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SUMMARY

1. This paper presents an analysis of the efficiency of performance at
the absolute threshold of human vision. The data are from the same series
as the previous papers (Hallett, 1969b, c) and consist of frequency-of-
seeing curves, thresholds, false positive rates and equivalent background
measurements, accumulated as small samples over a number of days.

2. Quantum efficiency is defined here as the ratio of the thresholds of an
ideal and a real detector performing the same task with the same sampling
error. This avoids the problem as to whether the frequency-of-seeing curve
of the real detector is exactly a Poisson sum or not.

3. The long-term quantum efficiency can be low (about 0.04) as a result
of drifts in the mean threshold.

4. The average short-term quantum efficiency is in the region of 0.1,
which is roughly the physiological limit set by Rushton's (1956b) measure-
ments of rhodopsin density in the living rods. If this is correct, then the
absorption of a quantum, and not the bleaching of a rhodopsin molecule,
is sufficient for the generation of a neural event.

5. Application of a simple signal/noise theory to the data gives solutions
close to those suggested by Barlow (1956) and shows that false positives
almost invariably arise from errors subsequent to the signal/noise decision
process.

INTRODUCTION

As is well known, largely as a result of work by Pirenne and colleagues
(e.g. Hecht, Shlaer & Pirenne, 1942; Pirenne, 1956; Pirenne & Marriott,
1959), the performance of a human observer at the absolute threshold of
vision has a strong resemblance to the behaviour of an ideal quantum
counter which fires upon the receipt of c or more quanta. In both cases the
probability of a response increases with increasing signal energy in a
sigmoid fashion and a mean threshold and S.E. of mean can be defined on
the basis of this frequency-of-seeing curve (e.g. Hallett, 1969c). In one
respect man and an ideal coincidence counter differ: a noise-free detector
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will never respond to a flash of zero intensity (or 'blank') but a human
observer occasionally will.

It is natural to ask how close a human observer can approach to per-
fection. With respect to vision the practical limit is set by an important
investigation (Rushton, 1956a, b) of the optical density of rhodopsin in
the human rods. Rushton concluded that it is most likely that 0.1 of blue-
green (507 nm) light striking the cornea is absorbed by the rods. To what
extent is the absorbed information about the external world utilized by the
eye and brain? How much wastage is there?
A number of attempts to answer the questions raised by the work of

Pirenne and of Rushton are reviewed by Barlow (1956, 1957, 1962a, b)
who has introduced useful new types of measurement and analysis. In the
previous paper it was shown that frequency-of-seeing curves, sampling
errors, and, by implication, quantum efficiencies depended upon whether
the measurements were made on a short-term or on a long-term basis. The
present paper is of interest because five types of measurement (short-term
and long-term frequency-of-seeing curves, f(logN) and g(logN), mean log
thresholds m, false positive rates gFP and equivalent background esti-
mates X of the hypothetical intrinsic noise) have been obtained for
three observers. These quantities have not been previously measured in
the same observer and it is therefore possible to re-examine the general
problems of quantum efficiency and intrinsic noise with relatively few
assumptions.

METHODS
The absolute threshold measurements formed a small part of an extensive series of thres-

hold measurements. The general methods have already been described (Hallett, 1969a). The
fully dark-adapted observer viewed with his left eye a green light (530 nm) of 12' subtense
and 1.5 msec duration which appeared 180 nasally to the fixation point. The test light
entered at the nasal margin of the dilated pupil.
Method of constant stimuli. This method of determining thresholds and frequency-of-

seeing curves has already been described (Hallett, 1969c). Suffice it to say that the stimuli
were randomized and that the experimenter did not have access to previous measurements.
The theoretical purpose of the experiments was not revealed to the observers.

Calibrations. These have been described (Hallett, 1969a). The standard errors of the daily
photometric calibrations were 0-02 log and the S.E. in daily shutter setting is assumed to be
0-02 log. Redundancy in the nature and number of the measurements makes it likely that
the limiting errors are systematic (e.g. brightness of standard lamps and accuracy of density
scale on photometer).

