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SUMMARY

1. This paper presents a statistical analysis of the thresholds of test
flashes viewed against zero, steady or transient backgrounds by peri-
pheral vision. The method of threshold measurement is that of the Medical
Research Council Report (Pirenne, Marriott & O’Doherty, 1957 ; Hartline
& McDonald, 1943). The data are from the previous paper (Hallett, 19695)
and consist of k¥ days’ samples of n threshold measurements on an intensity
scale of interval 0-087 log. The collection of a sample required 5-6 min
and the samples were spread over a 3-month period.

2. The analysis suggests that the nature of biological variations is that
the ‘instantaneous’ frequency-of-seeing curve can occupy a variety of
positions, or levels, scattered about its typical position on the log. energy
axis. Change of the position of the curve for a given threshold task is most
obvious when one compares threshold measurements obtained on different
days, but this is not true day-to-day variation; the same sorts of change
occur on the same day if the viewing conditions (independent variables)
are changed and are perhaps due to shifts in the observer’s signal/noise
criterion K.

3. Two important consequences of the analysis are (i) the errors of visual
threshold functions are worse than one method of calculating error sug-
gests and (ii) it is possible to eliminate part of the biological variations
from a particular sort of frequency-of-seeing curve and thus obtain a
better estimate of the instantaneous curve which is the physiological
function of prime interest.

4. Some possible causes of the biological variations are considered. The
design of experiments is discussed. The method of the M.R.C. Report is to
be recommended since it can be applied without prior assumptions about
the value of the mean threshold or the nature of the errors.

INTRODUCTION

In 1957 the Medical Research Council published a report by Pirenne,
et al. on ‘Individual differences in night vision efficiency’. This report
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contains appendices on experimental techniques, one of which, by Hartline
& McDonald, deals with ‘ The frequency of seeing at low illuminations’* and
is annotated by Pirenne & Marriott. For brevity the work of the several
authors is referred to below as the M.R.C. Report. The report deals very
adequately with the definition and measurement of the mean log threshold
and correctly demonstrates the calculation and magnitude of the within-
sample estimate of the standard error of the mean, which is apparently
the same as the between-sample estimate of the s.E. of mean for repeated
samples of a single threshold task at a single sitting. The purpose of the
present paper is mainly to supplement the Report by deriving estimates
of the ‘day-to-day’ variations in the sample mean of a particular type of
threshold task and in the ‘task-to-task’ variation which occurs in a single
sitting as the stimulus parameters are changed in order that the experi-
menter can construct a function relating mean log threshold to the inde-
pendent variable. This latter variation, if large enough, leads to a poor-
looking experimental curve with considerable point-to-point scatter, but
the nature and magnitude of this scatter have not been established.

METHODS

The physiological methods were fully described in Hallett (1969a). The rod-isolating
technique of Aguilar & Stiles (1954) was used, i.e. a 635 nm background entering the centre
of the dilated pupil of the left eye and a 530 nm test flash entering at the nasal edge. The
test and background were centred 18 degrees nasally to the fixation point. The test sub-
tended 12 min of arc and was usually 1-5 mseec duration. The background was 18 degrees
subtense and was absent, steady or flashed for either 1-5 or 500 msec.

An experimental error which might be the source of ‘day-to-day’ variation in threshold
was the variable or occasional vignetting of the test focus by the nasal edge of the iris. This
was excluded as follows. Each day the alignment of the head in the apparatus was checked
by telescope and by direct observation to ensure that the test focus (a 3 x 1 mm vertical
rectangle) was 2-5 mm nasal to the centre of the day light pupil of the left eye. The iris was
then paralysed by cyclopentolate hydrochloride when it shrank to an iris of 1 mm or less
surrounding a pupil of about 9 mm diameter. When the observer fixates, the test beam
should not be visible on the nasal edge of the iris remnant. If the pupil is 9 mm diameter,
the centre of rotation of the eyeball is 9-9 mm behind the plane of the iris, and if the test
appears dim when about half of the test focus is occluded by the nasal iris then construction
shows that the observer should be able to rotate his eye 10 degrees temporally before he
notices dimming of the test. On the other hand scarcely any temporal rotation is possible
if the test focus happens to be close to the nasal iris remnant. This check was performed each
day during the course of an experiment. The telescope procedures were sometimes repeated
at the end of the day but there was never any reason to assume that vignetting occurred.

Photometer readings for the apparatus beams were taken twice daily, and for the standard
lamp once every other day.

