also lysed HLA-A2
positive, mesothelin positive mesothelioma cell lines YOU, ROB and ORT, as shown in Table
5. To confirm our hypothesis that tumor cells endogenously process mesothelin to present
mesothelin peptide in the context of MHC for T-cell mediated lysis, CFPAC-1 cells were used
as target in a cold target inhibition assay. As shown in Table 6, the addition of peptide-pulsed
unlabeled T2 cells decreased the CTL activity of T-35-P547-2 cells against labeled CFPAC-1
cells. The cytotoxic activity of T-35-P547 cells against CFPAC-1 cells was shown to be HLA-
A2 restricted, as indicated by the inhibition of lysis with anti-HLA-A2 antibody but not with
control antibody (Table 6). To further demonstrate that target cells can endogenously process
the entire mesothelin molecule in a manner so as to bind HLA-A2 molecules for presentation
at the cell surface, A431 cells were transfected with the entire human mesothelin gene (see
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Materials and Methods) and used as target cells in a T-cell cytotoxic assay. As seen in Table
7, the mesothelin-transfected A431 cells designated as A431.H9 cells express mesothelin.
A431.H9 cells were susceptible to lysis with T-35-P547-2 cells when transfected with rV-
HLA-A2 recombinant expressing HLA-A2. These studies further demonstrate the
endogenously process of mesothelin in A431.H9 cells and the HLA-A2 restricted nature of the
mesothelin-specific lysis of T-35-P547-2 cells.

It has been previously demonstrated that sublethal irradiation of tumor cells can modulate their
phenotype to render them more susceptible to T-cell–mediated killing (45,46). We investigated
whether sublethal doses of radiation would alter the expression of surface markers in CFPAC-1,
OVCAR-3 and AsPC-1 cell lines. Tumor cells were subjected to 0 or 10 Gy radiation, and cell
surface expression of mesothelin, HLA-A2, and ICAM-1 was analyzed by flow cytometry after
72 hours. No significant increase in cell death was observed with 10 Gy and 20 Gy of radiation.
As seen in Figure 6A, slight or no increases in the percentage of cells expressing mesothelin,
HLA-A2, and ICAM-1 were detected in the CFPAC-1 cell line at 10 Gy of radiation as
compared with no radiation. This is due to the fact that the CFPAC-1 cell line has a high level
of expression of these three molecules. The MFI of ICAM-1, mesothelin, and HLA-A2,
however, did increase (Fig. 6A). As shown in Figure 6B, increases in the percentage of
mesothelin-expressing cells and ICAM-1–expressing cells were observed in the OVCAR-3
cell line after irradiation at 10 Gy. No significant increase in the percentage of cells expressing
these three markers was observed on AsPC-1 cells after irradiation at 10 Gy. The MFI of
expression of mesothelin, however, did increase after irradiation (Fig. 6C). The functional
significance of phenotypic changes of CFPAC-1 and OVCAR-3 cells after irradiation on the
susceptibility to be lysed by mesothelin-specific T cells was investigated. The CFPAC-1 and
OVCAR-3 cell lines both demonstrated a significant (p<0.01) increase in lysis by T-1991-
P547, a mesothelin-specific T-cell line after 10 Gy of irradiation, as compared with the
nonirradiated CFPAC-1 and OVCAR-3 cells (Figure 7A and B). The AsPC-1 cell line, a HLA-
A2 negative cell line not lysed by T-1991-P547, was used as a negative control (Fig. 7C).