Definitions
sample a frequency-of-seeing curve for n = 5 presentations at each of a series of i = 10

intensities, varying in steps of A(logN) = 0-087. The samples are obtained on k
different days.

logN the logl0 energy axis.
g(logN) a frequency-of-seeing curve obtained by simply adding of the number of 'seen'

responses at a given intensity over the k days and dividing the number of pre-
sentations at each intensity by 5k.
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f(logN) a frequency-of-seeing curve obtained by displacing the samples along the logN

axis to a common sample mean threshold, accumulating the responses 'seen' in
bins of width A(logN) and plotting the frequencies in intervals of A(logN) x
{(n/n- 1)}°05 in order to avoid bias.

f, g used as suffixes to denote quantities derived from, or as abbreviations for,
f(logN) or g(logN).

threshold usually the mean threshold on a log scale of measurement which can be defined
in several ways on the basis of the f-seeing sample or curve, e.g.

mean = logNH+ A(logN) (0.5-rp,) (1)

where NH is the largest flash energy used, A(logN) is the step width andpi is the
observed frequency of seeing (probability) at the ith flash energy.

xi the mean threshold of a single series, i.e. a f-seeing curve sample based on one
presentation at each intensity. Note that the symbol x is also used elsewhere
unambiguously as the mean number of intrinsic noise events.

xi the mean threshold of a sample of n = 5 series.
era the s.E. of mean threshold xi of a f-seeing sample based on one presentation at

each intensity and defined by
n 0.5 0.5

a = A(logN) x (-1 x (fi(1 -fi)) (2)

on the hypothesis that the responses at each intensity i are independent and of
constant probability fi. This corresponds to a within-sample estimate of error.
the s.x. of mean threshold of af-seeing curve g(logN) based on one presentation
at each intensity and defined by

0-5

0f,= A(logN) x (-gi(l -gi). (3)

Irx-, the between sample estimate of the s.E. of the observed mean log threshold xi
of a sample.

oits = (2i - o-f2 nl)0-5, the s.E. of the true mean log threshold g which is distri-
buted with mean m and variance a.

c the Poisson parameter of the p(logN) curve of an ideal coincidence counter.
el the parameter of an ideal, stable, noise-free coincident counter which would

yield the observed sampling error orf if the counter or its responses replaced the
observer in all experiments and calculations.

F the variance ratio of two samples.
F quantum efficiency generally.

F9 the long-term over-all quantum efficiency, obtained from the f-seeing curve
g(logN). This efficiency will be lower than ff(Ff) if the observer's mean threshold
drifts with time.

e(Ff) the average short-term overall quantum efficiency, obtained from the f-seeing
curve f(logN), is a better estimate of the instantaneous overall efficiency than
F. if the observer's mean threshold drifts.

F' The over-all quantum efficiencies F9 and 9(Ff) are practical measures which are
less than F' the physiological, or primary, quantum efficiency (corresponding
to n/N in Barlow, 1956, or F in Barlow, 1957). F' is the fraction of 507 nm hv at
the cornea which gives rise to nervous events. J(Ff) is less than F' because
f is plotted against log (light), rather than log (light plus noise) and F5 is lower
still as a result of drifts in the threshold.
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XaT X is the equivalent background estimate of the hypothetical intrinsic light of the

visual processes, obtained by Barlow's (1957) procedure. The units of X are
external background units, e.g. hv (507 nm) cornea deg-2 sec'. a deg2 is the
spatial integration constant and T see the temporal integration constant so
XaT represents the mean number of noise events in the same (space) x (time)
sample as the test flash, expressed in external units: hv (cornea). Thus Xac is
related to the mean intrinsic noise x by the primary quantum efficiency F'.

Q(x2) a measure of goodness of fit: probability that the x2 criterion for v degrees of
freedom exceeds the observed value. The null hypothesis is accepted if Q is
neither too high nor too low.

Relations
Standard deviations. The relations between the frequency-of-seeing curves and various

estimates of error are defined or derived in the previous paper (Hallett, 1969c).
Modified Barlow signal/noise analysis. Barlow's (1956) analysis gives rise to a set of

criterion versus noise curves which should intersect to give a point solution if the theory is
correct.