Sampling procedures

In a single trial the dark-adapted observer fixated the small red fixation point and trig-
gered the apparatus when he was ready. The observer reported whether or not (4 or 0) the

* Also presented as a report to the United States Committee on Aviation Medicine (1943).
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test was visible against the prevailing pattern of background lighting and his response was
recorded. On the basis of several trials at several intensities the mean log threshold, z;, could
be estimated as described below. The background was then changed, a new threshold,
Z;.,, established and so on, until the whole range of interest of the independent variable
was covered. The identical set of independent variable values was studied at two further
days’ sittings and about one half of all experiments were run with the independent variable
increasing throughout the experiment, and the other half with it decreasing, in order to
reduce the possibility of within-experiment trend. It is important that the observer detect
the flash on the basis of its light energy alone and not from other clues. The flash intensities
were therefore randomly ordered and a proportion were, in fact, zero intensity in 0-13 of
trials. Repetitions of an experiment were genuinely independent: earlier results were not at
hand, the experimenters were usually rotated. Even if the same experimenter did repeat
an experiment it was scarcely possible that he remembered the many different apparatus
settings.

The experimenter discovered the rough threshold position by presenting the test flash
over a range of 3 or so log units of intensity. He then employed a sufficient number of flash
intensities, usually 10, which increase in steps of A(logI) = 0-087, so that the range of
uncertain seeing was convincingly covered. For each trial an intensity was randomly
selected without replacement so that after a dozen or so trials, including one or two blanks,
the observer’s responses when ordered by increasing flash intensity were a series of the form
(say): blanks (0, 0), flashes (0000 + /0 + + + + ). The vertical line in this example was placed
80 as to leave as many zeros to the right as there were plusses to the left. The intensity corre-
sponding to the line was a threshold measurement, x;, and was an estimate of the mean of the
sigmoid frequency-of-seeing curve, f v log I, since z; satisfies

z; + o
f.d(logl) = f (1—f)d(log I). (la).
) z

This method of calculation and definition was different from that given in the M.R.C
Report but the mean was exactly the same in each case since the geometric representation
of (1a) gives an z; which also satisfied the geometric representation of

logIH
z; = logIH—J~ f.d(logI), (1d)
-0

(where Iy is the highest flash intensity used). Equation (1)) is effectively the definition of the
M.R.C. Report. The value of f which corresponds to the mean is determined by the shape
of the f-seeing curve. For the absolute threshold experiments, f is close to 0-50.

For a single set of conditions n = 5 series were collected on a single day in 5-6 min and
the mean of the five measurements, z;, determined. About sixteen-twenty-four sets of
conditions were investigated in an experiment of 3 or so hours of observation. The observers
worked very hard and very fast—about 1 trial every 6 sec—and rested briefly between each
set of five series. There was no evidence of fatigue and the quantum efficiency at the absolute
threshold was high.

The sampling procedure above, although different in method of calculation, was nearly
identical with that of Appendix C of the M.R.C. Report. Its utility was demonstrated by the
fact that only about 1 sample in 500 needed to be rejected for any reason and the method
was suited to routine work by semi-skilled technicians.

The viewing conditions
The appearance of a peripherally viewed 1-5 msec background flash is very difficult to
describe. The background brightens very rapidly and when fully developed is no: com-
pletely homogeneous; some observers reported a 2 deg pale yellow spot and some ill-defined
tracery. As the sensation died away it seemed to persist longest in the central point. If
the test flash preceded the background flash slightly it was seen on the brightening phase
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of the background and was then regarded by most observers as being very difficult to see.
If the test were coincident with a bright background flash it might be seen on the dying
phase of the background sensation and might then be confused with the central remnant of
the background. All things considered the set of viewing conditions in a typical experiment
was very varied and the errors in the various thresholds are therefore of practical interest
to the applied scientist.
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Definitions
the observer’s responses, ‘seen’ or ‘not seen’.
the intensity interval characterizing the 10 or so flash intensities used in deter-
mining a threshold.
the responses to the various test flash intensities sampled without replacement,
and arranged by increasing inteunsity, i.e. a frequency-of-seeing curve based on one
presentation at each intensity.
a set of five series or 5 ;.
the mean of single series defined by equation (1).
suffix for a particular value of a statistic for a given type of threshold.
the number of series or z; used in finding the daily sample mean Z;.
the daily sample mean which estimates that day’s mean, 4 with s.E. of mean =
om0s,
the standard error of the mean z; for stated A(logI) obtained either from the
variance of the z; or (see M.R.C. Report) from f(logI) and A(logI). If a series is
based on ¢ intensities in steps of A(logI), and if it is assumed that the responses
at each intensity are independent events of constant probability, then, from
equation (1b), oy corrected for bias is

o = (zra-1)" anogn) (;2)” (2a)

0, is & ‘within sample’ estimate of error in z,.

observed frequency of seeing on the hypothesis that the frequency-of-seeing curve
changes only its mean position # from sample to sample. The f appropriate to
any given logI can then be approximated by displacing the samples of n series
to & common mean and accumulating the 4. A correction for bias is necessary.
the value of the best fitting Poisson parameter to the experimental f-seeing curve.
theoretical frequency of seeing from equation (3) and for probability generally.

=1-p.

the ‘between sample’ estimate, for stated n and A (logI), of the standard error
of the daily sample mean, obtained from the variance of the Z,.

the probability density that the true mean assumes a particular value, yx, in a
given sample.