Discussion
Mesothelin has previously been shown to be a potential target for both antibody- and vaccine-
mediated immunotherapy. Preclinical studies using anti-mesothelin immunotoxin SS1(dsFv)
PE38 (SS1P) demonstrated the anti-tumor activity against mesothelin-expressing tumors (20,
21). Two Phase 1 clinical trials using SS1P are currently ongoing (22,23). Mesothelin-derived
HLA-A2, A3 and A24 restricted CTL 9-mer epitopes have been previously reported (24). These
peptides were used for the detection of mesothelin-specific CD8+ T-cell immune responses in
pancreatic cancer patients vaccinated with GM-CSF–transduced pancreatic cancer cells. The
two HLA-A2 binding peptides used in that study were mesothelin peptides 20–28
(SLLFLLFSL) and 530–538 (VLPLTVAEV) (24). The results from that clinical trial provide
evidence that CD8+ T- cell responses can be generated via cross-presentation by an
immunotherapy approach designed to recruit APCs to the vaccination site. In the studies
reported here, we have modified the primary anchor residues of a novel mesothelin peptide to
augment the binding affinity of the peptide to the MHC molecule. Eight analogs were
synthesized and analyzed; one of them, designated P547-2, was shown to be superior to the
native epitope in terms of affinity of binding to MHC molecules, avidity of the peptide-MHC
complex, and the ability to activate CTLs in vitro.

T-cell lines derived from the native or the agonist mesothelin epitope were shown to lyse
mesothelin positive and HLA-A2 positive pancreatic cancer, ovarian cancer, and mesothelioma
cell lines as well as mesothelin gene-transfected epidermoid carcinoma cells in an MHC-
restricted manner. Moreover, such T-cell lines could be derived from a pancreatic cancer
patient, a colon cancer patient, and a normal donor.
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Preclinical and clinical studies have indicated that lymphotactin may be an important
chemokine in attracting effector cells and thus enhancing immune responses. The results
reported here demonstrate both enhanced synthesis of lymphotactin and enhanced biologic
activity of lymphotactin as a consequence of stimulation of effector T cells with the agonist
mesothelin peptide.

Previous studies have demonstrated that when murine and human tumor cells are exposed to
sub-lethal irradiation their phenotype can be altered to make them more susceptible to T-cell–
mediated killing. This has been shown to be due to upregulation of either tumor antigen, MHC
class I, or accessory molecules such as fas or ICAM-1 or combinations of the above. The results
reported here demonstrate that non-lethal irradiation of both a pancreatic and ovarian cancer
cell line led to the upregulation of both mesothelin and ICAM-1, and MHC class I, which
subsequently rendered them more susceptible to lysis by a mesothelin-specific T-cell line.