Consider a stable coincidence counter which responds whenever the Poisson distributed
intrinsic noise (mean of x) exceeds the criterion, c events. Then the false positive rate is

00

9 =I1 e--xv/y! (4)
F.P. Y~c

The c versus curve x corresponding to (4) is easily obtained from Molina's-(1942) tables. The
normal approximation to (4) is not satisfactory if the false positive rate is 0-02 or less so
that the mathematical form of the noise distribution is a matter of some importance.

Barlow obtained his second solution curve from the slope of thef-seeing curve at its mean:
this should be a Poisson sum on a scale of (say) log (light + noise) but is flattened if plotted
against log (light). This relation is correct but in practice it is subject to sampling errors of
the mean and of the slope, and the relative intensity calibration of the apparatus near the
mean intensity must be very accurate. The quantity of is more satisfactory as it avoids
problems of interpolating probabilities around the mean, utilizes information from the whole
frequency-of-seeing curve, and the step width A(logN) can reasonably be obtained from the
mean of the several step widths close to the mean threshold.
A Poisson sum on a scale of N has mean c - x and variance c. On a scale of logN then

C' = c° 5 logl0 e/(c-x).

Thus for a step width identical to that for thef-seeing curve (logN), viz. A(logN) . (n/n - 1)0.5,

erf = {AlogN) x (n/n- 1)0.5 x 0-564 x 0-4343 x cO 5/(c-x)}0 5

(similar relations are developed in Hallett, 1969c, Methods). The c versus x solution curve
may be obtained by substituting (2) for o-f and simplifying.
A third solution curve is the straight line

c . F'(10m+XaT), x = F'XrT,

which represents the fact that the mean of a Poisson sum on a scale of light plus noise is c.
Equivalent background measurements. Barlow (1957, 1958) has described the history of the

Eigengrau concept and has reported his own analysis and measurements. This type of
approach has been powerfully applied by Rushton (1965) to the problems ofdark-adaptation.

Briefly in increment threshold experiments if the total noise from all sources is Poisson
distributed and tending to the normal distribution then

mean signal = K x (mean noise in space x time sample)
from background plus nervous system05,
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where K, the 'signal/noise ratio', sets the rate at which noise events are inevitably mistaken
for signal. Using the notation given in Definitions, and if B hv (507 nm) cornea sec-1 deg-2
is the background intensity, then this relation becomes

F'10" - K(F'xTX+F'aTB)0 5,
whence

loi = K(aTcF')0°5(X+B)0-5.

If B > X then 1Om is proportional to B0-5 and if B <. X then ium = constant is propor-
tional to X. Thus the intersection of the asymptotes to the log increment threshold versus
log background curve is at B = X.
The argument is not correct because usually i0m is proportional to BW, where w is not

constant, is usually greater than 0 5 and is a function of background intensity and test size
and duration. However, Barlow (1957) and Blakemore & Rushton (1965) have noted that
the intersection of the asymptotes is independent of test size and duration and background
intensity if one restricts attention to the range of background intensities well below the
beginning of rod saturation. This has not been my experience in preliminary experiments
but even if the asymptote intersection is easily definable the relation (5) may be in error
because the distribution of noise events may not tend to normality, in which case K is not
that value of a standard normal deviate which cuts off an upper tail equal to the false
positive rate.
None the less, relation (5) properly used is valuable. The increment threshold data of

Hallett (1969b) have been analysed for the individual observers and X found by regression
analysis. The values of XxT are given in Table 1.

RESULTS

Over-all quantum efficiencies, F1 and Fg
Following the proposal of Barlow (1962a), the performance of an

observer relative to an ideal detector is expressed by the over-all quantum
efficiency F defined here by the ratio

threshold of ideal detector
threshold of observer (6)

it being understood that the ideal detector performs exactly the same
task as the observer with the same accuracy. 'Threshold' and 'accuracy'
must, of course, be defined in the same way in the two cases.

In principle this definition amounts to placing a filter in front of an ideal
coincidence counter. The transmission F of the filter and the coincidence
level of the counter c' are both adjusted until the frequency-of-seeing
versus log energy curve of the counter plus filter p (loga - logF) matches
the human frequency-of-seeing curve f(logN) or g (logN) in shape and
position, e.g.

p(loga-logF) = z e-aaY/y! = f (logN),

where the middle term is the cumulative Poisson probability that c' or
more counts are registered when the mean count is a.
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In practice (a) the twof-seeing curves may never exactly match in shape
so that c' may depend on the criterion of matching, and (b) an experiment
cannot be performed on an ideal detector. If this were possible the absolute
energy scale of the apparatus would be irrelevant and F could be deter-
mined with good accuracy. As it is, the threshold of an ideal detector is
given by probability theory but the threshold of an observer is susceptible
to possibly large errors arising from the difficulties of photometric measure-
ments at low intensities. In addition the shape of an f-seeing curve is
subject to sampling errors which are by no means trivial.

