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SUMMARY

1. This paper presents accurate increment threshold data for human rod
vision for a small number of experimental parameters. The test is small and
brief and the large background is either steady or transient.

2. The linear threshold disturbance due to an impulse background
consists of an input dependent exponential growth phase and an expon-
ential recovery phase of more or less fixed time constant (ca. 0-08 sec).

3. The data are treated by applying signal/noise decision theory to a
hypothetical filter with two shot noise inputs, viz. the testing signal and the
background. The gain and time course of the impulse function of the filter
are slightly affected by the magnitude of the input.

4. A linear approach is useful since the impulse functions for dark or
light-adapted rod vision yield independent information about quantities
which have previously only been used to describe the increment thresholds
for small tests on steady backgrounds, viz. the integration time and dark
light of the fully dark-adapted eye and the gain changes (or changes in the
signal/background ratio) which occur on progressive light adaptation.

INTRODUCTION

It is common knowledge that the ability of a man to detect a light signal
is reduced as the brightness of his surroundings increases, for the planets
and stars that are visible at night disappear, beginning with the dimmest,
as dawn breaks. This loss of sensitivity is accompanied by the advantage
that the details of forms and movements become more visible. In part
these observations are explained by the fact that the retinal image becomes
richer in detail as the density of quantum absorptions increases and that
the strength of luminous signal added to the background must significantly
exceed the quantum fluctuations of the background, which ¢ncrease as the
square root of the background intensity, if the signal is to be seen.

The experimental observations on the signal/background relation have
been reviewed by some of the workers (Pirenne, 1956; Barlow, 1957;
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Rushton, 1965a) who have made substantial contributions in this field,
and have been analysed in terms of quantum fluctuations, integration of
the effects of light energy over space and time, dark noise of the eye, rod
saturation by bright backgrounds and lateral inhibition. There has, how-
ever, been no way of predicting human visual performance in one situation,
given data for some other situation, until recently, and only a little of the
consequences of a quantum absorption in space and time could be guessed
from the laws of temporal and spatial integration. These suggest that for
the present region of interest (18 degrees from the fovea) the effects of a
quantum absorption travel for ca. 1 degree and last for ca. 0-1 sec, but
whether the spatial spread is still large after 0-1 sec or has begun to die
away is not clear, since it depends upon one’s opinion as to the precise
nature of the laws of summation (Barlow, 1958; Baumgardt, 1961).

A linear method of predicting the threshold for a small brief duration
signal added to a large steady background, given the time course of the
threshold disturbance created by impulse illumination of the dark-
adapted eye, was recently demonstrated as a curiosity since it was obvious
that human rod vision was non-linear and the method of calculation led to
overprediction of the threshold for some observers and correct prediction
for others (Hallett, 1967). A full account of this work has been given in
the previous paper (Hallett, 1969a). This approach hassince been extended
to six new observers and as a result of recent experiments involving
7 x 10* presentations of the signal something more definite is now known
of the time course of the threshold elevating effects of quantum absorptions.

Previous work on steady backgrounds. Barlow (1957) studied the relation
between the threshold energy of a small brief testing signal added to a
steady background and the brightness of the background. If the back-
ground count of quantum absorptions is sampled over space and time then
the count of a sample must fluctuate as the square root of the background
intensity B and the mean increase in the count due to signal must be
significantly larger than the fluctuations due to the background alone if the
signal is to be detected. Provided allowance is made for the contribution
to these fluctuations by the dark light of the eye, mean signal energy is
proportional to gz B%5 over a range of B, where g, is the gain of the system
(v.i.). Barlow’s analysis does not give an independent estimate of g5 and
in fact as B increases the mean signal needs to be increasingly stronger
than is required by a constant signal/noise ratio. It is as if gy increases
with B, slowly at first but more rapidly as rod saturation is approached.

The present paper is largely concerned with methods of minimizing the
effects of variation in the gain gz. For this reason only small, brief duration
signals will be discussed. If the testing signal is long and large the effects
of quantum absorptions will tend to cancel each other out (‘lateral
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inhibition loss’, Barlow, 1957); at any rate g (as defined here) increases
very rapidly with B for large tests, just as lateral inhibition is more pro-
minent at high B (e.g. Barlow, Fitzhugh & Kuffler, 1957).

METHODS

The apparatus and calibrations have been described in other papers (Hallett, 1969a, c, d).

The testing signal is of 12" subtense and is centred on the 18 degree subtense background
at 18 degrees eccentricity from the fovea in the nasal field of the left eye. The pass band of
the test is centred at 530 nm and the test light enters at the nasal edge of the dilated pupil.
The pass band of the background is at 635 nm and enters at the centre of the pupil. The
duration of the test is 1-5 msec in nearly all experiments; in the experiments (@) in Fig. 1
the test was 15 msec in one third of the impulse background sessions, but otherwise 1-5
msec; the test was 15 msec in two thirds of the step background sessions (@) and 60 msec
in the remainder. These changes in test duration were made so as to increase the available
test energy but there is no reason to suppose that these changes make much difference to the
time course of the threshold energy disturbance.

Figure 1 represents about 180 hr of observation (6 x 10* exposures of the test) by three
observers. The points on the impulse functions are the average of the results of the observers
and are therefore each based on nine sessions or forty-five series of the method of constant
stimuli. The points on the step functions are based on twice that number of series.

The errors in the thresholds are considered in the next paper but the standard error of the
mean log threshold for % sessions is about 0-17%47 log. The error in the background scale is
about 0-1 log.

