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Abstract
Research in the life sciences is increasingly dominated by high-throughput data collection methods
that benefit from a global approach to data analysis. Recent innovations that facilitate such
comprehensive analyses are highlighted. Several developments enable the study of the relationships
between newly derived experimental information, such as biological activity in chemical screens or
gene expression studies, and prior information, such as physical descriptors for small molecules or
functional annotation for genes. The way in which global analyses can be applied to both chemical
screens and transcription profiling experiments using a set of common machine learning tools is
discussed.
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Introduction
Research in the life sciences has become dominated by high-throughput data collection
methods. It is now common to screen many thousands or millions of small molecules in
miniaturized biological tests, such as protein-targeted assays or cell-based assays [1•]. In
addition, it is common to perform microarray-based transcription profiling, which involves the
simultaneous hybridization of thousands of DNA sequences to spatially arrayed targets [2].
An emerging challenge is the analysis and integration of the large datasets generated by these
disparate high-throughput techniques.

Until recently, only a few genes or compounds postulated in advance to be modulators of a
phenotype or to have activity of interest were selected for study. High-throughput methods
now permit use of a hypothesis-generating strategy in which large libraries of genes or
chemicals are tested for biological effects of interest. One relies on the large size and diversity
of the initial collection to yield active genes or compounds rather than prior knowledge of the
screening candidates or the biological processes being studied. This strategy uncovers a large
and varied set of active compounds or genes that can then be studied with a targeted, hypothesis-
driven approach.

Ideally, the dataset from each new high-throughput experiment is interpreted in the context of
all previous results. It then becomes part of the context in which all future screens are analyzed.
Building on previous results is not new, but doing so takes on a new level of importance and
complexity when datasets are vast and involve extremely inter-related information, and the
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relevant prior experimental data cannot be stored and organized in the mind of one scientist.
We use the term ‘global analysis’ to refer to an emphasis on greater integration and analysis
of data from all sources.

Challenges involved in the global analysis of experimental data are illustrated by the new fields
of chemical genetics and chemical genomics [1•]. By analogy to classical genetics, chemical
genetics uses small molecules in place of mutations as modifiers of protein function. Small
molecules that modulate a process or phenotype of interest are identified through large-scale
screening and serve as probes of the mechanisms underlying the biological process. Chemical
genetics, like other large-scale screening approaches, integrates information from several large
datasets. The activity profile of a library of compounds in a particular assay is measured and
correlated with structural and chemical properties of the compounds, as well as previously
documented biological activities. Chemical genomics involves the integration of chemical and
genomic information and technologies. One example of the challenges of a chemical genomic
approach is the integration and analysis of both transcription profiling and chemical screening
data.

We will review work reported primarily within the last year that is applicable to global analyses
of the properties of both small molecules and genes, focusing on: (i) selection and evaluation
of physical descriptors for small molecules; (ii) new applications of machine learning
algorithms; and (iii) novel approaches for analyzing microarray-based transcription profiling
data.

Selecting chemical entities to screen
We restrict our discussion of chemical screens to low molecular weight organic molecules as
these compounds are of particular interest in drug discovery efforts and in biological research.
Small molecule screens are preferred for drug discovery because the resulting lead compounds
can be more easily developed into orally available pharmaceuticals. Many of the tools for global
analyses that we describe can also be applied to screens involving peptide, RNA, DNA or
protein reagents.

The problem of selecting compounds to screen is a difficult one. The total number of possible
organic compounds increases with molecular weight, thus, without a defined molecular weight
cut-off there is an infinite number of possible compounds. Published estimates of the number
of theoretical small molecule drugs range as high as 1066, which is close to the number of atoms
in the universe [3].