Identification of c'. Table 1 summarizes the frequency-of-seeing curves
f(logN) and g(logN) obtained for the three observers by procedures already
described in detail (Hallett, 1969c).
A frequency-of-seeing sample, consisting of n = 5 presentations at each

of ten intensities varying in steps of A(logN) = 0087, plus about seven
blanks, was obtained either at the beginning or end of the day's 3 hr
observation period. Such a sample can be collected in 5-6 min. If the fre-
quencies at a given intensity are simply added for the twenty to twenty-one
samples collected over a 3-month period one obtains the 'long-term'
f-seeing curve g(logN) on an intensity scale of A(logN). Suppose now that
the samples are displaced along the logN axis to a common sample mean,
and frequencies added in bins of width (logN) extending from that mean,
and the final accumulated frequencies plotted on a scale of

(logN) x {n/(n -1)}O5
so as to eliminate bias. This curve, f(logN), will be identical with g(logN)
if there are no trends or drifts which distinguish short-term from long-term
performance. These trends do exist. They have been analysed (Hallett,
1969c) and their likely nature has an important bearing on the definition
of quantum efficiency (v.i.).

Table 1 shows estimates of c' according to two criteria. The calculation
of o-f has already been given (relation (2)). This quantity combines the
measured frequencies of seeing into a single number so that by treating the
observed and ideal curves in identical ways it is easy to identify a c' which
yields the observed of. Relations between af and c' have been given
(Hallett, 1969) and, of course, it does not matter if o-, calculated in this
way is not an accurate estimate ofthe spread ofthe thresholds xi (whichmay
occur in the observer's responses at an intensity vary in probability) since
or is simply used to 'write the signature' of c' and reduce labour. The
sampling error (of or oa) criterion for c' is to be preferred because (a)
the matched ideal detector then performs with the same sampling error as
the observer, which is very much in keeping with the spirit and practicality
of Barlow's definition of over-all quantum efficiency, and (b) the a-,
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estimate utilizes statistical information from the whole off-seeing curve,
not from local regions such as the tails or mid point. Also shown in Table 1
are estimates of c' from Barlow's (1962 a) two-point probit method, based
on frequencies near to 0 05 or 0 95, which are very close.

Calculation of the long-term over-all quantum efficiency Fg. There is no
difficulty in calculating the long-term quantum efficiency Fg. In effect the
f-seeing curve g(logN) was measured in a single experiment spread over a
3-month period and the samples mentioned above were no more than
ordinary pages of the data. Using the definition (6) for a logarithmic
measurement scale Fg is given by (c'g - 6)/l1Om where c -a is the antilog
mean log threshold of the ideal detector and a is close to 0-5 (Pirenne,
Marriott & O'Doherty, 1957, p. 77) but is in any case easily found by
direct calculation. The value for c' based on og gives Fg = ca. 0 04.

Clearly the long-term over-all quantum efficiency F., falls short of the
upper limit of about 0.1 set by Rushton (1956) and in very large measure
this is due to the variation of the mean ,a, because if this variation is
eliminatedf-seeing curves are steeper and the over-all quantum efficiency
is much higher, as will now be shown.