RESULTS

The time course of the threshold disturbance g, (f) due to an impulse
background of energy @ may be measured as follows. The properly adapted
observer fixates and when ready he triggers the apparatus, which delivers
a large 1-5 msec background flash at time ¢ = 0 and a small brief testing
signal at some other time ¢. These stimuli are centred at a point 18 degrees
nasal to the fixation point and so the retinal images are on the rod-rich
area of temporal retina. The observer says ‘yes’ or ‘no’, as to whether he
thinks the testing signal is visible or not and the result is recorded by the
experimenter. The trial is then repeated at some new strength of the testing
signal, which is sometimes zero, and after a considerable number of trials
with full psychological precautions it is possible, using well known methods
(Pirenne, Marriott & O’Doherty, 1957; Hallett, 1969a, c), to determine the
mean log signal energy log g, (f) which allows the signal to be detected,
with a probability of 0-5 in a single trial, when the signal occurs at time ¢
relative to a background of energy @. The time ¢ at which the signal occurs
is then changed to some new value, the whole process repeated and even-
tually the form of the impulse function g, () is satisfactorily sampled. The
dimensions and spectral composition of the test and background are chosen
to ensure the closest approach to linear system signal/noise expectations
for isolated rod vision.
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Impulse functions for small brief testing signals have been measured in various states of
adaptation in ninety-one sessions on ten observers. The results of twenty-two sessions
(four observers) have been included in the previous paper (Hallett, 1969a). This paper deals
with sixty sessions (three observers) but the experimental parameters are varied less and the
results are consequently more accurate. A small difficulty arises because the impulse func-
tions are excessively high in twenty sessions (five observers) out of the total of ninety-one.
This discrepancy is considered in the previous paper, is likely due to a different signal/noise
criterion and does not affect the demonstration of the relation of the integration time of
the eye 7 to the impulse function (Hallett, 1969a). The experiments presented in this paper
are not complicated in this way, indeed the three observers were afforded every opportunity
of agreeing on a common criterion by consulting each other’s records, etc., between experi-
mental sessions, though naturally strict precautions were taken to ensure that the presence
or absence of the test was judged only on legitimate visual information, even to the extent
of denying the experimenter the use of the results of previous sessions as ‘guide lines’. The
method of constant stimuli was used, with randomization and blanks, and the variations in
the threshold measurements are analysed in the next papers (Hallett, 1969¢, d).

Figure 1 summarizes the average log thresholds of sixty experimental
sessions on the three observers.

The filled symbols at the top of Fig. 1 indicate the way in which the log
threshold of the hitherto dark-adapted eye is disturbed by an effectively
impulse background of energy @ delivered at ¢ = 0. The 3 log threshold
disturbances due to impulse backgrounds of 3 different energies show (i) a

Legend to Fig. 1.

Fig. 1. The mean log thresholds for the three observers of this paper as a function of
the time interval between the beginnings of the testing signal and the background.

Top. Impulse functions gg(t) for various impulse backgrounds of energy Q. Filled
symbols mean that the impulse background illuminates the hitherto dark-adapted
eye: value of the impulseis —2-8 (A); —1-2 (H); and 0-6 (@) log scotopic troland
sec. Open symbols mean that the shutter is transparent (density 2-8) so that the
eye is steadily illuminated before and after the delivery of the impulse background:
impulse of —1-2log scotopic troland sec added to steady background of —1-2
scotopic trolands ([7), impulse of 0-6 log scotopic troland sec added to steady back-
ground of 0-6 scotopic trolands (O). The five curves have been displaced vertically
by zero (A), 0:5 (H), 1 (@), 3 J and 3 (O) log units respectively for clarity. The
lines correspond to the exponential time constant 7, = 0-08 sec.

Bottom. Threshold ¢ x(t) for step backgrounds of various intensities B. At¢ = 0
the long duration (500 msec) square wave illuminates the hitherto dark-adapted eye.
Thresholds for steady illumination (steady-state or s.s. thresholds) are also shown.
Steps of —2-3 (A), —1-2 (M), and 1-6 (@) log scotopic trolands.

The corresponding step functions calculated from the dark-adapted impulse
response functions (A, ll, @) at top, via equation (4) with the upper limit changed
to ¢ (see text), are shown as curves. The step function (@) cannot be reproduced by
the present theory and better fits to the other step functions (A, H) could probably
be obtained from somewhat smaller impulse functions than those actually used.

Rod isolation technique. Small brief testing signal viewed against large back-
ground. Conversions: to log quanta (507 nm) cornea sec~! deg-2, add 565 to values
in log scotopic trolands; to log quanta absorbed per rod, add 0-55 to values in log
scotopic troland sec.
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rising portion for testing signals delivered prior to the background, the
slope of which increases with the height of the response; (ii) a fairly tight
peak at ¢t = 0, and (iii) a declining portion of more or less constant slope.

The open symbols at the top of Fig. 1 indicate how the threshold of
the hitherto light-adapted eye is disturbed by an impulse background of
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Fig. 1. For legend see opposite page.

energy @ delivered at ¢ = 0. These experiments (O, [J) were for exactly
the same impulse background intensities as used in the corresponding dark-
adapted experiments (@, M), with the important difference that the
shutter was partially transparent (density 2-8). The peak thresholds,
relative to the absolute threshold, are much the same as in the corre-
sponding dark-adapted experiments, as is the slope of the recovery phase
at ¢ > 0, but the slope of the ascending phase at { < 0 is less than in the



384 P. E. HALLETT

dark-adapted case (@, W). The experimental conditions have been chosen
so that the peak thresholds of the light-adapted responses (O, ),
relative to the light-adapted base line, are much the same as the small
amplitude dark-adapted response (A). It is easy to see that the shapes
of all three responses (O, [J, A) are nearly the same.