One strategy for selecting compounds for screening is to purchase or make a representative set
of molecules based on physical properties or functional groups. This approach amounts to an
attempt to select an optimally diverse subset of the obtainable compounds for an initial screen.
Jorgensen et al, for example, developed a method for evaluating the diversity of a compound
collection using common subgraphs or substructural elements [4]. Xu et al, on the other hand,
developed a drug-like index to aid the selection of compounds for screening. The index was
trained on 4836 compounds from the Comprehensive Medicinal Chemistry database [5].
Reynolds et al evaluated two stochastic sampling algorithms for their ability to select both
diverse and representative subsets of a chemical library space [6].

Much effort has also focused on exploring and quantitating the notion of molecular complexity
and determining the appropriate level of complexity for small molecules used in high-
throughput screens. Barone and Chanon refined a quantitative index of complexity that uses
the number and size of the rings in the smallest set of smallest rings and the connectivity of
each atom [7•]. Alternatively, complexity can be defined as the number of interactive domains
contained in a molecule. A molecule with low complexity has fewer sites of interaction with
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a target than a molecule with greater complexity. Hann et al devised a simple model in which
complex molecules are more selective than simple compounds and, therefore, yield fewer hits
in primary screens [8•]. This model predicts an optimal level of complexity for compounds
used in primary screens as the result of a trade-off between sufficient affinity for detection
versus sufficient promiscuity to yield a reasonable number of hits. This model is consistent
with recent analyses affirming that successful lead compounds are generally less complex than
the resulting drugs [8•,9•].

Given the virtually unlimited sources of small molecules, there has been interest in identifying
characteristics of small molecules that are useful for drugs and for creating models that predict
the probability that a given compound will be able to function as a drug (vide infra). It is difficult
to evaluate the performance of these predictive models because of the great variability in crucial
factors, such as the choice of the training sets of compounds and the choice of descriptors that
define the actual criteria for discrimination. Furthermore, all empirically derived predictive
models are essentially interpolative and extrapolative. Models that are better at assigning close
structural analogs to members of the training set (interpolation) may be worse at generalizing
more abstract properties to novel structures (extrapolation) and vice versa. Thus, one must
beware of inferring the overall performance of a predictive model from a too limited set of test
compounds.

Nonetheless, several efforts at discriminating drugs and non-drugs have been reported recently.
Ertl et al used polar atom surface area to predict the extent to which small molecules exhibit
a single property of drug transport (ie, bioavailability) [10]. Anzali et al used chemical
descriptors consisting of multilevel neighborhoods of atoms to discriminate between drugs and
non-drugs with some success. Their training and testing sets consisted of 5000 compounds
from the World Drug Index and 5000 compounds from the Available Chemicals Directory
(ACD) [11]. Muegge et al developed a simple functional group filter to discriminate between
drugs and non-drugs using both the Comprehensive Medicinal Chemistry and MACCS-II Drug
Data Report (MDDR) databases for drugs and the ACD for non-drugs [12]. Frimurer et al used
a feed-forward neural network with two-dimensional (2D) descriptors based on atom types to
classify compounds from the MDDR and ACD as drug-like or non-drug-like, respectively.
They reported 88% correct assignment of a subset of each library that had been excluded from
the training set. They also tested their model with a different library and claimed
generalizability to compounds structurally dissimilar to those in the training set [13].

Drug versus non-drug comparisons emphasize characteristics common to all drugs over those
characteristics specific to a particular receptor. Drugs share a number of general characteristics,
such as target-binding affinity and the ability to permeate into cells, and they must also have
favorable absorption, distribution, metabolism and excretion (ADME) properties. Models that
discriminate drugs from non-drugs tend to select for ADME properties rather than properties
that correlate with cellular biological activity. If one is interested simply in cellular biological
activity rather than the full complement of required drug characteristics, a correspondingly
appropriate compound training set must be selected. For example, in chemical genetic
approaches, compound libraries with enriched protein-binding affinity are valuable, whereas
compounds with favorable ADME properties have little added value.