Calculation of the average short term over-all quantum efficiency, d(Ff).
A rigorous definition of the average short-term efficiency is dependent on a
hypothesis about the nature of the long-term trends or drifts in perfor-
mance since

&(F) = 6 (c-Al)

For many purposes it suffices to assume that the f-seeing curve f&(logN)
drifts along the logN axis without change in shape. If this is exactly true
then

(Ff) = (cf-8)10-mexpj(o-,,ln 10)2, (7)

where the exponential term arises from the need to consider a mean thres-
hold which is not the same as the antilog of the mean log threshold. Table 1
shows that the contribution of the exponential term is small and is probably
best ignored. The lowest observed threshold energy was 35 hv (507 nm)
cornea in a sample for D.B., and if the curvef (logN) were not considerably
flattened Ff would be (14- 0.5)/35 = 0-39, which is considerably greater
than Rushton's limiting value of 0 I and is only possible as a result of some
spurious factor, e.g. a brightening of the apparatus so that the mean thres-
hold was actually higher than 35 hv but this possibility is excluded by the
daily calibrations.
The average short-term quantum efficiency shown in Table 1 corre-

sponds to definition (7), the exponential term being ignored, and uses

estimates of c' from o0f. It will be noted that for two of the three observers
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the values are higher than 0.1. Are these values sufficiently high to be
fallacious? Almost certainly not. One important source of error is the
limited accuracy of photometric calibrations at low intensities; these have
been extensively reworked (see Hallett, 1969a) and the likely systematic
error is 0-05 log which would be compatible with an &(F1) which is 26 %
lower (or higher), but the absolute thresholds of the present observers are
unremarkable when compared with the values obtained by other workers.
What is more remarkable is the steepness of the curves f(logN) and the
correspondingly large values of C'f which arise from the elimination of an
important source of biological variation, the drift in the mean ,I. It is in
fact difficult to fit values of c' when c' > 8 because the shape of Poisson
sums on semilog plots, and hence o-f, do not then change very rapidly with
c'. As a fair illustration consider that the ratio of the osf's corresponding to
c' = 9 and c' = 14 is 1-25, which is about the upper 5% point of Fisher's
F (vl =V2 = 80), i.e. if c' is truly 9 it may appear to be > 14 in one experi-
ment in twenty. Finally, Rushton's (1956 b) measurements and the likely
variation between individuals do not exclude the possibility that slightly
more than 0-1 of blue-green light striking the cornea is absorbed by the
rods. In summary the average short-term quantum efficiency at the
absolute threshold is sufficiently high for it to be very likely that there is
very little loss of efficiency subsequent to the absorption of light.

Comparison with previous work. Only Hartline and McDonald (in Pirenne et al. 1957) have
accumulated a f(logN) frequency-of-seeing curve from small samples displaced to a com-
mon mean. Their curves represent the responses of eleven observers to a 30 subtense test
located 9° from the fixation point and is effectively based on 250 flashes at each intensity,
collected from a number of samples with five flashes at each intensity. The parameter c'
is given as 7, though 8 would be as good, but this reduces to c' = 5 after correction for bias.
There is no information as to whether some of their observers gave f-seeing curves as steep
as the present ones, but the over-all 'reliability' of their observers was the same, namely
about 14 false positives for 1200 blanks.

Hartline & McDonald's curve cannot reasonably be considered to conflict with the present
results since it is inappropriate to compare the average data of a few observers with results
for individuals. One should perhaps also note that the fitting of an f-seeing curve by a
Poisson curve is no proof of the homogeneity of the data, e.g. the g(logN) curves for the three
observers can be pooled to give an excellent curve for c' = 5 (shown in Hallett, 1969c,
Fig. 1). In addition the sample shifting procedures used in obtaining the curves f(logN)
have a smoothing effect so that the smoothness of these curves gives no reliable estimate of
the sampling errors. Hecht et al. (1942) and Baumgardt (1960) have obtained frequency-
of-seeing curves from single long experimentswith aboutfiftypresentations at each intensity,
using small short-duration tests appearing about 20 degrees from the fixation point. It is
convenient to consider these two excellent and meticulous investigations together. Both sets
of data are tabulated by Baumgardt. The parameter c' ranges from 5 to 8 (median 7) and
the threshold N from 80 to 130 hv (510 nm) cornea (median 102). The thresholds N are not
mean thresholds but are defined for 0-55 f-seeing so quantum efficiency is given by c'fN
and ranges from 0-038 to 0-088 (median 0-073).
Barlow (1956) has demonstrated that the position and perhaps shape of frequency-of-



