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In uropathogenic Escherichia coli, P pili (Pap) facilitate binding to host epithelial cells and subsequent
colonization. Whereas P pili can be produced at 37°C, the expression of these fimbriae is suppressed at 23°C.
Previously, insertion mutations in rimJ, a gene encoding the N-terminal acetyltransferase of ribosomal protein
S5, were shown to disrupt this thermoregulatory response, allowing papBA transcription at low temperature.
In this study, we created an in-frame deletion of rimJ. This deletion relieved the repressive effects not only of
low temperature but also of rich (Luria-Bertani [LB]) medium and glucose on papBA transcription, indicating
that RimJ modulates papBA transcription in response to multiple environmental stimuli. papI transcription
was also shown to be regulated by RimJ. papBA transcription is also controlled by a phase variation mecha-
nism. We demonstrated that the regulators necessary to establish a phase ON state—PapI, PapB, Dam, Lrp,
and cyclic AMP-CAP–are still required for papBA transcription in a rimJ mutant strain. rimJ mutations
increase the rate at which bacteria transition into the phase ON state, indicating that RimJ inhibits the phase
OFF3ON transition. A �rimJ hns651 mutant is viable on LB medium but not on minimal medium. This
synthetic lethality, along with transcriptional analyses, indicates that RimJ and H-NS work through separate
pathways to control papBA transcription. Mutations in rimJ do not greatly influence the transcription of the
fan, daa, or fim operon, suggesting that RimJ may be a pap-specific regulator. Overexpression of rimJ under
conditions repressive for papBA transcription complements the �rimJ mutation but has little effect on tran-
scription under activating conditions, indicating that the ability of RimJ to regulate transcription is environ-
mentally controlled.

A variety of environmental signals, including temperature,
growth medium, carbon source, osmolarity, pH, oxygen level,
and various ions, are known to regulate virulence gene expres-
sion in pathogenic bacteria. The expression of several genes is
often coordinately regulated by one or more environmental
cues (reviewed in references 15 and 36). Presumably, the bac-
terium uses these stimuli to determine whether it is within a
host or, more specifically, to identify a particular environmen-
tal niche within the host. This regulation allows for a more
efficient utilization of the bacterium’s resources and may be
necessary for productive colonization of the host.

Pyelonephritis-associated pilus (Pap) expression is regulated
by both phase variation and environmental regulatory mecha-
nisms. In many strains of uropathogenic Escherichia coli, Pap
expression allows the attachment of bacteria to uroepithelial
cells, facilitating colonization of the upper urinary tract (41,
42). Phase variation enables individual bacteria within a given
population to alternate between two states of expression:
phase ON, in which they are expressing fimbriae, and phase
OFF, in which they are not expressing fimbriae (33). Phase
variation is controlled at the transcriptional level by the for-
mation of specific DNA methylation patterns of two GATC
sites, GATCprox and GATCdist, within the pap regulatory re-
gion (6, 9, 52). Formation of these patterns relies upon the
global regulators deoxyadenosine methylase (Dam), leucine-
responsive regulatory protein (Lrp), and the cyclic AMP

(cAMP) receptor protein CAP, as well as the operon-specific
proteins PapI and PapB (reviewed in references 30 and 52).

We previously demonstrated that four environmental cues—
low temperature, rich (Luria-Bertani [LB]) medium, glucose as
a carbon source, and high osmolarity—decrease papBA tran-
scription (6, 57, 60). These environmental cues control several
E. coli fimbrial operons, confirming their importance in regu-
lating virulence gene expression (18, 20, 21, 25, 29, 37, 39, 45,
46, 60). For the papBA operon, low temperature causes all cells
to transition to a phase OFF state, both phenotypically and at
the level of DNA methylation (7, 57). Glucose and high osmo-
larity decrease the rate at which cells transition into a phase
ON state (7, 60).