= (a%i—cr}n-l)"", used as the s.D. of the distribution of x in calculating g(log )
from the convolution of f(logI) and h(u).

the mean of the distribution of x.

the observed frequency of seeing when the 4 at any given I are simply accumu-
lated from daily samples without correction for the shifts in the position of the
frequency-of-seeing curve.

the s.E. of the mean z; for stated A(logI) obtained from the curve g(logI)

o, = (Sa1-00) " AogD). (28)

suffix denoting the jth value of the independent experimental variable.
the number of sample means, Z;, obtained on separate days.
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Q(x?) a measure of goodness of fit: probability that the %? criterion for v degrees of
freedom exceeds the observed value. The null hypothesis is accepted if Q is neither

too high nor too low.

v used generally for degrees of freedom.

F a random variable defined by the variance ratio of two samples with », and v,
degrees of freedom.

é operator for the mean.

Relations

The relations between the various quantities in this paper are not available elsewhere and
are of some practical interest. They are easily derived. From (1b),

z; = logIg+ A(logI) (0~5—§P‘) (3)

is the mean threshold of a single series (i.e. a frequency-of-seeing curve based on one pre-
sentation at each intensity). If the responses at each intensity are independent events of
constant probability then from (3)

05
8.E. of z; = A(logl) (‘ZP#I.')

= (atog D) zpaiaaog | . @
Now for the standard normal distribution
Zpd1-poA (2)
is 0-56419 if the step width is 1 and 0-56418 if the step width is 0-1. Frequency-of-seeing
curves are nearly normal sigmoid curves so (4) becomes
S.E. of z; = {A(logI)0-56457}%5, (5a)

where o is the s.D. appropriate to any near normal curve p(logI). This result is very useful
and it is appropriate to anticipate some of the experimental results given later.
Thus if p(logI) is a log plot of & Poisson sum of parameter ¢ then

o’ = log,se.(trigamma {c—1})*5 & log,,e/(c—0-5)%5. (5b)
It remains to substitute (5b) in (5a):
o, = {0-087 x 0-564 x 0-434/(5—0-5)}** = 0-100 if ¢, = 5,
oy = {0087+ (£)5 x 0-564 x 0-434/(13 — 0-5)-5}0:5 = 0-082 if c}= 13,

and

which values are very close to those given in the text.

Suppose that the position g of the curve f(logI) slides along the logl axis with proba-
bility density k() and s.p. o, generating the curve g(logI) by the convolution of f(logI)
and h(u), then o’ is now nearly

0.5 n—1 _\06
o = (og+o) = (o242 03)
i

and if this is inserted in (5a) o, is obtained in terms of o3, and o;. Using o3, and o from
Table 1, o, is found by this method to be 0-107 (D.B.), 0-014 (B.S.) and 0-083 (M.G.) in good
agreement with the tabulated values.

It is appropriate to mention here that o, can be calculated from the range of the 5 z; in a
sample or from the r.m.s. deviation of the z;, or from the f-seeing curve f(log I). The first and
second methods cannot be expected to agree exactly for sampling reasons. If the responses
at each intensity are not independent events of constant probability then the second and
third methods may disagree.
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RESULTS
Absolute thresholds
Between sample variance. Table 1 presents a statistical analysis of the
absolute thresholds of the three observers. The frequency distribution of
the sixty-two daily sample means, Z,, was found to be acceptably normal,
@ (x?) = 0-12. This is confirmed in Table 1 where it can be seen that the
standard error of the daily sample mean, oz, is much the same whether
it be estimated from the squared deviations of the sample means, Z;, or,

TABLE 1. Absolute thresholds

Pooled
Observer... D.B. B.S. M.G. data
Mean of sample means m 2-00 log 2-04 log 1-92 log 1-96 log
100 hv 110 kv 83 hv 90 hy
Number of samples (k) 20 21 21 62
oz (v = k—1)fromr.m.s. of k 0-219 log 0-205 log 0-119 log 0-186 log

sample means

o, from range of k£ sample means 0-233 log 0-209 log 0-124 log 0-194 log

oy (v = 4k) r.m.s. of measurements 0-088 log 0-095 log 0-074 log 0-086 log
about sample mean

o, from mean range of k sets of five  0-084 log 0-087 log 0-073 log 0-081 log
measurements

o, from f-seeing curve f 0-081 log 0-089 log 0-082 log 0-084 log
o, from f-seeing curve g 0-108 log 0-105 log 0-085 log 0-100 log
F(v, = k=1, v, = k(n—1)) 31%%* 23%*+ 13%*+ —
M/C, (v = k—1) 22 32* 19 —

Significance levels: *5-2-59%,, ** 2:5-19%,, *** 19, or less (Pearson & Hartley, 1962).

assuming a normal distribution of Z;, from the range of the Z;. The estimates
of o, differ for the 3 observers; its magnitude is 0-186 log, it being clear
that within sample s.E. of the mean is 0-038 log (sample size, n, is 5 and
the intensity interval, A (logI), is 0-087). '

Tests show that the present estimates of sample to sample variation are likely larger than
those derived by Solandt & Best (1943) or those that can be derived from the data of Hecht,
Shlaer & Pirenne (1942). Solandt & Best found that the between sample standard deviation
for 6-8 large samples for each of fifty-two observers was 0-06-0-17 log, which would include
the present observer M.G. but not D.B. or B.S. In this paper various estimates of variation
are compared, using the same observers and a fixed technique so that it does not much
matter if, say, the present estimates of o;, are higher than those for the typical average
observer.