Finally, it has been noted that many natural products do not conform to the canonical rules for
selecting drug-like compounds. Moreover, many natural products have been directly developed
as drugs without the need for significant (or any) analog synthesis. This observation has
inspired a new strategy of synthesizing natural-product like compounds using combinatorial,
diversity-oriented syntheses [14•,15•].
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Descriptors
For comparisons that involve molecular properties, the structural, physicochemical, and/or
biological properties of the molecules need to be represented in a consistent form to permit
direct comparison. A standardized representation of a molecular feature is referred to as a
‘descriptor’. The choice of descriptors plays a crucial role in the analysis of chemical screening
data. A major challenge in descriptor analyses is the identification of the smallest, most easily
and reproducibly calculated set of descriptors that retains all the information required to make
the distinctions and comparisons of interest. Here, we discuss some general considerations
concerning descriptor choice, and highlight some recent developments.

Chemical descriptors
The compounds in a database are normally identified by their 2D structural representations,
which consist of a list of the constituent atoms, their interconnectivity and sometimes their
relevant stereochemistry. Aside from experimental data, these 2D representations of the
molecular structure typically contain all the available information distinguishing the
compounds in the library. For each compound, a common set of structural/physical/chemical
descriptors is generated from these 2D structures. Choosing this set of descriptors amounts to
defining the ‘chemical space’ spanned by all possible descriptor representations. A correlation
between regions in this chemical space and bioactivity is assumed to arise from the binding of
the chemical to specific biological targets. Here, we concentrate on the case in which there is
no specific knowledge of the presumed binding sites and there is a purely empirical relationship
between structure and activity.

There is a tremendous range in both the complexity and the reliability of descriptors. Simple
descriptors, such as atom counts, may be obtained directly and reliably from the 2D structural
representation. At the other extreme of both complexity and reliability are three-dimensional
(3D) descriptors that involve 3D geometry-optimization and provide no assurance of producing
a conformation with in vivo relevance. A widely varying number of descriptor dimensions have
been employed to describe chemical libraries, but these have all involved a reduction in
dimensions and, thus, a loss of information versus the original representation. Removing
information that does not distinguish molecules by the properties of interest (eg, bioactivity)
decreases the computational expense involved in computing and manipulating the descriptor
representations and the ‘noise’ associated with the descriptors that do not contribute to the
distinction of interest. One family of widely used descriptors consists of database hash keys,
which were originally designed to filter compounds quickly in substructure searches. Although
experience shows that these keys are unreliable when used alone to represent compounds, they
have proven useful when used in conjunction with other descriptors [16•,17•,18].

Considerable effort has been devoted to determining the importance of 3D (conformational)
information relative to more simply and reliably obtained 2D information, but the results seem
to be highly dependent on the details of the analysis and the nature of the correlation being
sought. 3D conformational analysis is generally avoided in the interest of computational speed
and reproducibility. Estrada et al found a significant correlation between 2D topological indices
and the dihedral angle in a series of alkylbiphenyls, demonstrating that 3D properties may be
implicitly represented without resorting to geometry optimization [19]. In addition, Ertl found
that 2D topological information was sufficient to calculate a molecular surface polar area
descriptor that was essentially identical to the value obtained with the comparable 3D
calculation [10]. One limitation of topological descriptors is that they cannot distinguish
between stereoisomers. To help address this problem, Golbraikh et al [20] and Lukovits and
Linert [21] have introduced interesting ways of combining chirality with 2D topological
information.
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The descriptors chosen to describe a compound library may be very different from one another
with respect to their range and distribution. Godden and Bajorath used measures derived from
Shannon entropy to quantify the information content of each descriptor within a compound
library. They extended this method to compare the distributions of a descriptor between
different libraries [22•].

Biological descriptors
There are a number of biologically relevant quantities that can be used as independent variables
in a manner directly analogous to the chemical descriptors described above. Biological
descriptors can be used in the global analyses of microarray-derived transcription profiling
data or to interpret the results of a screen for biological activity in terms of previously known
activities of compounds in the library. Chromosomal location can also serve as a descriptor.
For example, Wyrick et al used chromatin immunoprecipitation and subsequent hybridization
to genomic DNA microarrays to identify autonomously replicating sequences (ARS) in yeast
cells. Using chromosomal location in the list of generated sequences, these authors determined
that ARSs are overrepresented in subtelomeric and intergenic regions of chromosomes
[23••].