Two proteins are known to be important in the regulation of
papBA transcription in response to environmental conditions,
H-NS and RimJ. H-NS is a histone-like nucleoid structuring
protein that binds to A-T-rich bent regions of DNA and reg-
ulates the expression of a number of environmentally con-
trolled virulence genes (1, 51, 61). Under all growth conditions,
papBA transcription is decreased, relative to a wild-type strain,
in an hns651 mutant, indicating that H-NS plays a positive role
in papBA transcription (54, 57, 60). However, the repression
caused by environmental signals is either fully or partially re-
lieved by an hns651 mutation such that transcription approxi-
mates levels measured for the mutant under activating condi-
tions (57, 60). Under environmentally repressive conditions,
H-NS inhibits the phase OFF3ON transition and can prevent
methylation of the pap GATCprox and GATCdist sites at 23°C,
but not 37°C (57).

RimJ was initially identified in a thermoregulatory mutant
screen in which random chromosomal mini-Tn10 (mTn10) in-
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sertions isolated within rimJ allowed papBA transcription at a
low temperature (23°C) (58, 59). RimJ is the N-terminal
acetyltransferase that modifies the ribosomal protein S5 (16).
RimJ, unlike H-NS, is exclusively a negative regulator of
papBA transcription: transcriptional levels in rimJ mutants are
similar to levels measured in the wild-type strain grown under
transcriptionally activating conditions (reference 59 and this
study). The mechanism by which RimJ represses papBA tran-
scription and how the modification of a ribosomal protein
might be involved in this process are unknown.

In this study, we provide evidence that RimJ controls papBA
and papI transcription in response to multiple environmental
cues and inhibits the phase OFF3ON transition. In the ab-
sence of RimJ, papBA transcription still relies upon the regu-

lators necessary to establish a phase ON state (Lrp, cAMP-
CAP, Dam, PapI, and PapB), while our analyses indicate that
RimJ and H-NS work in separate pathways to control papBA
transcription. RimJ appears to be a pap-specific regulator that
does not control other fimbrial operons in response to envi-
ronmental conditions. Additionally, our experiments indicate
that the ability of RimJ to control transcription is environmen-
tally regulated.

MATERIALS AND METHODS

Strains and media. The strains, plasmids, and bacteriophages used in this
study are shown in Table 1. Media and antibiotics were prepared as described
previously (38, 47, 60).

TABLE 1. Bacterial strains, bacteriophages, and plasmids used in this study

Strain, plasmid, or
bacteriophage Description Reference or source

E. coli strains
MC4100 F� araD139 �(lacIPOZYA-argF)U169 rpsL thi-1 11
NH757 B178 hns651 tyrT�::Tn10 22
DL479 MC4100 �246 lysogen (papBA-lacZYA) rimJ-2::mTn10 58
DL812 MC4100 �MW01 lysogen (fanABC�-lacZYA) 53
DL1504 MC4100 �354 lysogen (papBA-lacZYA) 9
DL1509 DL1504 rimJ-2::mTn10 This work
DL1530 MC4100 �366 lysogen (daa-lacZYA) 55
DL1910 DL1504 �lrp 54
DL1947 DL1504 hns651 54
DL2208 MC4100 �354-15 lysogen (papBA-lacZYA lysogen with ATG start codon of papB

changed to CTG)
57

DL2838 MC4100 �491 lysogen (papI-lacZYA) 57
DL3052 MC4100 �354-73 lysogen (papBA-lacZYA lysogen containing papI frameshift mutation) 57
DL2873 DL1910 rimJ-2::mTn10 This work
DL3089 DL1504 �crp-45 zhd-3083::Tn10 D. A. Low
AAEC198A MG1655 �lacZYA fimA-lacZYA 5
CWZ381 DL812 rimJ-2::mTn10 This work
CWZ382 DL1530 rimJ-2::mTn10 This work
CWZ387 MC4100 �rimJ This work
CWZ388 DL1504 �rimJ This work
CWZ395 CWZ388 containing pCWZ101 and pMV101 This work
CWZ400 AAEC198A rimJ-2::mTn10 This work
CWZ403 CWZ388 hns651 This work
CWZ405 CWZ388 �crp-45 zhd-3083::Tn10 This work
CWZ406 CWZ387 hns651 This work
CWZ410 DL1504 dam-13::Tn9 This work
CWZ411 DL1509 dam-13::Tn9 This work
CWZ412 DL2838 rimJ-2::mTn10 This work
CWZ418 CWZ387 �354-73 lysogen This work
CWZ419 CWZ387 �354-15 lysogen This work