Within sample variance. The 310 threshold measurements, x;, were found
to be acceptably normally distributed about the sample mean, @ (x2)=0-69.
Estimates of the within sample standard deviation, oy, based on the
squared deviations of the z;, corrected for bias, and on the range of the z;
are shown in Table 1. The agreement confirms the normality of the distri-
butions of the z;. The magnitude of o, is 0-086 log, for a step width
A(logI) = 0-087. (For other step widths o, should be multiplied by the
root of the ratio of the new to the old step widths).
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o can also be calculated directly from the probabilities of the frequency-of-seeing curve,
f (Fig. 1, top), using the formula (2a) which is also given in the M.R.C. Report. The value is
0-084 log.

These values are in fair agreement with a value of 0-091 log which can be calculated from
the data of the M.R.C. Report for a 3 deg subtense 0-2 sec duration flash at 9° eccentricity
from the fovea.

Analysis of variance. If the daily samples are derived from a single
population of normally distributed measurements then o, should equal
o,n~%% = 0-038 log. This is grossly not the case and the values of Fisher’s
F = no‘f—ci/aﬂ, are very large. The absolute threshold can therefore be
subject to very definite biological variations in mean. Does the standard
error, 0;, and hence the shape of the f-seeing curve f(logI), also vary from
sample to sample?

Heterogeneity of sample variance. There are reasons for supposing that
o is heterogeneous but it is rather difficult to show clearly that this is the
case. Three tests have been applied.

(i) The within sample variance and range can only assume discrete values because the
measurement scale is discrete. Now Bartlett’s M/C (Pearson & Hartley, 1962) is infinite if
any sample variance is zero. The test has been applied by altering one value of variance zero
(for D.B.) to the smallest value appropriate to a sample range of 3A(logI). It should be
noted that the test is sensitive to any non-normality in the distribution of z; (which has been
excluded already). The value of Bartlett’s M/C for observer B.S. (Table 1) is marginal
evidence for day to day variation of o,.

(ii) If o, does not change from day to day it should not be significantly correlated with the
daily sample mean, Z;, which does vary. The product-moment correlation coefficient was
significantly different from zero by the usual tests only for observer D.B. (4 0-5) but the
" precise significance level is in some doubt as the oy ; cannot be assumed to be exactly
normally distributed.

(iii) The sample means, Z;, and the corresponding ¢%; and blanks (seen/given) for each
sample, can be ranked by sample mean for each observer. It is then easy to see that the few
samples with blanks seen are not those samples for which Z; was very high or very low. There
is weak evidence that the sample variance g%, is large when the sample mean Z; is high or low:
the o, corresponding to the four highest Z; of each observer were pooled, and this procedure
was repeated for the four lowest 7; and the four median Z;; the variance ratios of the g%, of
the extreme sets to the median set were 1-81 (‘high to median’) and 1-55 (‘low to median’)
which are significantly high at the ca. 2%, and ca. 59, levels respectively.

These tests (especially (iii)) demonstrate that the present samples are
fairly ‘reliable’ in the sense that there is no evidence that performance
deteriorates markedly when the mean sample threshold Z; is high or low.
The quantum efficiencies of the present observers are considered in the
next paper but it is important to point out that the lowest sample thres-
hold (for observer D.B.) is about 35 quanta (507 nm) cornea. If this is the
case either the fraction of light observed by the rods must sometimes be
considerably greater than the limits set by Rushton (1956), which can
scarcely be true, or the frequency-of-seeing curve must be shallower than
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usual when the threshold is low : a Poisson parameter ¢, of 4 would do and
the corresponding o% would then be ca. 1-8 greater than the usual value,
which compares well with the variance ratios given above in (iii).
Stability of the apparatus. The standard errors of the daily photometer
readings when the photometer is illuminated by the apparatus beam or
substandard lamp is 0-02 log. The daily error in shutter duration is prob-
ably no larger than + 0-04 log. Thus the unexplained component of vari-
ance in o, is at least (0-1862— 0-0862/5— 2 x 0-022— 0-042)%5 = 0-173 log.
Clearly sampling errors in the z; and daily uncertainties in the apparatus
do not account for the size of the between sample variations in threshold.
Itis concluded that the absolute threshold for healthy, well paid observers
can show definite variations in the mean log threshold x. There is some
evidence (from o) that the spread of the frequency-of-seeing curve varies
from sample to sample but for most purposes (v.:.)it is reasonable to assume
that the nature of the biological variations is such that the f-seeing curve
f(logI) slides to and fro along the log intensity axis with little change in
shape, as is suggested in the M.R.C. Report.
The next two sections demonstrate the construction of f-seeing curves
and the effects of biological variation in the true mean log threshold .
The average short-term frequency-of-seeing curve, f(logI). It will be
recalled that » = 5 series are determined each day for the absolute thres-
hold task, i.e. each flash intensity is presented five times. This is obviously
far too few to construct a frequency-of-seeing curve but if it is accepted
that the frequency-of-seeing curve does not change its shape each day,
but only its position, then the curve can be built up from the sixty-two
daily samples from the three observers if the samples are each displaced
50 as to eliminate variation in the daily sample means, Z;. This procedure
was used in the M.R.C. Report and for Fig. 1 (top) but a source of bias has
been corrected in the latter case by increasing the horizontal spread of the

Legend to Fig. 1.