The lower part of Fig. 2 shows a few well-measured points on the re-
sponse to a 500 msec square wave background which is exposed to the
dark-adapted eye at ¢ = 0. In agreement with the findings of the previous
paper the log response to an on-step is not complete at ¢ = 0 but
approaches the steady-state (s.s.) value quickly in a damped fashion for
weak or moderate inputs. The slope of the log response increases with
input, and a marked overshoot with a peak close to¢ = 0 to + 50 msec is
observed for large inputs. In this latter case the threshold does not settle
to the steady-state value until later than ¢ = 0-2 sec.

Theory

Suppose that the impulse function y(f) of the visual pathways is both
measurable and deterministic (it might be analogous to the response of
the automatic gain control of Fuortes & Hodgkin, 1964) and that the
response to a recent background at time zero is being examined at some
time £,,, (Fig. 2a). There is no way of knowing whether the observed
magnitude of the response is the consequence of quanta absorbed from the
background alone or whether it is due to the combined action of quanta
from both the background and a testing signal. All that can be done is to
set limits on the response due to a background alone and to declare with
limited confidence that the testing signal is present when these limits are

Legend to fig. 2.

Fig. 2. Flow diagram of the real system.

The first block shows a threshold testing impulse of mean energy go(t) and a
background impulse of mean energy Q. The second block shows the response to Q.
The response to the testing signal is not shown but can be considered to be dissi-
pated about the time Z,,. The third block is the signal recognition process which
may take various forms according to what aspect of performance is being optimized,
e.g. a statistician might consider the confidence limits to the integral of the whole
response if it were important to detect the signal at the expense of knowing its time
of occurrence, but might attach confidence limits to each point on the response if
he wished to know the timing of the signal. The fourth block is the only accessible
output, the observer’s decision.

(b) Flow diagram of the analogue used in this paper.

The most important simplification is that the threshold of a signal at time ¢ is
assumed to be dependent upon the filter response at the same time ¢. As a result the
filter impulse function hg(t) has necessarily the same characteristics as the observed
signal/background relation gg(t), e.g. a section at ¢ < 0, etc.
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exceeded. Clearly the standard deviation at {,,, of the response to the back
ground (or some similar statistic) determines the threshold strength of the
testing signal. Now the testing signal will be most obvious when its peak
effect occurs at £,,;, which will only be the case if the test occurs at some
appropriate time #,;; this may be either before or after the background
impulse according to how long the peak effect of the test is delayed. In
principle, then, it is possible, given both the impulse function y(t) of the
visual pathways and the rules of the process by which the testing signal is
detected, to find the signal/background relation for the filter—the relation
between the strength of the background impulse and the timing and
threshold strength of the impulse testing signal—and so on for other back-
ground wave forms.

The data of Fig. 1, however, present the reverse problem and unfor-
tunately it is scarcely possible to find y(f) from the relationship between
the test and background stimuli without knowing something about the
visual pathways in the first place, viz. the details of the process by which
the effects of the signal are distinguished from the effects of the back-
ground. The easiest thing is to set up an analogous system, as in Fig. 25,
and to test the usefulness of this analogy. One imagines a linear filter which
produces a response to the various shot-noise inputs (real backgrounds and
dark light of the eye). The variance of this response at time ¢ is determined
by the impulse function 4(¢) of the filter. This variance, together with the
observer’s signal/noise criterion, K, determines the strength of a just thres-
hold signal delivered at time ¢. As will be apparent later the impulse
function A(¢) proves very useful because one is able to obtain from real
impulse functions, such as those of Fig. 1, independent measures of
quantities which hitherto have been used to describe the threshold for a
small brief test on a steady background.

Let
t sec denote the time of arrival of the small brief duration testing

signal relative to the beginning of the large background flash at
time zero, then ¢ < 0 means that the signal precedes the be-
ginning of the background and ¢ > 0 that it follows,
threshold be the mean energy of a signal which can be detected in a single
energy presentation with probability 0-5,

X be the dark light of the eye in quanta (507 nm) at the cornea
per deg? per sec,

B be the intensity of a steady or step background in the same units
as X,

Q be the energy of an impulse background in quanta (507 nm) at

the cornea per deg?,
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gx(s.s.) be the absolute threshold energy of the signal when the eye is
fully dark-adapted and no real backgrounds are present in
quanta (507 nm) at the cornea,

9+ x(s.8.) be the threshold energy of the signal determined by the additive
effects of a real steady background and the dark light in the same
units as gx(s.s.)

gp,x(t)  be the threshold energy necessary at time ¢ due to the additive
effects of an on-step background and the dark light in the same
units as gx(s.s.),

90 x(t) be the time course of the threshold energy disturbance produced
by illumination of the fully dark-adapted eye by an impulse
background of value @, in the same units as gx(s.s.),

99 B+x(f) be the threshold energy required when an impulse background
of energy @ is added to a steady background of intensity B,

h(t) be the unit impulse function in the time scale ¢ of the filter in
Fig. 20,

K be the observer’s signal/noise criterion,

gs 9go  be the gains of the signal/background system (v.7.),

T be the classical integration time of the eye,

Ty, Ty be time constants,

then, if linear signal/noise theory is true, and since the variance of the filter
response is given by the convolution of the time course of the Poisson para-
meter (X, B or @) with k2(¢), we have

+ o 05
gx(s.s) = K (X _whz(t)dt) , (1)
+ + 05
dox(s8) = K (Xf R2(t)dt + B h2(t)dt) , @)
tox(t) = K (X[ “nnar+ qraey)”, ®)

where all these statements express the mean strength of the signal which
significantly exceeds the standard deviation of the response of the filter
to the total input.

Practical methods for evaluating thresholds. Clearly if the above linear
system signal/noise theory works then, using equations (1)—(3), it is easy
to obtain Kh(t) or to set up equations in which the threshold for a small
brief test on a steady background (the steady-state threshold gp. x(s.s.))
is predicted from measured impulse function data g, x(f). Equations (4)
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and (8) of the previous paper were obtained in this way. From (1) to (3)
above,

9+x(8-8.) _ ‘QJ"*“’(QQX(t) ) dt+1}0.5

gx(s.8.) 2o(t)
([0 g8,x() }05 evaluated at @ numerically (4)
T\ -0 gX(s8) equal to B.