Bacteriophages
P1L4 Virulent phage P1 D. A. Low
�491 papI-lacZYA fusion phage 57
�354 papBA-lacZYA fusion phage 9
�354-15 papBA-lacZYA lysogen with ATG start codon of papB changed to CTG 57
�354-73 papBA-lacZYA lysogen containing papI frameshift mutation 57
�366 daa-lacZYA fusion phage 55
�MW01 fanABC�-lacZYA fusion phage 10, 53

Plasmids
pUHS*2 Pzl-2 ColE1 replicon containing the Plac/ara-1 promoter 35
pMV101 pMC9 derivative containing lacIq that is Aps Tcr 14
pMV106 pUHS*2 Pzl-2 with replacement of Knr with Apr 14
pKO3 pSC101 replicon containing repA (Ts) replication origin, sacB, and Cmr 32
pCWZ100 pKO3 containing �rimJ deletion This work
pCWZ101 pMV106 containing rimJ under Plac/ara-1 promoter This work
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Construction of mutant strains by P1 transduction. The preparation of P1
lysates and P1 transductions were carried out as described previously (47, 60).
rimJ-2::mTn10, dam-13::Tn9, �crp-45, and hns651mutant strains were created by
P1 transduction of the individual mutations into the appropriate recipient strain
(Table 1).

UV induction and lysogenization of UV-induced phage. UV induction and
lysogenization were performed as described previously (47, 58). UV induction
was performed on DL3052 and DL2208, with the resulting phage lysates used to
lysogenize CWZ387, creating CWZ418 and CWZ419, respectively (Table 1).

Construction of �rimJ strain. Crossover PCR was used to create an internal,
in-frame deletion within rimJ by the method of Link et al. (32). Primers rimJ(A),
5�-CGCGGATCCGGCGATACCCATTGTGGC-3�, and rimJ(B), 5�-CCCATC
CACTAAACTTAAACAACTGCGATAGCCAAACAT-3�, were used to gener-
ate a 573-bp upstream fragment, and primers rimJ(C), 5�-TGTTTAAGTTTAG
TGGATGGGGCATTAACTACCCCAGAC-3�, and rimJ(D), 5�-CGCGGATC
CCGCGTTTACCCGGTTCGC-3, were used to generate a downstream 556-bp
fragment. The two PCR products were combined in a secondary PCR using
primers rimJ(A) and rimJ(D) for amplification. The BamHI-SalI-digested PCR
product was cloned into BamHI-SalI-digested pKO3 to create pCWZ100 (Table
1).

pCWZ100 was transformed (12) into DL1504, and the selection for integration
of the �rimJ deletion onto the chromosome was performed as described previ-
ously, with the exception that the incubation on sucrose was completed at 23
rather than 30°C (32). Colony PCR was used to detect clones in which the
amplification of the rimJ region showed the expected decrease in size. In the
resulting �rimJ strain, CWZ388 (Table 1), the region overlapping the deletion
was sequenced to confirm the correct replacement. Steps identical to those
described above were followed to construct CWZ387 (Table 1).

Construction of pCWZ101 for overexpression of RimJ. rimJ was amplified
from wild-type DL1504 chromosomal DNA using primers 5�-CGGAATTCGC
GTATTAAAGACGTTAC-3� and 5�-GCTCTAGACAAGGGCAGTAAGTTG
AT-3�. The amplified fragment and pMV106 were each digested with EcoRI and
BamHI and subsequently ligated to create pCWZ101 (Table 1). pCWZ101 and
pMV101, containing the lacIq gene, were cotransformed (12) into CWZ388 to
yield strain CWZ395 (Table 1).

Growth conditions. Media (M9 glyc, M9 gluc, M9 NaCl, and LB) were pre-
pared as described previously (60). For growth conditions that are activating for
papBA transcription, the bacteria were cultured in 10 ml of M9 glyc at 37°C. Low
temperature was tested by growing the bacteria at 23°C in M9 glyc, whereas rich
medium was tested by growth of bacteria in LB broth at 37°C. Cultures grown at
37°C in M9 gluc or M9 NaCl medium were used to measure the effect of a change
in carbon source and osmolarity, respectively. Glucose was substituted for glyc-
erol in the M9 minimal medium (M9 gluc). The sodium chloride concentration
was increased by 300 mM (M9 NaCl) compared to 8.5 mM sodium chloride in
the M9 glyc medium to test osmolarity.