Fig. 1. Top. A frequency-of-seeing curve f(logI) obtained by displacing sixty-
two samples of n = 5 series to & common mean, accumulating the frequency of
seeing f in bins of width 0-087 log and plotting with the abscissa scale expanded
by {(n/(n—1)}°3 to correct for bias. Part of the drift in the mean can be eliminated
in this way. The best fitting Poisson sum corresponds to ¢’ = 13.

Middle. Barlow’s probit transformation of the above curve and the third probit
approximation to the regression line. ¢’ is found to be 10-3.

Bottom. A frequency-of-seeing curve g(log I) which incorporates nearly all sources
of biological variation. This is obtained from the same sixty-two samples of five
series as the top curve but without any displacement (save that necessary to elimi-
nate observer variation) or correction for bias. The same curve is given by a con-
volution procedure (see text) or by the Poisson sum for ¢’ = 5.
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points by {n/(n—1)}*% = 1-12, otherwise the variance would be under-
estimated. The curve in Fig. 1 (top) is the Poisson sum,

p= X ealfyl, : (6)
y=c

for¢’ = 13, positioned so that p = 0-50 corresponds to log 0 on the abscissa.

The fit over the central range of intensities is acceptable, @(¥3?) = 0-40, and predicts
161 plusses below log 0 and 143 zeros above. The inequality is trivial, a 0-005 log shift of the
curve to lower intensities equalizes the 4+ below and 0 above at the observed value of 152.
The fit to the lower tail is not particularly good and would be worse if the tails were correctly
estimated. This sort of discrepancy is to be expected for pooled data from an observer popu-
lation which is heterogeneous for ¢’ or if the observer utters the wrong word (e.g. + instead
of 0) in about 29, of trials. A precise fit to f by p from equation (7) is not to be expected in
any case since the contribution of the hypothetical dark light of the eye to f(logI) has been
ignored and the observed parameter ¢’ need not be an integer if either the true ¢’ or the mean
threshold varies from trial to trial.

A further indication of the goodness of fit is that o estimated from the observed curve f,
using equation (2a), is 0-084 log, as mentioned above, and that that from the fitted curve
for ¢’ 13 is 0-082 log.

The value ¢’ = 13 may be compared with the values of ¢’ = 5-7 obtained by Hecht,
Shlaer & Pirenne (1942) and of 6-8 by Baumgardt (1960). A difference does exist but is not
very large if one considers sampling errors or the errors in the relative intensity axis. A fair
estimate of the 0-95 confidence limits for each p, of an f-seeing curve is p, + 2(p;q;/n), where
p; = 1—gq,, assuming that the trials are independent and that the binomial distribution
applies. If such limits are attached to a curve with ¢ = 6, n = 50 (which is a fair approxi-
mation to the curves of Hecht et al. (1942) then these limits are found to just include the
limits appropriate to the curve for ¢ = 13, n = 310 (which approximates Fig. 1, top),
displaced to the same mean. The steepness of frequency-of-seeing curves is considered in
more detail in the next paper (Hallett, 1969d).

The long-term frequency-of-seeing curve, g. Figure 1 (bottom) shows a
shallower frequency-of-seeing curve, g(logI), which includes the effects of
sample to sample variation, and is consequently richer in biological varia-
tion than the short-term curve f(logZ). The + at a given intensity for an
observer have simply been accumulated without displacement of the sixty-
two samples to a common sample mean and then the results of the indi-
vidual observers have been displaced to eliminate the small differences
between the observers’ overall means. The number of arithmetical opera-
tions in Fig. 1 (top and bottom) is rather large and the following check
calculation is of interest.

Suppose the f-seeing curve, f(logI) (Fig. 1, top) slides to and fro horizontally, the mean
position g assuming various values with probability, k(u), appropriate to a normal distribu-
tion with standard deviation o, = (a&%—a}/n)"'“ = 0-1821log and mean m = 196 log
quanta. Then the f-seeing curve g(logl) can be calculated in a second way as follows.
Relabel the log axis of the bell-shaped curve h(u) as A, where A = log/—1-96, so that
h(A = 0) is the peak of the bell-shaped curve. Relabel the logI axis of the sigmoid curve
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f(logI) as t, where ¢ = logI—1-96, so that f(t = 0) = 0-50. Then the f-seeing curve, g(A),
is given by
+0
o) = [ sema-nas ™

Equation (4) was evaluated, using discrete distributions for f and h, with A and # in steps of
ca. $AlogI. The agreement with the 4+ accumulating procedure was good.