The middle term of (4) shows how the threshold elevating effects of the
dark light are eliminated from the observed impulse function g4(f) and then
re-incorporated after calculating the variance due to the real background
B alone. The final statement of (4) follows because the unit of time is the
second, and the limits are then broad enough to incorporate the complete
threshold disturbance. Similarly, it is possible to calculate the threshold
disturbance caused by an on-step, qp x(f)—the latter is given by the same
form as (2) but the integral in (2), expressing the contribution of the step
B to the variance, extends only to the upper limit ¢, and after rearrange-
ment one obtains the same form as the middle term of (4) but with the
upper limit set at ¢.

Comparison with Barlow’s (1957) formulation. It should be noted that
equations (1)—(3) are consistent with the spirit of Barlow’s analysis and
differ only in the use of functions of the unit impulse function A(t) to
replace 7, the classical integration time of the eye, and two other constants
(¥, a) used by Barlow. It will prove convenient to define the absolute
steady state gain g and the absolute peak gain for an impulse g, by

gp = (qf;.,.x(s.s.z—qu(s.s.))“"‘ - K ( J‘i: hz(t)dt)o‘s

+ © 05
= {7 @t x0-asean & ©
9o = (q‘g”X(t = 2“‘-”2‘(8'8‘))0'5 = Kh(0) (6)

where the first and second terms in (5) and (6) define the absolute gains and
the other terms follow from (1) to (3) above and are only true if the system
is unaffected by illumination. The terms g%(s.s.) in (5) and (6) are used to
eliminate the (usually trivial) threshold elevation due to the dark light. If
these definitions of absolute gain are applied to Barlow’s model it is easy
to show that the steady-state gain gy = K(a7/F)*5, which is Barlow’s
‘lumped constant’, and that, by a small extension of the argument, the
peak gain is g = g57~%. The relations between the gains g5 and g, can be
summarized for both the present theory and that of Barlow by

+ o 05
o (Lopos)” o
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Now the limitation of Barlow’s approach is that although the steady-
state gain, g5 = K(ar/F)"5, can be fitted to the increment threshold data
it cannot be independently evaluated with any accuracy from the indi-
vidual constants: in principle K, the signal/noise ratio, can be evaluated
from the false positive rate but this is low and hard to measure and not
compatible with the dark light of the eye X (Hallett, 1969d); c, the inte-
gration area, is not easy to measure exactly by varying the size of the test
flash (Barlow, 1958; Hallett, Marriott & Rodger, 1962), although its
magnitude is confirmed by very difficult measurements on rod visual
acuity (Hallett, 1962) and by experiments on rod dark-adaptation
(Rushton & Westheimer, 1962); 7, the integration time, is perhaps the
most accurately known of all the constants, ca. 0-1 sec; F, the fraction of
corneal quanta (507 nm) which are effective for vision, is on a simple view
given nicely by Rushton’s (1956) ophthalmoscopic measurements of the
density of rhodopsin in the living rods (¥ = 0-1-0-15) but on more com-
plicated views might range from 0-05 to 0-15 (Barlow, 1962; Hallett,
1969d). These various uncertainties accumulate so that the uncertainty
in Barlow’s lumped constant is of the order of + 0-4 log.

The advantage of the present approach is that, provided the signal/noise
criterion is the same when the observer views steady or transient back-
grounds, the steady-state gain gz can be evaluated from impulse function
data, using the third or fourth terms of (5), and this prediction checked
against g5 from steady-state experiments, evaluated from the second term
of (5). In fact gg calculated in this way is not constant (the value obtained
from g4, x(t) varies with @ in much the same way that the value obtained
from g, x(s.s.) varies with B), a fact which can be exploited in such a way
that high steady-state rod thresholds can be predicted from impulse
functions of the dark-adapted eye. Furthermore, the dark light of the eye X
can be evaluated from impulse functions, since gx(s.s.) = g5z X®3, and so
can 7 via equation (7).

Analysis and predictions

Impulse functions for the dark-adapted eye. The exact shape of the thres-
hold disturbance ¢, x(f) caused by an impulse background @ is hard to
measure. Experiments are conducted on logarithmic scales and there are
considerable variations in the log measurements which cannot always be
eliminated even when the results of 50 hr of observation at one value of Q
are pooled. Generally speaking for ¢ < 0 the responses g, x(¢) in Fig. 1 are
satisfactorily approximated by simple exponential growth and for
t > 0 by simple exponential recovery. There is no single impulse function
h(t) but rather a separate hy(t) for each @ of the approximate form,

Khy(t) = (L&x(t);@ﬁf(si))“ = goexp{—modi/r}, (8),

13 Phy. 202
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where
T,(t < 0) = 7,, which varies from 0-02 to 0-05 sec in Fig. 1 according to
the input @ and the initial conditions ¢x(s.s.) or
054 x(5.5.),
Tt > 0) = 7, is about 0-08 sec (Fig. 1),
and g, varies rather slowly with @ as shown in Fig. 3.
From this it is clear that the speed of growth increases with the input but
that the speed of recovery is independent of the input. The constants for
the time course can be estimated either from the slopes of logg,(t) or from
integrals of g, (t).