Culture inoculation and measurement of �-galactosidase activity. For the
assays determining the effects of environmental stimuli on fimbrial transcription,
each bacterial culture was inoculated as described previously (60). To assess the
effect of rimJ overexpression in CWZ395, two phase ON (Lac�) colonies were
excised from M9 glyc agar at 37°C and resuspended in 2 ml of M9 salts. Flasks
containing 10 ml of the prewarmed medium (M9 glyc or LB) with the appropri-
ate concentration of isopropyl-�-D-thiogalactopyranoside (IPTG) were inocu-
lated with 140 �l of the colony suspension. These inoculation methods ensured
that all the bacterial cultures had grown for approximately 9 to 11 generations
under the new conditions prior to the measurement of �-galactosidase activity.
The bacterial cultures were grown to exponential phase (optical density at 600
nm, 0.25 to 0.9), and �-galactosidase activities were measured as described
previously (38). All the values for the �-galactosidase activities represent aver-
ages from two or more independent cultures grown under identical conditions.

Calculation of switch frequencies. Phase transition rates were calculated as
described previously (7, 60). Weighted averages were calculated from at least two
independent analyses and are given as the number of events per cell per gener-
ation.

RESULTS

An in-frame deletion of rimJ causes a loss of papBA ther-
moregulation. An in-frame deletion of rimJ was created to
analyze the effect of a total loss of the RimJ protein on papBA
transcription. The two originally characterized rimJ::mTn10
mutations, previously designated tcp, for thermoregulatory

control of pap, are insertions within the 3� end of rimJ, and
minicell analysis demonstrated that for both insertions a fusion
protein was expressed (59). Thus, the effect of the rimJ::mTn10
mutations on papBA thermoregulation could be due to either
a total loss of RimJ activity in these mutants or an alteration in
the levels or specificity of RimJ activity. In addition, because all
of the previously mapped insertions in rimJ from our labora-
tory and others were in the C terminus, the possibility was
raised that rimJ might be an essential gene (59, 63).

A deletion of rimJ was created by crossover PCR, cloned
into the allelic exchange vector pKO3, and recombined onto
the chromosome of DL1504, producing the �rimJ strain
CWZ388 (Table 1). In the �rimJ mutation, the DNA se-
quences for the first 5 and the last 11 amino acids of RimJ are
retained while the internal 179 amino acids of RimJ are re-
placed by an insertion that encodes 8 amino acids. The inser-
tion is in frame, preventing any polar effects on two down-
stream genes of unknown function that appear to be in the
same operon as rimJ.

The �rimJ deletion strain CWZ388 showed a phase variation
phenotype at both 37 and 23°C on M9 glyc, demonstrating that
the �rimJ mutation disrupts thermoregulation, similar to the
rimJ::mTn10 insertions characterized previously (58) (data not
shown). Our results also demonstrate that rimJ is not essential.
Acetylation of S5 is not required for cell growth, as the �rimJ
strain displays a growth rate similar to that of the wild-type
strain DL1504 under all of the environmental conditions tested
in this study (data not shown).

RimJ represses papBA transcription in response to multiple
environmental cues. To determine if RimJ controlled papBA
transcription in response to environmental cues other than
temperature, �-galactosidase activity was measured in the
wild-type strain DL1504 and the rimJ mutant strains, CWZ388
(�rimJ) and DL1509 (rimJ-2::mTn10), under differing environ-
mental conditions. A phase ON (Lac�) colony was used to
inoculate each culture, ensuring that transcriptionally active
cells were used to initiate the culture. Within a Lac� colony, 20
to 50% of cells are in a phase ON state (data not shown).