Properties can be calculated directly from DNA sequence information in a manner analogous
to the calculation of physical descriptors for small molecules. For example, enrichment of the
fraction of guanine/cytosine base pairs (GC content) in promoter regions can be calculated
directly from genomic DNA sequence. Konu et al, for example, found that gene expression
levels were correlated with the GC content of the third nucleotide codon position of the message
[24]. One can relate the presence of splice site sequences, promoter elements and transcription
factor binding sites to gene expression level using similar strategies. For example, Bernstein
et al determined that binding sites for the transcription factor Ume6p were enriched upstream
of genes that are induced in sin3 mutant yeast cells [25]. This type of global analysis correlates
genomic sequence information with gene expression data.

Some properties, such as gene function, may be linked to a DNA sequence through a strategy
of annotation. Other possible annotations include chromosomal location, protein interactions
and co-regulated expression groups. Each of these descriptors can serve as an independent
variable for global analyses. Using functional annotation categories, Bernstein et al determined
that the expression of carbon metabolite and carbohydrate utilization genes was greater in yeast
cells with a HDA1 deletion [25].

The construction of a descriptor vector for each gene used in a microarray experiment can be
envisaged. Each sequence (eg, gene or chromosomal fragment) would have an associated value
for GC content, the number of splice sites, the number and type of promoter elements, the
number of binding sites for each of many transcription factors and a quantitative assignment
(perhaps binary) for each functional annotation category. Once these vectors are constructed,
they allow rapid analysis of the relationship between active and inactive genes for each of these
descriptor categories. By applying computational strategies described in the next section, it is
possible to extract the relationship between, for example, the number of AP-1 binding sites in
a gene promoter and the level of induced expression in an experiment. Moreover, such methods
would permit the detection of non-linear and combinatorial relationships among these
descriptors, eg, ‘stress-response genes with AP-1 binding sites and > 40% GC content in their
promoter are enriched in response to stimulus X′. Finally, data from global analyses could be
used to develop a predictive model to classify untested genes.
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Data analysis
It is important to make a distinction between two fundamentally different applications of high-
throughput screening data. Such methods may be used simply to identify compounds exceeding
a certain activity threshold (hits) or to identify a more comprehensive correlation between the
measured activity, molecular structure and/or previously determined biological activity or
mechanism. This distinction is important because the acceptable false positive and false
negative rates for the two approaches are substantially different. In a ‘threshold’ screen, high
false negative and false positive rates are acceptable because secondary screening of the hits
is used to distinguish between true positives and false positives. Since the identification of true
positives is the ultimate goal in a ‘threshold’ screening approach, false negatives are not a
concern as long as a sufficient number of true positives is found. In a global analysis, however,
the false positive and false negative rates must be minimized because all results are used in a
quantitative or semi-quantitative analysis. Global analyses can be quite powerful but are more
expensive in terms of time and money to perform, and may require the use of sophisticated
computational methods (vide infra).

Analysis of screening data
Screening results typically exhibit a continuous range of activities, usually with a Gaussian
distribution. A cut-off value is chosen for the selection of hits and the active elements are
normally confirmed in a secondary assay. The cut-off criteria for determining hits may be based
on absolute activity (ie, 2-fold activity versus control), distribution (ie, three standard
deviations or greater from the mean) or a desired number of compounds to be retested. Once
confirmed actives have been identified, it may be desirable to search for additional active
elements by testing or retesting candidates that are related in form or function. In transcription
profiling screens, retesting entails performing a search of the original gene set for genes that
are related to the active genes in terms of sequence or function. The screen comes to its natural
conclusion with the selection of a set of actives that can be pursued in subsequent experiments.