The curve, g, is well fitted by a Poisson sum of parameter, ¢’ = 5, displaced so that the
P = 0-50 point corresponds to the mean log threshold —@(x2) = 0-69. The observed curve
g yields about 262 4 below and 0 above the mean. The corresponding values for the fitted
curve ¢’ = 5 are 286 + belowand 283 0above. The over-all s.E., 0y, in a mean z;, from equation
(2b) above is 0-100 log from either the observed curve g or the fitted curve ¢ = 5. Clearly
the fit is good.

The effect of sample to sample variation, or drift in the true mean thres-
hold x, is thus to give a f-seeing curve, g(logI), of lesser slope than the
curve, f(logl). It should be noted that the curve g(logI) and the corre-
sponding ‘sampling error’ o, do not give a reliable estimate of the accuracy
of the over-all mean of k days’ samples of size n. The drift in the mean of
the short-term f-seeing curve must cause the probability of response at a
given flash intensity to vary in the long run so that equation (25) no longer
gives the true sampling error. o, is useful, however, for identifying the
parameter c, of the Poisson sum which approximates the curve g.

Other viewing conditions

Considered here are the thresholds for a test presented against a steady
background or at various times with respect to the beginnings of 1-5 msec
or 500 msec square wave backgrounds (data of Fig. 1, Hallett, 1969b).
The number of samples of size » = 5 for any particular stimulus arrange-
ment is k¥ = 3 for each of the three observers, compared with k¥ = 20 or 21
in the case of the absolute threshold data. Statistical analysis has been
preceded by rather extensive pooling with numerous implicit assumptions.
The following discussion has therefore been kept reasonably brief. oz, and
0, have usually been estimated from mean ranges.

Between sample variance. Variation o, in the sample means for various
viewing conditions is generally of the same magnitude as the pooled
absolute threshold estimate of 0-186 (s.E. < 0-012)log.

Now Blakemore & Rushton (1965) and Rushton (1965) have shown that
the imaginary light of the eye and real background lights are in some
respects additive. A value of the imaginary light for the present three
observers is given in Hallett (1969d): —2-98log,, scotopic trolands.
Barlow’s (1957) result was equivalent to —2-66log scotopic trolands.
These imaginary lights are very weak compared with the real back-
grounds used, e.g. —2 to +2log scotopic trolands. Clearly variations in

mean x for various viewing conditions cannot be due to variation in the
imaginary light.
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Can sample to sample variation in a single observer be simply described
by a filter factor hypothesis (e.g. M.R.C. Report)? Suppose that the
observer’s characteristics are constant but that there is an attenuating
filter in front of his eye which changes from sample to sample. Then the
observed between sample variation oz in the threshold of the observer
minus the filter combination will be less for increment thresholds against
steady or flashed backgrounds than at the absolute threshold, because in
the former case attenuation of the test flash will be partly compensated
by attenuation of the background. The observed dependence of the thres-
hold on background is as the ca. 0-65 power of the background for the
present purpose. If the filter optical density follows a normal distribution
with .. = ¢ = 0-182 log, and if the s.E. of the threshold measurement,
Z;, is 0-038 log (within sample estimate), then the s.E., oz, of the daily
absolute threshold measurements will be (0-182%2+0-0382)%5 = 0-186log
and that of the increment thresholds will be about

(1-0-652) 0-1822 4 0-0382}95 = 0-074log.
g

But it has been seen already that the observed standard errors are of the
same magnitude. The simple filter factor hypothesis is not substantiated,
nor is there much point in proposing as alternative hypotheses that the
imaginary filter is present only in the test beam or that it can attenuate
the dark light as well; consideration of a well known simple signal/noise
hypothesis (Barlow, 1957) shows that the observed biological variations in
mean threshold x could arise in several ways, e.g. from variations in the
extent of integration over space or time or from variations in quantum
efficiency or criterion, etc. Of these factors variation in the signal/noise
criterion would have the most marked effect.

Within-sample variance. Estimates of o, from the éverage within-sample range are always
in good agreement with sums of squares éstimates and do not differ much from the absolute
threshold data already given.

Within-sample trend. There is no evidence of progressive improvement or fatigue. The
trend in the average thresholds for the first, third and fifth series in 120 samples from
varied thresholds (Hallett, 1969a, b) was less than the s.E. of the differences in the means
(0-012 log).

The nature of day-to-day variations. It has been seen for a variety of
conditions that variation in the true sample mean x is demonstrated by the
very real difference between the within-sample estimate of the s.E. of
mean, o;7%, and the between-sample estimate, o;;. The existence of these
variations poses very real problems about the accuracy of visual threshold
experiments which have not previously received attention.