Expression (8) is the simplest approximation which is satisfactory for the present purposes.
Particularly artificial is the dissociation of the function into two parts with an abrupt tran-
sition at ¢ = 0. It is simply convenient to represent log gg(t) by a straight line rising from the
base line at ¢ = ca. —0-12 sec to the peak at ¢ = 0 and thereafter by a descending straight
line, small corrections being made for the joint effects of the dark light and the impulse
background when the threshold is within 0-3 log of the base line. In actual fact the impulse

functions of Fig. 1 are only sampled in 0-025 sec steps and for this reason it is not impossible
that the ascending section of loggg(t) is slightly sigmoid and that the peak region

—0:025 <t < +0-025
is rounded or even fairly flat.

Expression (8) conveys the important information that the response
peaks at ¢t = 0, i.e. for testing signals synchronous with the impulse back-
ground, and that a significant threshold raising effect stretches in both
directions along the time scale ¢ for about the classical integration time,
T = 0-1 sec, of the dark-adapted eye, which should cause no surprise in
view of the proven value of the integration time concept and the frequency
with which variations on the experiments of Crawford (1947) on the pseudo-
retroactive effects of light have been repeated over the years (Baker, 1963;
Sperling, 1965). Some of these points have been discussed in the previous
paper. The explanation for the apparent defiance of causality at ¢ < 0 is,
of course, that the responses of the nervous system are delayed so that the
effects of signal and background actually interact at ¢ > 0 even though the
signal may precede the background impulse by ca. 7 sec. Similar effects can
be produced in Limulus etc. (Ratliff, Hartline & Miller, 1963).

Steady-state responses from g4 x(t). It is not possible to predict the system
steady-state gain g with complete rigour because, as Fig. 3 shows, the
value of gp, whether obtained directly from steady-state backgrounds B
or from impulse functions due to backgrounds of energy @, increases very
slowly with B or Q. The rate of change of g5 with input magnitude is slow
because the use of a small brief duration signal ensures that this is the case,
and provided one uses data for a reasonably weak impulse background @
to evaluate g for a reasonably weak steady background B and so on for
stronger inputs, there is no problem in making accurate predictions (e.g.
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Fig. 3. Log gains versus log input.

Top and left scales. The peak gain due to animpulse background relates the peak of
go(t) to @%%: calculated from the impulse functions of the dark-adapted eye ( A ;equa-
tion (6)) and of the light-adapted eye (A ; equation (6) with gp, x(s.s.) substituted
for gx(s.s.)). The smallest measured value of gg is ca. 16 deg? but otherwise gq is
nearly 16 x (Q/700)°1 deg? over a considerable range of Q.

Top and right scales. The steady gain gg may be calculated from impulse fune-
tions due to backgrounds of energy @: from dark-adapted (@ ; equation (5)) and
from light-adapted impulse functions (Q); equation (5) with gg, x(s.s.) substituted
for gx(s.s.)). The curves gg and gg are separated by about 0-55 log, which is con-
sistent with an integration time of ca. 0-08 sec. The smallest calculated value of gp
is about 4-5 sec deg?.

Bottom and right scales. The observed steady-state gain gg, ((J; equation (5)).
The values match quite well those calculated from impulse functions (@, O),
particularly if the top and bottom scales are related as shown. The dark light of the
eye and the absolute threshold yield a gp of about 4-5 sec deg?.

Conversions: the arrows b and ¢ indicate 1 scotopic troland and 1 scotopic troland
sec respectively. The arrows a and d show relative gains of 10 absolute threshold
units per scotopic troland (or per scotopic troland sec) respectively.

TaBLE 1. Steady-state thresholds predicted from dark-adapted impulse functions

Impulse
Steady background @
background B (log scotopic Observer
(log scotopic troland . A S
trolands) sec) D.B. B.S. M.G.
1-6 0-6 Observed 2-76 2-76 2-65
Expected 2-73 2-64 2-86
—0-2 -12 Observed 1-77 1-74 1-95
Expected 1-64 1-62 1-82
—1-2 -1.2 Observed 1-14 1-12 1-38
Expected 1-14 0-98 1-33
-13 —2-8 Observed 0-93 0-92 1-18
Expected 0-91 0-95 1-15
—-2-3 —2-8 Observed 0-41 0-43 0-62
Expected 0-39 0-43 0-63

The thresholds are log elevations above the absolute threshold. Calculated from the data
of Fig. 1 using equation (4). The average error (observed —expected) over the fifteen pairs
of entries in this table is + 0-03 log.

13-2
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Table 1), at least for steady backgrounds of up to B equivalent to 40
scotopic trolands (1021> quanta absorbed per rod per second). If predictions
at such high intensities present no very great problems, despite the varia-
tion of gz, then it should be easy to determine the dark light of the eye,
X, since gx(s.s.) = gp(min) X%, It is assumed that gp is constant and
minimal for the weakest inputs, and the value estimated from the smallest
amplitude impulse function in Fig. 1 (A ; 45 sec deg?) gives a dark light
of 103 scotopic trolands (10—2% quanta absorbed per rod per second) which
is exactly that measured in the steady-state experiments on the present
observers, using the technique of Barlow (1957).

[ o T T —
> 0
x
2 Q
~ QO
q +=
8 1
=3 >
)
Q%
= 3 LAY
-2 o °
é 2
| 1 ] 1 1 L ]
-3 -2 —1 0

Log ,, test duration (sec)

Fig 4. Threshold intensity as a function of the duration of the small test signal.
Fully dark-adapted eye. Complete temporal integration extends to about 0-1 sec,
as shown by the line of slope —1.

Figure 3 is drawn in such a way as to suggest that the steady-state
threshold due to a steady background of intensity B is best calculated from
an impulse function of energy @ numerically equal to 0-1B, if the unit of
time is the second. This is a very small point in practice, as Table 1 shows,
but this, and the separation of the gain curves gz and g, in Fig. 3, is in
keeping with an overall integration time of ca. 0-1 sec.