seeing curves can be changed by voluntary alterations in criterion. Barlow (1962a) has
linearized the curve of the ideal detector by transforming theft axis to probit and the energy
axis to square root energy. If an actualf-seeing curve can be exactly mimicked by an ideal
coincidence counter, it suffices to measure co-ordinates at only two points (P1, Nj; P2, N2)
on thef-seeing curve, which for maximum sampling efficiency should be near P1 = 0-95 and
P2 = 0-05. This is exactly what has been done in Table 1 and it was noted that this criterion
gave slightly low estimates of efficiency relative to the o-f method. Now one suspects that
if real f-seeing curves depart from the ideal then this is most likely true in the tails of the
curves: even if the detector is perfect and c' stable a small error such that 2 % of 'seen' are
mistakenly called 'not seen' and vice versa will lead to 2 % false positives and greater pro-
minence in the tails of the f-seeing curve.
Barlow (1962b) has applied his two point probit method to a slightly different problem:

he has not asked his observers whether a given flash (either N1 or N2 at random) is visible
but whether it is the brighter (N1) or the dimmer (N2) of the pair. When N1 and N2 are near
the threshold of detection variations in brightness are slight and the 'over-all quantum
efficiency of discrimination' reduces to the over-all quantum efficiency of detection. For
these conditions, using a small brief flash 15 degrees from the fixation point Barlow esti-
mated the over-all quantum efficiency as 0-05 (s.E. 0-015) which is a little less than the
combined estimate from Hecht et al. (1942) and Baumgardt (1960) given above.

Summary. Previous work on frequency-of-seeing curves has been based
on long single experiments for which the over-all quantum efficiency of
detection at the absolute threshold is in the region of 0-06. Now Rushton's
(1956a, b) measurements of rhodopsin density show that about 0-1 of
507 nm light striking the cornea is absorbed by the rods and there is
evidence (Wald & Brown, 1953; Hagins, 1954; Rushton, 1956a, b) that
the efficiency of bleaching in vitro or in vivo is about 0-6. One is inclined
to suspect, then, on the basis of this sort of evidence that the bleaching of
rhodopsin is necessary for the generation of a nervous event and that at
least 0-4 of the absorbed information about the external world is lost. The
present data are of interest because the average short term quantum
efficiency is so high (about 0-1) that it is likely that nearly every absorbed
quantum is counted and, as Wald & Brown (1953) supposed, the bleaching
of a rhodopsin molecule to retinene is not necessary for the generation of a
nervous event. Very little, if any, of the information that the retina absorbs
from the world is, on average, lost to the brain. Of course this high
efficiency can only be appreciated because a factor which can flatten
frequency-of-seeing curves and give rise to spuriously low efficiencies (drift
in the mean #t) has been eliminated.

False positive rate and other considerations. The method of constant
stimuli allows the observer to adopt his own criterion as to what con-
stitutes the presence of the test flash. In this connexion the proportion of
blanks which are mistakenly 'seen' is a quantity of considerable interest
which has received little experimental study. False positives may arise in
two ways: (i) as a result of intrinsic noise or noise of the real background
(if present) exceeding the observer's criterion (this sort of mistake is
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unavoidable and will be made by even the most perfect statistician), (ii) as
a result of the messages for 'not seen' being distorted into 'seen' and vice
versa (this sort of error is, in principle, avoidable). Two questions arise:
(a) is the false positive rate invariant; (b) to what extent is the false positive
rate made up of avoidable and unavoidable errors?
The first answer is that the false positive rate is probably heterogeneous,

if one analyses the false positives collected from all the various viewing
conditions (zero, transient and steady backgrounds) of Hallett (1969b).
The second answer is that most false positives are avoidable errors.
The number of blanks presented in a sample was usually n = 7, 8 or 9 (the actual number