The studies reported here thus extend previous observations on the suitability of mesothelin as
a potential target for immunotherapy of a range of human tumors.
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Figure 1.
Binding of mesothelin peptides to HLA-A2. Peptides were analyzed for binding to T2 cell line
as described in “Materials and Methods.” Peptides were used at concentrations of 0 to 50 μg/
ml. P21 peptide (open square), P547 (solid square), positive control (MUC-1 peptide) (+) and
negative control (HLA-A3 binding peptide) (X). Results are expressed in mean fluorescence
intensity (MFI).
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Figure 2.
Binding of a native mesothelin peptide and its agonist peptides to HLA-A2. Peptides were
analyzed for binding to T2 cell line as described in “Materials and Methods.” (A) Peptides
were used at concentrations of 0 to 50 μg/ml. P547 peptide (solid square), P547-2 (solid circle),
P547-3 (open circle) and P547-4 (open triangle), positive control (MUC-1 peptide) (+) and
negative control (HLA-A3 binding peptide) (X). Results are expressed in mean fluorescence
intensity (MFI). (B) Comparison of the stability of HLA-A2 peptide complexes of mesothelin
native and agonist peptides. T2 cells were incubated overnight with P547 (solid square), P547-2
(solid circle), P547-3 (open circle), and P547-4 (open triangle) peptides at a concentration of
25 μg/ml and then were washed free of unbound peptide and incubated with brefeldin A to
block delivery of new class I molecules to the cell surface. At the indicated times, cells were
stained for the presence of surface peptide-HLA-A2 complexes. Results are expressed in
relative percentage of binding compared with 100% at time 0.
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Figure 3.
Ability of autologous DCs pulsed with native and agonist mesothelin peptides to induce
lymphotactin production by T cells derived from the native peptide (T-1991-P547). Peptides
were used at concentrations of 0–25 μg/ml. Results are expressed in pg/ml.
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Figure 4.
Ability of the mesothelin-specific T-cell lines established for a pancreatic cancer patient
(patient 55) to lyse tumor cells expressing native mesothelin. T-55-P547 (derived from the
native peptide) (solid square), T-55-P547-2 (derived from the agonist peptide P547-2) (solid
circle), T-55-P547-3 (derived from the agonist peptide P547-3) (open circle), and T-55-P547-4
(derived from the agonist peptide P547-4) (open triangle). E:T ratio = 50:1, 25:1 and 12.5:1 in
a 16-hour 111In release assay. See “Materials and Methods.” Bars, SD.
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Figure 5.
Chemotactic responses of human PBMCs to culture supernatant of a mesothelin-specific T-
cell line (T-55-P547). (A) The assay was performed using culture supernatant of T-55-P547
cells stimulated with autologous DCs pulsed with either P547 or P547-2 peptide or without
peptide for 24 hours. Recombinant lymphotactin was used as 50 ng/ml as positive control, and
medium was used as negative control. Each dot in the scatter plot represents the number of
cells in an independently counted field. (B) The assay was performed in the presence (open
circle) or absence (closed circle) of anti-lymphotactin antibody at a concentration of 30 μg/ml.
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Figure 6.
Flow cytometry analysis of surface expression of mesothelin, HLA-A2 and ICAM-1 on human
tumor cell lines: (A) CFPAC-1 (pancreatic cancer cells), (B) OVCAR-3 (ovarian cancer cells)
and (C) AsPC-1 (pancreatic cancer cells) without (unshaded area) and with irradiation at 10
Gy (shaded area).
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Figure 7.
Irradiation increases tumor cell sensitivity to mesothelin-specific T-cell killing. (A) CFPAC-1,
a pancreatic cancer cell line, (B) OVCAR-3, an ovarian cancer cell line and (C) AsPC-1, a
pancreatic cancer cell line. Tumor cells were mock irradiated (open bar) and irradiated with
10 Gy (solid bar) and cultured for 72 hours. Tumor cells were labeled with 111In and were used
in a 16-hour 111In release assay. See “Materials and Methods.” Bars, SD.
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Table 1
Binding of human mesothelin peptides and analog peptides to HLA-A2 molecules

Experiment 1: Analysis of native human mesothelin peptide to HLA-A2 molecules
Peptide Amino acid position in

mesothelin
Sequence T2 bindinga

P21 21-29 FLLFSLGWV 241 (1.5)
P547 547-556 KLLGPHVEGL 407 (2.6)
MUC-1 (positive control) NA ALWGQDVTSV 422 (2.7)
CAP-7 (negative control) NA HLFGYSWYK 152
Experiment 2: Analysis of analog peptides
Mesothelin agonist peptides derived from
P547

Designation Peptide sequence T2 bindinga

P547 (native) P547 KLLGPHVEGL 226 (1.5)
554L P547-1 KLLGPHVLGL 180 (1.2)
554L/556V P547-2 KLLGPHVLGV 289 (2.0)
548M/554L/556V P547-3 KMLGPHVLGV 368 (2.6)
548I/554L/556V P547-4 KILGPHVLGV 342 (2.3)
548M/554L P547-5 KMLGPHVLGL 132 (0.9)
548I/554L P547-6 KILGPHVLGL 185 (1.3)
547Y/554L/556V P547-7 YLLGPHVLGV 234 (1.6)
547Y/554L P547-8 YLLGPHVLGL 161 (1.1)
MUC-1 peptide (positive control) ALWGQDVTSV 390 (2.7)
CAP-7 (negative control) HLFGYSWYK 144

a
Results are expressed in mean fluorescence intensity (MFI). MUC-1 peptide is an HLA-A2 binding peptide and CAP-7 is an HLA-A3 binding CEA

peptide.