Integration time T from q, x(t). Figure 4 shows a classical integration
time experiment for the three observers of this paper. 7 is given by the
longest duration test flash for which the absolute threshold energy is still
minimal. The data are typical of what is available elsewhere (Barlow,
1958 ; Baumgardt, 1961) but do show that 7 is undoubtedly about 0-1 sec
for the present observers.

Now an alternative method of obtaining 7 is from the evaluation of
equation (7), using only impulse function data for the same three observers.
Figure 3 shows log plots of the gain g, and gz, the latter obtained by
numerical integration of impulse functions. The separation of the gain
plots is consistent with a value for 7 of about 0-08 sec. It does seem, then,
that the estimates of 7 obtained from impulse function data, using the
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present linear approach, are about the same as those obtained from the
classical integration time experiment at the absolute threshold of vision.

Neither the classical nor the impulse function method of determining 7
is very precise because each depends upon the measurement of small
threshold changes, which is very difficult. The above estimate was derived
from numerical integration of the observed impulse function data. Alter-
natively, one may try exact integration of the approximation (8). The
integral of the square of exp{ —mod¢/7,} over the limits —o0 <t < +
is 4(7,+7,) sec and it is this function of the exponential time constants
which should correspond to the classical integration time 7. Now, as stated
earlier, 7, varies in Fig. 1 from 0-02 to 0-04 sec and 7, is 0-08 sec, so the
integral is 0-05-0-065 sec. This is a little low for 7 but it must be remembered
that the form of the impulse function between ¢ = +0-025 sec is not
established ; if the peak of the function were flatter than indicated by (8)
the integral would be increased by as much as 0-05 sec. In brief, however
one approaches the data it does seem that impulse functions are closely
related to the classical concept of the integration time of the eye.

Step responses. The responses to on-steps of moderate intensity are not
complete by ¢ = 0, as is appropriate if the response is given by some sort
of convolution of the input with an impulse function similar to expression
(8). Only a few responses to off-steps have been measured (Hallett, 1969a),
but if linear threshold scales were used some of these would look like the
opposite to the on-step. Large on-steps lead to marked overshoot of the
threshold disturbance at £ = 0 but the threshold eventually settles to pre-
dictable values. This suggests that the gain can be excessively high at
‘on’. The other possibility, that the impulse function A(t) at high inputs
develops a late undershoot, is impossible according to the present approach
since both +A(f) and —A(f) increase the threshold by increasing the
variance of the filter response according to A%(t) = [—A(¢f)]% In addition
large impulse responses (e.g. Fig. 1, @) of the dark-adapted eye do not
display undershoot, nor is this possible on the present model for the reason
just given.

So far as the linear threshold disturbance g5 x(f) due to moderate on-
steps is concerned the response should be given by (2) with the upper limit
of the second integral changed to ¢ as mentioned earlier. On inserting (8)
into (2) it will be noted for moderately large threshold elevations, when the
effects of the dark light of the eye X can be omitted from the calculations,
that loggg (¢ < 0) is proportional to ¢/r,. This immediately raises the
problem as to what is 7, for an on-step of B. No answer is offered but so far
as the available data go it seems likely that the slope of the log on-response
increases with the height of the response in much the same way as the
slope of the rising part of the log impulse function increases with the height
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of the response. Figure 1shows step responses calculated from the numerical
integration of g, (f) data (middle term of equation (4) with the upper limit
changed to t). The calculated responses are slightly high because the step-
width At of numerical integration is quite large, being that used to sample
the impulse function (At = 25 msec). These responses are also somewhat
spurious because no change in 7, is permitted but they are a great deal
better than the results of more arbitrary approaches than the present
theory. .

In summary it looks as if step responses should be calculable from
Kh(t) of (8) but the problems presented by the non-linear part of (8) (the
7, section for ¢ < 0) are such that it is difficult to show that this is so.

Successive impulses. In principle one of the easiest ways of finding a
method of linearizing the signal/background system and allowing for the
changes in 7, would be to study the way in which two successive equally
bright impulse backgrounds combine their threshold raising effects. If the
threshold ¢, sec after the first impulse alone is g absolute threshold units
and if it is also ¢ at ¢, sec before the second impulse alone then if the two
impulse backgrounds occur at ¢ = 0 and t = ¢, +¢, respectively, the thres-
hold due to combined effects at ¢, should be (2¢%—1)?5 absolute threshold
units if linear signal/noise theory applies and 7, does not change. Unfor-
tunately the log threshold change is very small and hard to measure and
preliminary experiments are not exact enough to reveal anything about the
changes in 7;.

Successive subthreshold impulses. Similarly, it should be possible to obtain
a linear impulse function by studying the effect of a subthreshold test flash
of fixed energy and timing on the threshold of a second test flash. Unfor-
tunately the maximum threshold change is only about 0-2 log and the
experimental labour necessarily very large.

In summary linear treatment of the impulse functions of the dark-
adapted eye yields independent measures of quantities that have been
previously used to describe steady-state signal/background data. Since
the observer’s sensations are more complicated when the background
illumination is transient, and his observations more difficult to make, it is
really rather remarkable that impulse and steady-state data should be so
clearly related in terms of the dark light of the eye, the effective integra-
tion time and the gain changes (or deviations from a constant signal/noise
ratio) that occur on progressive light adaptation. Whether or not further
information can be extracted from impulse functions which will allow the
dynamics of threshold disturbances to all input wave forms to be specified
is not at all clear.