being decided by the experimenter) and the number seen was 8 = 0, 1 or 2. The estimated
false positive rate varies with sample size in a striking fashion (see Table 2) and it is no
surprise that the over-all false positive rates of Table 1 and the binomial distribution give
a poor prediction of Table 2: Q(x2) = 10-7, although if the false positive rate is calculated
for each sample size for each observer the prediction is excellent: Q(x2) = 0-48. Does the
striking effect of sample size indicate that the experimenter was sometimes able to recognize
unreliable performance and detect a temporarily increased false positive rate by making the
sample size larger? If so the range of the thresholds xi in the sample was of little use as a
clue because average sample range does not correlate with the size of the blank sample. And
if the experimenter did have some tactical plan what would have been its effect if the false
positive rate was actually homogeneous? These questions cannot be easily answered and it is
probably best to eliminate the possible effects of tactics by lumping the samples for each
observer. The numbers of the samples with 8 = 0, 1, 2 blanks 'seen' can then be satis-
factorily described by a negative binomial distribution (using p = -0-031, n = -3-29,
obtained from the over-all mean and variance of 8): Q(x2) = 0-19. The fit indicates that false
positive rate is probably heterogeneous, and would, perhaps, be improved if p and n could
have estimated from the individual observers' data-but the degrees of freedom would then
have vanished.
The second question is more difficult to answer. On a signallnoise approach frequency-

of-seeing curves, mean threshold, false positive rate and equivalent background estimates
of noise are all related by formulations of the type given by Barlow (1956, 1957). In prin-
ciple the present data contain more information than is necessary to solve the original pro-
blems posed by Barlow but the analysis of this and the previous paper have shown that the
problems are actually far more complex: the positions and shapes of frequency-of-seeing
curves, and probably false positive rates, must all be considered to vary with time. Never-
theless, it can be strongly argued that false positives are not usually unavoidable errors
arising from the confusion of noise with signal but are avoidable errors of the sort which may
arise when 'yes' is occasionally called when 'no' is appropriate.
Barlow (1957) has considered the case of a coincidence counter which operates with fixed

criterion c and is subject to intrinsic noise which is Poisson distributed about a fixed mean x.
The false positive rate and f-seeing curve of this counter are, of course, invariant in time.
It is easily shown by simple manipulations of Poisson's exponential limit (see Methods) that
corresponding to some particular false positive rate or sampling error o-f is a solution curve,
c versus x. It is important to realize that the solution curve for the observed false positive
rate and the curve for the observed sampling error oa do not intersect and this means that the
observed false positive rate is inflated by avoidable errors.

Table 1 shows the observed values of ao, c' and false positive rate. The locus of the
solutions from oa corresponds to expected false positive rates of < 10-6 for D.B., < 2 x 10-4
for B.S. and < 2 x 10-5 for M.G., whereas the observed rates are in the region of 10-2. The
locus of the solutions from the observed false positive rates corresponds to oaf appropriate
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to c' < 5 for D.B., < 5 for B.S. and < 4 for M.G. whereas the observed oa corresponds to
C' of 9-14. So large are these discrepancies that even if the signal/noise model is too simple it
still seems likely that very few false positives arise inevitably from noise.
The question now arises as to whether point solutions can be obtained from the inter-

sections of the c versus x curves derived from the sampling error of and from mean threshold
and equivalent background measurements (see Methods). Such a solution to be plausible
must not yield a primary quantum efficiency F' much larger than the value of 0.1 to 0 15,
established by Rushton's (1956a, b) ophthalmoscopic method. Provisional solutions are
indicated in Table 1.
The present results are in remarkable agreement in most respects with those of Barlow.

The signal/noise solutions in Table 1 may be compared with the values c = 19, x = 8-9,
F' = 0-14 and expected f.p.r. = 0-002 given in Barlow (1956), yet the present results are
calculated from the mean and variance of f-seeing curves and an equivalent background
estimate of dark light, whereas Barlow's results are calculated from mean and slope of
f-seeing curves and a plausible false positive rate. Using an equivalent background method
Barlow's (1957) estimate of dark light at 6.50 eccentricity from the fovea amounts to - 2-66
log scotopic trolands and the present over-all estimate at 18° eccentricity to -2-98 log
scotopic trolands. The number of noise events is about 38 hv (cornea) in each case, if one
assumes that integration extends over 0-1 sec of time and 0 4 deg2 of field, which is appro-
priate to Barlow's observers and conditions (Barlow, 1958), and over 0-1 sec and if deg2
which is appropriate to the present conditions (Hallett, 1969b; Hallett et al. 1962).

It does seem plausible that something like Barlow's signal noise analysis is true, provided
one allows that the false positive rate may be inflated by errors which arise later than the
stage of signal/noise decision.