In the wild-type strain, papBA transcription is decreased by
low temperature, LB medium, glucose as a carbon source, and
high osmolarity compared to the activating conditions of M9
glyc at 37°C (Fig. 1) (60). The �rimJ mutation and the
rimJ-2::mTn10 mutations relieve the repression due to low
temperature and LB medium such that papBA transcriptional
levels under these normally repressive conditions are similar to
levels observed at 37°C in M9 glyc (Fig. 1). While we previously
reported a greater reduction due to glucose (60), more recent
experiments indicate that papBA transcription is decreased
approximately 1.8-fold, similar to the 3.4-fold reduction mea-
sured by Båga et al. (2). Both rimJ mutations increased tran-
scription in glucose to levels greater than that seen in M9 glyc
at 37°C (Fig. 1). These results extend the function of RimJ
beyond that of a thermoregulator, as RimJ responds to multi-
ple environmental cues to control papBA transcription.

We note that RimJ is not a major regulator in response to
osmolarity. While the levels of papBA transcription are slightly
elevated in the �rimJ and the rimJ-2::mTn10 mutant strains
grown in M9 NaCl compared to the wild-type strain, high
osmolarity still has a repressive effect on papBA transcription
in the mutant strains (Fig. 1).
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RimJ controls papI transcription. The PapI regulatory pro-
tein is necessary to establish the phase ON state and activate
papBA transcription (8). papI is transcribed on a monocistronic
operon, divergent from papBA (26, 57). To determine if RimJ
also controls papI transcription, the rimJ-2::mTn10 mutation
was transduced into DL2838, which contains a papI-lacZYA
fusion, creating strain CWZ412 (Table 1). Overall levels of
papI transcription were decreased in the wild-type strain
DL2838 at 23 (11 � 4 Miller units [MU] [38]) compared to
37°C (203 � 35 MU), whereas in CWZ412, papI transcription
levels were similar at 37 (157 � 9 MU) and 23°C (120 � 14
MU). Similar to papBA transcription, LB medium decreased
papI transcription in the wild-type strain (3 � 0 MU). The
rimJ-2::mTn10 mutation increased papI transcription (28 � 5
MU) but did not restore it to the levels seen in M9 glyc.
Glucose did not greatly alter papI transcription in the wild-type
(218 � 10 MU) or the rimJ-2::mTn10 mutant (113 � 19 MU)
strain.

Maximal papBA transcription in a rimJ mutant strain re-
quires PapI, PapB, Lrp, Dam, and cAMP-CAP. In order to
establish a phase ON state for papBA transcription, PapI, Lrp,
cAMP-CAP, and Dam are required, while PapB plays primar-
ily an indirect role in phase variation, that of activating papI
transcription (reviewed in reference 30). To determine if these
same regulators are still required for papBA transcription in
the absence of RimJ, a rimJ mutation was tested for its effect
on transcription in the absence of each individual regulator.
Regardless of whether RimJ was present or absent, no phase
variation was seen in strains lacking PapI, Lrp, or Dam, and
transcription measured at 37 or 23°C was low (Table 2), indi-
cating that these regulators are still required to initiate tran-
scription in the absence of RimJ. In CWZ419 lacking PapB
and RimJ, a phase variation phenotype was observed at 37°C in
which Lac� colonies displayed a pale-blue phenotype and only
Lac� colonies were observed at 23°C. The phase ON cells
observed in the papB �rimJ mutant might result from in-
creased papI transcription due to the rimJ mutation. However,

the level of papI transcription in the absence of PapB activa-
tion must not be equivalent to that in the �rimJ strain
CWZ388, as overall papBA transcription levels are minimal
(Table 2).

A �crp-45 �rimJ strain was viable on LB medium but was
unable to grow on M9 glyc or M9 gluc agar, indicating that the
absence of both proteins was deleterious for growth on mini-
mal medium. Measurement of transcription in the wild-type
strain DL1504 in LB medium yielded 8 � 0 MU due to the
repression of LB medium on papBA transcription, while tran-
scription was elevated to 71 � 5 MU in the �rimJ strain
CWZ388. The double-mutant strain CWZ403 (�rimJ �crp-45)
displayed a level of papBA transcription identical to that of the
�crp-45 strain DL3089 (5 � 0 MU), demonstrating that papBA
transcription remains cAMP-CAP dependent in the absence of
RimJ. Taken together, these data indicate that all of the reg-
ulators necessary to attain a phase ON state are still required
in the absence of RimJ.