Do day-to-day variations really exist, such that the thresholds for all
viewing conditions on a particular day are high or low as the case may be
(hypothesis 4)? Or, is the variation observed in daily repetitions of a given
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viewing condition really another manifestation of variation which also
occurs on going from one viewing condition to another on the same day
(hypothesis B)?

The quality of a single day’s experiment according to hypothesis 4 is
such that 0-95 of experimental points can be expected to be between
+ 20,n~"%log of a curve, the position of the curve varying from day to day
within the limits of, say, + 2(oz— o3n1)%5 of its mean. Cursory inspection
of the results of Hallett (1969b) suggests that the quality is worse than this
and might well correspond to hypothesis B, which is that 0-95 of the experi-
mental points of any day are within + 207, of a single fixed curve.

A numerical choice between the two hypotheses is most easily made as
follows. The experimental design (Hallett, 19695) was that in an experiment
twenty-one to twenty-three viewing conditions were repeated on three
consecutive working days by each of the three observers. Calling the
sample means on days j (= 1, 2, 3), Z;;, the covariance of the differences
between the repetitions is defined here as

COV. (T — Ty, Ty —T3) = & (Tyy—Toy) (Tyy— Tgy) — € (Ty; — Ty) . € (Fyy — Ty),

where & is the expectation taken over the ¢ = 1, 2,..., 21 to 23 various
viewing conditions. On hypothesis Z;; = a;+b;+c;;, where a; is the
population mean for the ith viewing conditions, b; is the jth day’s deviation
from this value and c;; is the deviation (mean 0, variance o%n~') of the
sample mean from b;. Using the rule for the expectation of the products of
independent random variables it follows that cov. (%, —Z,, T, —7,) is o3n~1.
On hypothesis B, on the other hand, Z;; = a;+c;;, where c;; has mean 0
and variance o3, and cov. (%, —T,, T; — T;) is 0.

The data of Hallett (19690) yield twenty estimates of the covariance
defined above, ranging from —0-007 to + (0-309)2 log? units. The means for
the three observers are: D.B., (0-195)%, B.S., (0-155)%, M.G. (0-196)2 log?
units, i.e. (0-183)2 overall. These values are very close to the estimates of
oz for the absolute threshold and various viewing conditions given above.
and certainly very different from o%/n = (0-038)2. Clearly hypothesis B is
at least true on average: the within sample estimate of error is usually a
bad estimate of the accuracy of the shape of experimental functions which
is more certainly given by o, the between sample error.

Problems of this sort are more usually approached by an analysis of variance. A 6 x 21 x 3
analysis of variance table,

(experiment type) x (independent variable) x (repetition number),

was constructed from part of the records, for observer D.B. The residual source of variance
was (0-166 log)? and the between repetition source of variance (0-031 log)?, which is scarcely
larger than the likely apparatus variation. This provides further support for hypothesis B:
true day-to-day variation is small, if indeed it exists at all.
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This analysis leads to the important conclusion that the log threshold
for a given task can assume a variety of normally distributed levels
from a population with variance ca. 0% = (gz2—0fn™Y). On a given day
the accuracy with which the chosen level is both maintained and measured
is reflected in the smallness of o, but if a sample is obtained on another
day another level may be chosen. Similarly, on a single day if (say) a high
ranking level is chosen for the ith viewing condition the level for the
(¢4 1)th condition may be quite different. It seems most plausible that
these variations in the chosen level are due to the observer’s tendency to
change his signal/noise criterion (K in Hallett 1969 a, b,) whenever the
viewing conditions change.

DISCUSSION

The results of this paper are, perhaps, of some interest, since they
possibly represent the first serious attempt to pin down the physiological
meaning which attaches to the observed variations in mean visual thres-
holds. It must be admitted the between-sample estimate of variation o,
is likely larger than that reported elsewhere (p. 408), but it should be
remembered that some variation between individuals is likely, and that
the present data were collected routinely and without any special selection
(since it proved impossible to establish any useful criterion for rejection).
It is also important to keep in mind the time scale of the measurements.
A threshold sample by the present technique takes about 5-6 min but the
samples were collected over a 3-month period. Both the absolute threshold
measurements and the thresholds for more complicated viewing conditions
involving transient and steady backgrounds show that the within-sample
estimate of variation o;n~%, which represents the average short-term varia-
tion, is small compared with the between-sample estimate o;,, which repre-
sents the long-term variation. This naturally suggests that the true mean
log threshold, u, is liable to drift, and the analysis of the absolute threshold
data shows that the relations between the different types of frequency-
of-seeing curve (pp. 412, 413) and various s.E.s of the mean (p. 407) are
satisfactorily given on the assumption that the frequency-of-seeing curve
does not change shape as it drifts along the log/ axis, although some
flattening of the curve must occur, at least when the threshold 4 swings
low (pp. 409, 410). If the measurements had been restricted to the absolute
threshold it would have been natural, but wrong, to call these drifts ‘day-
to-day variation’. As it is analysis of the other viewing conditions shows
that the same sort of drifts occur on a single day when the viewing con-
ditions change and give rise to the scatter of the points which constitute
the experimental function relating log threshold to the independent
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variable. True day-to-day variation can scarcely be said to exist, since it
is no larger than the likely daily variations in the energy output of the
apparatus (p. 415). The physiological processes which give rise to the drift
are uncertain, but these cannot be described in terms of variation of the
hypothetical dark light of the eye (p. 413), or in terms of a simple filter
factor hypothesis (p. 414). As will be shown in the next paper, the drifts
lower the observed ‘over-all’ quantum efficiency at the absolute threshold
from about 0-1, which represents Rushton’s (1956) limit, to about 0-04.