NA, not applicable.

Peptides were used at a concentration of 25 μg/ml. Values in parentheses are fold increases as compared with the negative control. Amino acid sequences
of the parental P547 peptide (amino acid position 547-556 of mesothelin) and analog peptides. Amino acids are shown by the single-letter code. Substitution
amino acids are indicated in bold italic and underlined.
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Table 2
Ability of T-1991-P547 cells to lyse cancer cells expressing mesothelin*

Target HLA-A2 Mesothelin % lysis (±SD)

CFPAC-1 (pancreatic cancer cells) 100 (222) 93 (21) 34.9 (3.5)a
AsPC-1 (pancreatic cancer cells) Negative 92 (19) 8.8 (1.3)
OVCAR-3 (ovarian cancer cells) 97 (23) 47.4 (21) 17.6 (2.0)a

*
HLA-A2 and mesothelin expression were tested by flow cytometry (see “Materials and Methods”). Results are expressed in percent of positive cells

(MFI). A 16-hour 111In release assay was performed. Results are expressed in percent specific lysis at effector-to-target ratio of 20:1.

a
Statistical significance (P<0.01, two tailed t test) when comparing lysis of CFPAC-1 cells versus AsPC-1 cells and OVCAR-3 versus AsPC-1 by T-1991-

P547 cells.
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Table 3
Production of IFN-γand lymphotactin by T-1991-P547 cells stimulated with autologous DCs pulsed with
mesothelin peptide analogs

Production of

Peptide IFN-γ (pg/ml) Lymphotactin (pg/ml)

P547 94 49.7
P547-2 449 1,835
P547-3 103 130
P547-4 91 <31.2
None <15.6 <31.2

T-1991-P547 cells were used as effectors in in vitro stimulation (IVS-5). T cells were stimulated with irradiated autologous DCs pulsed with different
mesothelin analogs at a concentration of 25 μg/ml, and an effector-to-APC ratio of 10:1. Twenty-four-hour culture supernatants were collected and screened
for the secretion of IFN-γand lymphotactin.
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Table 4
Production of lymphotactin by T-cell lines generated from a pancreatic cancer patient (patient 55) stimulated
with P547 and the agonist peptides

Production of lymphotactin (pg/ml)

T-cell line Corresponding peptide CAP1-6D

T-55-547 <31.2 <31.2
T-55-P547-2 2,843 <31.2
T-55-P547-3 <31.2 <31.2
T-55-P547-4 73.5 <31.2

Cells from four mesothelin-specific T-cell lines established from a pancreatic cancer patient (patient 55) were used as effector cells at in vitro stimulation
(IVS-3). These T-cell lines were established by stimulation with P547-pulsed autologous DCs (T-55-P547), P547-2–pulsed autologous DCs (T-55-P547-2),
P547-3–pulsed autologous DCs (T-55-P547-3) or P-547-4–pulsed autologous DCs (T-55-P547-4). For lymphotactin production, T-cell lines were
stimulated with the corresponding peptide at a concentration of 25 μg/ml and an effector-to-APC ratio of 10:1. CAP1-6D peptide was used as a negative
control. Twenty-four-hour culture supernatants were collected and screened for the secretion of lymphotactin.
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Table 5
Ability of the mesothelin-specific T-cell line (T35-P547-2) to lyse human tumor cell lines expressing mesothelin

% lysis (± SD)