RimJ inhibits the transitioning of cells to the phase ON
state. Phase transition rates were calculated to determine if the
loss of repression due to the rimJ mutations could be attributed
to alterations in switch frequencies. While LB medium results
in repression of papBA transcription, all colonies display a
uniform colony phenotype on LB medium, and phase transi-
tion rates could not be calculated.

For the wild-type and rimJ mutant strains, the phase
ON3OFF rates on M9 gluc and M9 NaCl are similar to the
rates calculated on M9 glyc at 37°C, indicating that the carbon
source, high osmolarity, and the rimJ mutations do not greatly
influence the rate at which cells transition to the phase OFF
state (Table 3) (60). At a low temperature for the wild-type
strain, all colonies display a phase OFF colony phenotype,
correlating with a phase OFF DNA methylation state (57). The
rate at which cells transition from the phase ON to a phase
OFF state at 23°C in the rimJ mutants is similar to the rate on
M9 glyc at 37°C. These results indicate that the absence of
RimJ removes the temperature repression of phase variation,
but once it is removed, cells transition to a phase OFF state at
a rate similar to that under the other conditions tested.

In contrast, the phase OFF3ON transition rates for the
papBA operon are influenced by the rimJ mutations and envi-
ronmental conditions (Table 3). At 37°C on M9 glyc, the phase

FIG. 1. Effects of environmental stimuli on pap fimbrial transcrip-
tion in wild-type and rimJ mutant strains. The bars indicate �-galac-
tosidase activities measured in the wild-type strain DL1504 (solid
bars), in strain CWZ388 containing the �rimJ mutation (open bars),
and in strain DL1509 containing the rimJ-2::mTn10 mutation (hatched
bars). �-Galactosidase activity was measured as described in Materials
and Methods. Error is expressed as 1 standard deviation from the
mean.

TABLE 2. Effects of a rimJ mutation on papBA transcription
in various mutant strains

Strain Relevant genotype

�-Galactosidase activitya

37°C M9
glyc

23°C M9
glyc

DL3052b papI frameshift mutation 9 � 0 6 � 0
CWZ418 papI frameshift �rimJ 23 � 1 11 � 1
DL2208b papB CTG start codon mutation 4 � 0 2 � 0
CWZ419 papB CTG start codon �rimJ 35 � 4 5 � 0
DL1910b �lrp 4 � 2 3 � 2
DL2873 �lrp rimJ-2::mTn10 3 � 1 3 � 0
CWZ410 dam-13::Tn9 73 � 2 11 � 0
CWZ411 dam-13::Tn9 rimJ-2::mTn10 68 � 5 12 � 1

a �-Galactosidase activity is expressed as Miller units (38) and was measured
as described in Materials and Methods. Error is expressed as �1 standard
deviation from the mean.

b �-Galactosidase activities were previously published (57).
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OFF3ON transition rates are increased in the �rimJ and
rimJ-2::mTn10 mutant strains compared to the wild-type strain,
demonstrating that the rimJ mutations increase the phase
OFF3ON rate in the absence of an environmental change.
The �rimJ and rimJ-2::mTn10 mutations allow cells to transi-
tion to the phase ON state at a low temperature and increase
the phase OFF3ON transition rates on glucose compared to
the wild-type strain (Table 3). While the phase OFF3ON
rates are significantly increased over the wild-type rates under
these conditions, they are reduced compared to the rates ob-
served at 37°C on M9 glyc, indicating that the stimuli of low
temperature and carbon source still retain a partial repressive
effect on the phase OFF3ON transition rate in the absence of
RimJ. This partial repression may be mediated by H-NS, which
also inhibits the phase OFF3ON transition rate (60). High
osmolarity also inhibits the rate at which cells transition to a
phase ON state in the wild-type strain DL1504 (Table 2).
Unlike the other conditions tested, the phase OFF3ON tran-
sition rates are further decreased in the rimJ mutant strains
when they are grown on M9 NaCl (Table 3), in agreement with
the transcriptional analyses, in which the rimJ mutations do not
relieve the repression due to high osmolarity.