Analysis of light-adapted responses. If the impulse function of the fully
dark-adapted eye g, x(t) supplies all the information needed for the cal-
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culation of steady-state thresholds of the light-adapted eye it should
scarcely matter if the impulse response functions g4 g, x(t) are measured
when the eye is light-adapted by a steady background B. This is probably
true, at least for adapting backgrounds of up to 2 scotopic trolands.
Comparison of the light-adapted impulse functions of Fig. 1 (O, )
with the dark-adapted responses (@, M) suggests that for a given @Q light
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Fig. 5. Responses of the dark-adapted eye to impulse and square wave background
illumination. Individual results for the three observers. The average result is given
in Fig. 1 (M). 1-5 msec 12 min subtense testing signal. Impulse background: 1-5
msec and —1-2log scotopic troland sec. Square wave: 500 msec at —1-2log
scotopic trolands. s.s. is steady background at —1-2log scotopic trolands. The
threshold disturbances are remarkably similar, although fine comparison reveals
plausible differences. Rod isolation technique.

adaptation yields a progressively larger exponential time constant 7,.
As expected integration of the squared impulse function yields a slightly
larger estimate of 7 in the light-adapted case but the observed increase is
only of the order of 0-01 sec which is of no consequence compared to the
possible (but unmeasured) changes in the relatively unexplored peak region
of the impulse function (—0-025 < ¢ < +0-025 sec). These small changes
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Fig. 6. Responses of the dark-adapted eye to impulse and square wave background
illumination. Individual results for the three observers. The average result is given
in Fig. 1(@). Impulse background: 1-5 msec and 0-6 log scotopic troland sec.
Square wave: 500 msec at 1-6 log scotopic trolands; s.s. steady background of 1-6
log scotopic trolands. Impulse experiments, testing signal of duration 1-5, 15 and
1-5 msec respectively from top to bottom. Step experiments, testing signal of 15,
60 and 15 msec duration, respectively, from top to bottom. These changes in the
test are not thought to make much difference to the shape of the log. test energy dis-
turbance. Clearly there are very real individual differences between the impulse and
step functions of the observers for large inputs. Rod isolation technique.
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are best ignored and it does seem not unfair to say that 7, whether from
dark or light-adapted impulse functions, is sensibly close to 0-08 sec
(£ 0-1 log). There is probably no serious disagreement with what Barlow
(1958) found when measuring the integration time of a testing signal for
various degrees of light-adaptation. The integration time was reduced by
light-adaptation but this was a small change in terms of the usual log.
scale of the experiments and one which was difficult to measure precisely.

Figure 3 shows g5 estimated from the two light-adapted impulse func-
tions of Fig. 1, via equation (5) with the substitution of g3, x(s.s.) for
g%(s.s.) in order to eliminate the threshold raising effects of both B and X.
The results are probably consistent with the dark-adapted estimates of g5;
this is because the absolute peak height of the impulse function g, (f) (in
quanta at the cornea) is more or less unaffected by the presence or absence
of the background, so g = g, (37, + 47,)°% is necessarily much the same
as in the dark-adapted experiments, since the right hand terms are much
the same.

In summary, although light-adaptation has some effect on the expon-
ential growth of KA(t), it makes little difference to the estimation of g,
7 and X from the impulse functions g (t).

Variations between observers. Figure 5 and 6 show that even if the form
(8) is adequate for the averaged data of the three observers then at least
the constants vary with the observer.

DISCUSSION

Gain

The introduction of the gains gz and g, scarcely needs apology, since
the aim of research subsequent to the work of Hecht, Shlaer & Pirenne
(1942) is to discover the ways in which a human observer differs from an
ideal noise limited detector of constant fallibility, and the present paper
does this to the extent of specifying something about the observer’s
inertial characteristics. The present data on impulse and steady back-
grounds can be summarized by four parameters and a describing function
similar to (8): one parameter specifies the system gain (g,), another
(gx(s.s.) or X, etc.), which is needed to specify the initial conditions, and
the third and fourth (e.g. 7; and 7,) are time constants of dynamic response
which are closely related to the classical integration time 7 of the eye.
Unfortunately these parameters are not quite constant, despite having
chosen the experimental conditions with this in mind, but the variations are
sufficiently small for a satisfactory analysis to be possible.

The units of g5 and g, are given in seconds and square degrees since this
seems simplest, bearing in mind that the units of standard deviations and
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means are the same. The appearance of the spatial dimension in these
units reminds one that the effects of quantum absorptions are dissipated in
both time and space but the present experimental design isintended to avoid
the spatial aspects as much as possible since their proper study represents
a considerable increase in the labour of the experiments and the analysis.

Dark- and light-adaptation

These terms are used in this paper to denote the condition of the eye
before the arrival of an impulse background. In the one case the eye is fully
dark-adapted, or can be assumed to be (since the total log threshold distur-
bance only lasts 1 sec at most and the backgrounds occur only every 5-6
sec) and in the other case the eye continually views a steady adapting
background. Now, sufficiently bright backgrounds will bleach an appre-
ciable amount of the rhodopsin. As is well known, largely as a result of
extensive investigations by Rushton (e.g. Rushton, 19654, b) on rhodopsin
and the dark light, bleached rhodopsin has a potent effect on the log thres-
hold, it is as if the dark light of the eye is added to the feed-back of the
Fuortes-Hodgkin filter, and both log threshold and rhodopsin recover with
an exponential time constant of 6 min. Two impulse functions in Fig. 1
(@, m) do show evidence of slow processes at ¢ > 0-2-0-4 sec but otherwise
the impulse functions ¢, (f) and the form (8) for Kk (t) are processes very
much faster than the regeneration of rhodopsin. In any case the brightest
impulse backgrounds (ca. 10 quanta absorbed per rod) bleach only about
10-7 of the rhodopsin.

So far as the dark light is concerned Rushton’s work suggests that the
present corrections, which follow Barlow (1957) and are traceable to
Fechner, are not the best but are good enough. The dark light is treated
here as if it is at the input rather than at the output of a filter.

How useful is the h(t) filter?