DISCUSSION

Methods of averaging. The frequency-of-seeing curves f(logN) and
g(logN) are derived from the same data but are averaged in different ways.
In which circumstances is the one curve and its corresponding over-all
quantum efficiency appropriate and in which circumstances the other?
The curve g(logN) is the most simply derived curve. The 'long term'

quantum efficiency Fg is of interest since it shows the way in which drifts
in position and shape of the instantaneous f-seeing curve reduce quantum
efficiency but Fg and g(logN) are of no direct relevance to (say) Barlow's
(1957) signal/noise analysis. The reason is very plain if one considers the
hypothesis, approximately true for many purposes, that the instantaneous
f-seeing curve drifts without change in shape along the log energy axis:
g(logN) is the average of the spread out family of instantaneous curves and
is necessarily shallower than an instantaneous curve, but it is the spread
and position of the latter curve which is of direct relevance to quantum
efficiency. By the same token the curve f(logN) is a better estimate of the
instantaneous curve for it is calculated by displacing the samples to a
common mean and would be an unbiased estimate of the instantaneous
curve if this did not change its shape during its shifts along the log energy
axis. f(logN) and d(Ff) are the quantities of interest when over-all quan-
tum efficiency is compared with limits set by the optical density of rho-
dopsin in the rods. f(logN) and its mid-slope or sampling error o-fare the



quantities relevant to Barlow's signal/noise analysis. These points are
important because lower over-all quantum efficiencies, comparable to
those of Barlow (1962b) are obtained from g(logN), and the discrepancies
between the signal/noise solutions for observed false positive rate and
sampling error or are less striking if g(logN) is used.

It may be helpful to point out an analogy between the spread of the
f-seeing curve of a human observer and the fluctuations in the base line of a
sensitive amplifier. The spread on the short-term view ('noise') may differ
considerably from the spread on a long-term view ('noise' plus drift), but
much may depend on the individual observer or amplifier and on uses or
abuses during operation.
Sampling errors. The sampling errors in frequency-of-seeing curves have

not received much attention and only Barlow (1962 a) has considered the
sampling errors in over-all quantum efficiency (his estimates do not include
the uncertainties in absolute energy calibrations). If the responses at each
intensity are independent of each other and of constant probability then
the binomial distribution applies and confidence limits are easily found,
e.g. if twenty-five out of fifty presentations are seen then the approximate
95 % confidence limits to the estimated frequency of seeing are 0-50 + 0 14.
This sort of scatter is not obvious in results of Hecht et al. (1942) or
Baumgardt (1960) which must be regarded as fortunate samples in some
way or another, but presumably the confidence limits for the apparent
Poisson parameter c' are not so small as + 2 even in these meticulous
experiments. In the present case c' has been derived from of or oA, since
this is most appropriate to the definition of over-all quantum efficiency,
and limits to c' can easily be found from consideration of Fisher's F. as
already shown. The limits are quite wide: the short term quantum
efficiency for observer M.G. reduces from 0-15 (Table 1) to 0-08 if one
allows that c' is truly 9 and the energy calibration is 0 1 log low.

The usefulness of the quantum efficiency concept. As Barlow (1962a) has
remarked the initial interest in the quantum efficiency concept arose from
the possibility that a large quantity of human performance data could be
reduced to the statement that quantum efficiency was high and constant.
This rapidly proved not to be the case; quantum efficiency falls with light-
adaptation and is also dependent on the details ofthe task (Barlow, 1962 b).
Probably the main use of the concept is in the comparison of the perfor-
mance data obtained by different authors by different methods, since it
combines into one number information about the spread and the position
of frequency-of-seeing curves. In this respect the average short-term
quantum efficiencies of the present observers (average 0 11) are higher than
the mean value of 0-05 obtained by Barlow (1962b), possibly slightly higher
than the value of 0-07-0-08 which is appropriate to Hecht et al. (1942) and
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Baumgardt (1960), but about the same as 0 1, the most likely value of the
fraction of blue-green light incident on the cornea which is absorbed by the
rods (Rushton, 1956b). The present high values are not surprising, because
an important source of variation which can affect frequency-of-seeing
curves has been eliminated. It seems that little of the information absorbed
from the external world is lost. Exactly how much is lost will depend upon
the results of a more extensive application of Barlow's (1956) signal/noise
analysis than the provisional analysis given in this paper.
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