RimJ and H-NS control papBA transcription through sep-
arate pathways. While the rimJ and hns651 mutant strains
differ in many ways, both H-NS and RimJ have been shown to
control papBA transcription in response to multiple environ-
mental signals and share the common function of inhibiting the
phase OFF3ON transition rate (57, 60), raising the question
of whether RimJ and H-NS work through the same or separate
regulatory pathways to control papBA transcription.

A �rimJ hns651 double mutant strain, CWZ403, was con-
structed that was viable on LB medium but was unable to grow
on M9 glyc or M9 gluc agar, indicating that the absence of both
proteins was deleterious for growth on minimal medium. This
phenotype is independent of papBA gene expression, as the
same lethality was seen in the �rimJ hns651 mutant strain
CWZ387, which does not contain the papBA-lacZYA transcrip-
tional fusion (data not shown). On M9 glyc, the hns651 mutant
strain DL1947 has a significantly decreased growth rate and
displays a mucoid phenotype, whereas the �rimJ mutant strain

CWZ388 is indistinguishable from the wild-type strain DL1504
in growth rate and colony morphology. On LB medium, the
�rimJ hns651 double-mutant strain grows more slowly than the
wild-type or �rimJ strain, similar to the hns651 mutant strain
DL1947. The lethality of the double-mutant strain on minimal
medium indicates that RimJ and H-NS work through parallel
pathways, since an additional change in phenotype in the �rimJ
hns651 mutant strain, relative to the single mutants, would not
be expected if both regulators were in the same pathway.

Due to the loss of viability of the double-mutant strain on
M9 glyc, papBA transcription was measured after growth in LB
medium at 37°C. In both of the single-mutant strains, CWZ388
(�rimJ) and DL1947 (hns651), the repression due to LB me-
dium was relieved by the individual mutations compared to the
wild-type strain DL1504 (Fig. 2). Overall transcription in the
�rimJ strain was not as high as previously measured in cultures
initiated from a Lac� colony (Fig. 1). Because the strains in
this experiment were initially streaked on LB medium, it could
not be determined if cultures were started with a phase ON
(Lac�) or phase OFF (Lac�) colony, possibly accounting for
the lower level of papBA transcription. Plating of LB medium-
grown colonies for CWZ388 onto M9 glyc showed an average
of 5% of cells in the phase ON state, correlating with the low
transcription measured in these cultures. In the hns651 strain,
only a very low percentage of phase ON cells (2%) were ob-
served even under transcriptionally activating conditions (54).
In the �rimJ hns651 double mutant, papBA transcription was
elevated to levels slightly higher than those with either muta-
tion alone (Fig. 2). Using a nested analysis of variation, the
differences in �-galactosidase activity due to the genotype of
the strain were found to be statistically significant, supporting
the conclusion that RimJ and H-NS work through different
pathways.

RimJ does not control transcription of the fan, daa, or fim
operon in response to environmental conditions. The fan, daa,
and fim fimbrial operons share common regulators and regu-
latory mechanisms with pap, leading us to hypothesize that
RimJ might control their transcription. Transcription of all
three fimbriae is regulated by Lrp and H-NS (5, 10, 25, 60).
Transcription of the daa operon that encodes F1845 fimbriae

TABLE 3. Effects of �rimJ and rimJ-2::mTn10 mutations on phase transition rates for papBA operon under different
environmental conditions

Phase Environmental conditionsa
Phase transition rateb

Wild typec �rimJ rimJ-2::mTn10

ON3OFF 37°C M9 glyc 3.37 	 10�2 2.60 	 10�2 2.20 	 10�2

23°C M9 glyc NA 3.97 	 10�2 3.68 	 10�2

M9 gluc 4.40 	 10�2 1.95 	 10�2 4.04 	 10�2

M9 NaCl 4.23 	 10�2 3.99 	 10�2 3.89 	 10�2

OFF3ON 37°C M9 glyc 3.50 	 10�4 1.43 	 10�3 8.40 	 10�4

23°C M9 glyc NA 2.55 	 10�5 6.14 	 10�5

M9 gluc ND 8.26 	 10�5 1.11 	 10�4

M9 NaCl 1.59 	 10�4 7.28 	 10�5 4.97 	 10�5

a The same growth medium was used for the isolation of the initial colony (Lac� or Lac�) and for the subsequent quantitation of phase transition rates from the
initial colony.