Target Type of carcinoma HLA-
A2

Mesothelin 50:1 25:1 12.5:1

CFPAC-1 Pancreatic + + 29.2 (1.3)a 26.2 (0.4)a 22.8 (0.9)a
OVCAR-3 Ovarian + + 25.9 (1.4)a 20.7 (2.2)a 14.9 (0.9)a
AsPC-1 Pancreatic − + 2.0 (0.3) 2.7 (0.3) 0.4 (0.4)
YOU Mesothelioma + + 26.0 (1.4)a 26.4 (0.3)a 17.6 (1.2)a
ROB Mesothelioma + + 51.3 (2.4)a 46.1 (0.7)a 31.2 (0.8)a
ORT Mesothelioma + + 49.4 (1.7)a 42.2 (1.7)a 31.0 (0.1)a

A 16-hour 111In release assay was performed. Results are expressed in percent specific lysis at effector-to-target ratios of 50:1, 25:1 and 12.5:1.

a
Statistical significance (P<0.01, two tailed t test) when comparing lysis of AsPC cells.
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Table 6
Cytotoxicity of a mesothelin-specific T-cell line (T-35-P547-2) against target cells with endogenous mesothelin
expression and inhibition of lysis by anti-HLA-A2 antibody

Target % lysis (± SD)* % inhibition

Experiment 1: cold target inhibitiona
CFPAC-1 14.3 (0.3) NA
CFPAC-1 + T2 13.3 (0.6) NA
CFPAC-1 + T2 + P547-2 1.5 (0.8)b 88.7
Experiment 2: anti-HLA-A2 antibody inhibitionc
CFPAC-1 + anti-HLA-A2 (10 μ g/ml) 3.5 (0.1)d 72.6
CFPAC-1 + anti-HLA-A2 (50 μ g/ml) 3.0 (0.5)d 76.4
CFPAC-1 + control antibody (10 μ g/ml) 12.7 (0.4) NA

*
A 16-hour 111In release assay was performed. Results are expressed in percent specific lysis at an effector-to-target ratio of 20:1.

a
For the cold target inhibition experiment, labeled CFPAC-1 cells and unlabeled T2 cells were used at a ratio of 1:10. T2 cells were incubated with or

without P547-2 peptide (25 μg/ml) in serum-free medium for 24 hours at 37°C prior to their addition into the assay.

b
Statistically significant difference (p<0.01, two-tailed t test) for comparison with CFPAC-1 cells and T2 cells not pulsed with peptide.

c
For the anti-HLA-A2 antibody inhibition experiment, labeled CFPAC-1 cells were incubated for 1 hour in the presence of medium containing either 10
μg/ml of control antibody (UPC-10), or anti-HLA-A2 antibody (10 μg/ml and 50 μg/ml). Cells were then used as target in 16-hour cytotoxic assays.

d
Statistically significant difference (p<0.01, two-tailed t test) for comparison with value obtained with control antibody.
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Table 7
Demonstration of HLA-A2 involvement in the ability of a mesothelin- specific T-cell line (T-35-P547-2) to lyse
target cells with endogenous mesothelin expression

HLA-A2* Mesothelin* % lysis (+ SD)#

A431
 uninfected Negative Negative 8.5 (1.7)
 rV-HLA-A2 95.9 (45) Negative 9.0 (0.7)
 rV-WT Negative Negative 6.0 (0.2)
A431.H9
 uninfected Negative 99.7 (288) 11.5 (1.4)
 rV-HLA-A2 95.9 (55) 80.0 (46) 23.3 (0.01)a
 rV-WT Negative 89.1 (96) 8.0 (0.1)

*
HLA-A2 and mesothelin expression were tested by flow cytometry using anti-HLA-A2 and K1 antibodies, respectively. Values represent the percentage

of cells reactive to the antibodies. Numbers in parentheses are the mean fluorescence intensity as determined in relative log units.

#
Results are expressed in percent of specific lysis at an effector-to-target ratio of 40:1.

a
Statistically significant lysis compared with rV-WT infected and uninfected A431.H9 and uninfected A431 as well as rV-HLA-A2 infected and rV-WT

infected A431 cells (p<0.01, paired t test).
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