Maximum work load. Visual experiments are tedious and an experiment should be planned
so that sufficiently accurate results can be obtained in the shortest time. In this respect it is
important that an observer’s work load be the highest that he can tolerate but it is not clear
what this limit is. Most of my observers have worked for the minimum period of 3 months
and although various efforts and inducements have raised the number of flashes in an
ordinary experiment of 2-3 hr observation from 500, regarded as large by Pirenne &
Marriott (1959), to 1400, this has been partly offset by a reduced number of experiments
per week per observer. In retrospect for about a dozen observers the number of flashes per
observer per week is 2500 + 500. Performance does not appear to suffer in the more heavily
loaded experiments: a test showing the absence of within sample trend has been given; the
quantum efficiency at the absolute threshold is high even though half of the samples were
obtained at the beginning of an experiment and half at the end; the scatter of the experi-
mental points seems no worse than usual.

Barlow’s 2-point probit method. Barlow (1962) has proposed a method of considerable
interest for which AlogI is so large that only two test flash intensities are used, chosen to
correspond to expected frequencies of seeing of ca. 0-95 and 0-05 respectively.

Barlow’s method is primarily intended for the rapid determination of quantum efficiency
which may be a more fundamental quantity than the mean threshold, although there can
be no doubting the practical usefulness of the latter. The advantages of the method are that
it can be easily implemented with fully automatic apparatus and that the accura/cjr is
apparently slightly higher than that of the M.R.C. Report for the same number of flashes.
It is, however, implicit in Barlow’s method that one has reasonable a priori knowledge of
the mean threshold of the day (if this is not known experimental time will be lost in roughly
assessing it) and that the frequency-of-seeing curve is nearly approximated by a Poisson
sum. This cannot be confidently assumed for any novel experimental condition or, indeed,
for any new observer, and is most likely to be incorrect when the frequency of seeing is in
the extreme regions of 0-05 or 0-95. The probit transformation for the present data gives
rise to slightly lower values for ¢’ than do other methods (Fig. 1, middle; Table 1, Hallett,
1969c¢) but practically speaking the difference is small.

The estimation of errors. The within sample estimate of error, o, has been derived above
both by accumulating the f-seeing curve, f(log I), and from the squared deviations of the
measurements, z,, from their sample mean. These methods are thorough but laborious and
in many cases the use of the range of the x; is to be recommended. Pearson & Hartley (1962)
show that the range of measurements in small samples from a normal continuous population
is a very efficient unbiased estimator of the population standard deviation. The standard
error in an estimate based on the average range of several samples is also considered by these
authors. In this paper a number of examples have been given to illustrate the practical
usefulness of the average range of the z; in samples of size, n = 5, from a discrete measure-
ment scale. The s.E. of the sample means, o;;, may also be estimated from the range of the
7;. The various algebraic relations between frequency-of-seeing curves and standard errors
which have been given above may also prove of practical use.
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General conclusion. The method of the M.R.C. Report is to be recom-
mended for any new investigation since it can be applied with very few
a priort assumptions about the value of the mean threshold or the error in
that mean. The errors in the threshold are apparently such that there is no
special advantage in expending many flashes in a comparison of a few
different threshold tasks on a single day if the viewing conditions do not
change frequently. The major source of error appears to arise from changing
the viewing conditions and may represent a change in the observer’s
criterion. It is therefore better to change the viewing conditions frequently,
e.g. by comparing a large number of threshold tasks on the same day, and
then to achieve the desired level of accuracy by repeating the whole experi-
ment on several different days and averaging the repetitions. The level of
accuracy attained in any experiment may be rapidly estimated in the ways
described above and the values checked if necessary against the data of
the M.R.C. Report (appendix A, Table 1) or the present paper. Once the
S.E. of mean for a given observer falls below 0-10 log a decision must be
made as to whether further accuracy is desirable, in which case Barlow’s
(1962) probit method may be valuable, or whether it is better to repeat the
experiment on other observers, in view of the fact that individual varia-
tions in threshold are possibly of this magnitude. Unfortunately, despite
considerable research, considerable uncertainty attaches to the published
values of variations between individuals since these have not been corrected
for variation in the sample means of a given individual, as Pirenne (1956)
has pointed out.

The work reported in this paper was supported by the Medical Research Council of
Canada and the Defence Research Board of Canada, grants MRC MA 1981 and DRB 9310
122. I am indebted to comments from F. H. C. Marriott.
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