The present linear analysis has been applied to the results of ninety-one
experimental sessions on ten observers. In all of the sessions it has been
possible to demonstrate that integrals of the squares of the impulse
functions g4 (t), relative to the peak g4(0), give a value which is approxi-
mately 7, the classical integration time of the dark-adapted eye. It must
be noted, however, that the present approach lumps together K, the signal/
noise criterion, and k(t), the filter impulse function. There is no particular
reason why K should be the same in different types of experiments and if
it is consistently different this will affect the values of g,, gy and X
obtained from impulse functions, ¢,(¢). Proper prediction of g5 (and thus
X) has proved possible in seventy-one of the ninety-one sessions (six
observers). Seventeen of the twenty failures (four observers) have been



ROD IMPULSE FUNCTIONS 399

considered in the previous paper. It does seem quite likely that some
observers on some occasions find the observations extremely difficult. They
behave as if K is much greater in the impulse experiments than for steady
backgrounds. K, or something like it, varies for the data in the present paper
(Hallett, 1969 ¢) but fortunately no consistent effect remains after averaging.
On a very simple view K is related to the false positive rate but this does
not seem to be the case for the present three observers (Hallett, 19694d).

In brief signal/noise theory applied to the quasi-linear filter of impulse
function kg(f) usually gives a good description of the available data, but
there are no strong grounds for believing that this approach will deal easily
with the dynamics of the threshold changes due to various background
wave forms.

How arbitrary is the h(t) filter?

The present approach deals entirely in terms of the linear input and
quantities B, @, X, g (t), ¢5(f), etc., and the non-linear aspects of the simple
model, the appearance of the powers 0-5 and 2, are a consequence of
applying signal/noise theory to the output of the h(t) filter. It turns out
that treated in this simple way the system is very nearly linear, except that
the quantities 7, and g,, which should be constants, do change rather
slowly with the size of the input (e.g. Fig. 3). Perhaps other, better
approaches could be developed, e.g. by working with log backgrounds and
log thresholds, etc.? This may be so but the approaches that have been
tried (defining an impulse function for the log background, log signal
relation or replacing the integrals in equation (1) to (3) by j h(t)dt) seem
very arbitrary and are probably worse than the present scheme. The log—
log case leads to considerable. difficulties, as can be seen by examining
Fig. 1. The ascending phase of logg, (¢ < 0) is linear with the log input but
the descending phase (¢ > 0) is not, and the whole logg,(t) function is of
considerable duration in comparison with the rapidity of the step response
(which lasts about 3—4 times 7 and is for this reason more closely related to
the function gy(t) of similar spread, although the actual calculation pre-
sents a problem, as was seen earlier). The present linear approach is
arbitrary only to a very small extent and is essentially compatible with
the approaches of other workers (e.g. Barlow, 1957; De Lange, 1961).

What the h(t) filter represents

It is important to remember that Khg(t) represents the quasi-linear
impulse function of the filter in Fig. 2b. It is fairly certain Kh(t) differs
from the response of the visual pathways by a great deal more than mere
lateral shifting on the time scale, for the photo-electric transduction pro-
cess is quasi-logarithmic (e.g. Tomita, 1968) and on a finer view displays
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considerable changes in gain and a lesser change in time scale on altering
the input magnitude (Fuortes & Hodgkin, 1964). If this is remembered
then certain inferences about the response of the visual pathways can
immediately be recognized as fallacious, e.g. ‘the input-dependent expon-
ential birth process represented by (8) suggests that this phase of the
threshold disturbance is determined by the number of pores opened in a
membrane by quantum absorptions but the dependence of 7, on the
output term gx(s.s.) or gz, x(s.s.) demonstrates parameter modifying feed-
back’, etc. The fact is that form (8), together with g, from Fig. 3, is no more
than a fair description of the filter or ‘black box’ in Fig. 2b which sum-
marizes the present experiments on impulse and steady background
illumination.

A more promising approach to the data of Fig. 1 is to replace the ‘ visual
pathways’ in Fig. 2a with a plausibly analogous filter and then by using
two shot-noise impulse inputs, one of fixed mean and timing (the back-
ground), the other of adjustable mean and timing (the test), to discover
the filter which has signal/background characteristics similar to those
measured in this paper. Before performing the present experiments it
seemed possible that A(t) for small impulses could be approximated by the
signal/background relation of a simple high order, low pass, linear filter
(all » stages isolated and of equal time constant 7,) with animpulse function

e—l/‘ro(t /To)n—l

p(t) = const. n—1)i

This function, the Poisson impulse function, can be chosen on various
grounds: its properties are simple and something like it has been used by
De Lange (1961) to describe flicker fusion and by Fuortes & Hodgkin
(1964) to describe the small amplitude depolarizations of the retinular and
eccentric cells of Limulus eye by light. The Poisson impulse function is,
however, of limited usefulness: in the case of the present data the errors
in the log. threshold measurements are such that one prefers to measure
large threshold disturbances; at higher levels of adaptation De Lange’s
data show pseudo-resonance for sinusoidal inputs of period about 0-1 sec;
the impulse functions of Limulus eye show large changes in gain and lesser
changes in time scale as the input increases, and the step functions display
overshoots. Fuortes & Hodgkin (1964) have therefore radically altered
their linear filter by using the output to change the time constants and
thus the gain and time scaling of the response. This non-linear Fuortes—
Hodgkin filter would seem to be of basic importance to problems in human
vision (e.g. Rushton, 19654a) and it would be of interest to know its De
Lange characteristics and the parameters, or modifications, which are
required to generate the signal/background relations, g, (t) or hy(t), of
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Fig. 1. Such an approach is not without its difficulties. The data of Fig. 1
do conceal certain variations between the observers (Figs. 5 and 6) and the
number of possible varieties of these non-linear models is rather large
(Marimont, 1965; Sperling & Sondhi, 1968).
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