Global analyses
Various learning techniques have been used to generate hypotheses and form models of
relationships between descriptors and biological activity. These techniques may be divided
into two main categories: classification and clustering. For simplicity, we assume that the data
to be analyzed are compound descriptors and that the classes of compounds are active and
inactive.

The goal of a classifier is to produce a model that can separate new, untested compounds into
classes using a training set of already classified compounds. Classification routines attempt to
discover those descriptors or sets of descriptors that distinguish the classes from each other.
Neural networks, genetic algorithms and support vector machines attempt to discover regions
in descriptor space that separate pre-defined classes. Unknown compounds that are
subsequently placed in these regions can be classified as active or inactive [26–28]. These
techniques optimize a learning function in order to fit the given number of classes while
minimizing an error function based on the mismatch of the classifier in the assignment of
compounds. One of the main issues of training is overfitting, in which the initial classes are
learned so narrowly that no new members are allowed into a class. The learned model should
be specific so that it seldom misclassifies compounds from the original training set but general
enough to recognize new compounds that should belong to a class.

Recursive partitioning and decision trees first find the best single descriptor to split active and
inactive populations into two groups and then successively find the next best descriptor to
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further divide the newly formed groups. These are known as greedy algorithms because they
select the best solution at every step but do not necessarily find the global optimum [29].

Statistical methods can also be used to form probability models or estimate the likelihood of
particular descriptors forming the known classes. These approaches generally involve the use
of the training set to form a probability model that generates both a classification and a
probability of being in a class. Simple statistical methods include k-nearest neighbors and the
Naïve Bayes classifier. Support vector machines are also examples of statistical classifiers.

The goal in clustering a dataset is to group similar data together. Clustering forms groups of
compounds that maximize internal class similarity while simultaneously minimizing external
class similarity. Clustering can be accomplished by either a supervised method, where the
number of classes is known, or through unsupervised learning, where the data are not grouped
into a fixed set of classes.

In many cases, classes produced by clustering can be used for classification. Unknown
compounds that group with predominately active compounds have a higher probability of also
being active [30]. One drawback to this strategy is the fact that the higher hit rate only applies
to the relatively small number of compounds that lie close to known hits. Furthermore, models
of activity are not generated from clustering techniques and must be deduced by expert analysis.
Indeed, descriptors that cluster compounds together may not be related to activity at all. As
with classification, there are a variety of available clustering algorithms. These include
hierarchical methods, such as Ward’s clustering, and non-hierarchical methods, such as Jarvis-
Patrick [31] and Self-Organizing Maps [32]. Examples of statistical-based clustering include
the use of Bayesian neural network to cluster drugs and non-drugs [33] and the use of k-nearest
neighbor analysis to cluster compounds at various stages of the screening process [34].

In a recent global analysis of both compound screening and gene expression data, Staunton et
al used a statistical classifier to identify a correlation between gene expression and cell
sensitivity to compounds. Sixty cancer cell lines were exposed to numerous compounds at the
National Cancer Institute, and were determined to be either sensitive or resistant to each
compound. Using a Bayesian statistical classifier, Staunton et al showed that for at least one
third of the tested compounds, cell sensitivity can be predicted with the gene expression pattern
of untreated cells [35••]. This example demonstrates the power of global analyses to identify
subtle but important relationships among variables in large-scale datasets.

Conclusion
Global analyses can be performed on data from compound screening and transcription profiling
experiments using similar computational methods. The goal of such analyses is to discern
sometimes-subtle relationships within these datasets and to make correlations between large
sets of multidimensional data. Recent advances are making global analyses increasingly
feasible and powerful.

There are numerous future challenges in this area. Firstly, it will be valuable to identify robust
chemical descriptors that best define global chemical space, as well as the ligand-rich regions
therein. Standardized tests for evaluating classification methods would enable more
meaningful comparisons. Finally, methods for automatic incorporation of publicly accessible
data into such analyses would be enormously powerful, as the range of testable relationships
would expand dramatically.
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