b Phase transition rates were measured in the wild-type strain DL1504, �rimJ mutant strain CWZ388, and rimJ-2::mTn10 mutant strain DL1509. The weighted
averages were calculated from at least two independent analyses as described by Blyn et al (7). The frequencies are given as the number of events per cell per generation.
The phase transition rates for DL1504 were previously published (60).

c NA, not applicable; wild-type strain DL1504 does not undergo phase variation at low temperature. ND, not determined; a weighted average could not be calculated
for DL1504, as no Lac� colonies were observed in a screening of approximately 37,000 colonies from four independent analyses. An earlier study using a similar, but
not identical, papBA-lacZYA transcriptional fusion yielded a phase transition frequency of 4.51 	 10�6/cell/generation (7).
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(3) is controlled by a methylation-dependent phase variation
mechanism similar to pap (55), whereas transcription of the fim
operon encoding type I fimbriae (4, 13, 28) relies upon an
invertible promoter phase variation mechanism (18, 43, 44).
Transcription of the fan operon encoding K99 fimbriae (24) is
not known to be subject to phase variation.

Previously, we showed that fan and daa transcription is re-
pressed by the same environmental cues as that of pap—low
temperature, LB medium, glucose as a carbon source, and high
osmolarity (Table 4) (60). In this study, we demonstrate that
fim transcription is also reduced by growth at a low tempera-
ture and in LB medium, in agreement with other studies show-
ing that temperature and medium influence the rate at which
cells transition to a phase OFF state (25) (Table 3).

For all three operons, the rimJ-2::mTn10 mutation did not
relieve repression due to low temperature or growth in LB
medium. The level of fan transcription in the rimJ-2::mTn10
mutant strain CWZ381 was similar to that of the wild-type
strain DL812 under these conditions (Table 4). Similarly, the
transcription of the daa operon in CWZ382 was not altered by
introduction of the rimJ-2::mTn10 mutation, nor was the tran-

scription of fim in CWZ400 (Table 4). Taken together, these
data suggest that RimJ may be a pap-specific regulator in
response to environmental conditions.

Overexpression of rimJ complements the �rimJ mutation at
23°C or in LB medium but does not repress papBA transcrip-
tion at 37°C in M9 glyc. To analyze the effect of rimJ overex-
pression on papBA transcription, rimJ was cloned under the
control of the Plac/ara-1 promoter in pCWZ101 (Table 1). At
23°C without the addition of IPTG, papBA transcription was
reduced 2.4-fold compared to the level seen at 37°, indicating
that some transcription of rimJ occurs in the absence of IPTG
induction and that this low level partially complements the
�rimJ mutation on the chromosome of CWZ395 (Fig. 3). At
IPTG levels of 10 to 1,000 �M, papBA transcription was re-
duced to levels similar to those of the wild-type strain DL1504
at low temperature, demonstrating that pCWZ101 is able to
fully complement the �rimJ mutation on the chromosome in
M9 glyc at 23°C. At 37°C, papBA transcriptional levels were
similar to the initial measurement made at 37°C in the absence
of IPTG (Fig. 3). Thus, the overexpression of rimJ does not

FIG. 2. Effects of the �rimJ and hns651 mutations on papBA tran-
scription. The bars indicate �-galactosidase activities measured in the
wild-type (wt) strain DL1504, in the �rimJ mutant strain CWZ388, in
the hns651 mutant strain DL1947, and in the �rimJ hns651 double-
mutant strain CWZ403. �-Galactosidase activity was measured as de-
scribed in Materials and Methods. Error is expressed as 1 standard
deviation from the mean.

FIG. 3. Effect of increasing levels of rimJ on papBA transcription.
The strain CWZ395 containing pCWZ101 (rimJ under the control of
the Plac/ara-1 promoter) and pMV101 (lacIq) was used in this experi-
ment. IPTG was added at concentrations ranging from 0 to 1,000 �M
as indicated to induce expression of rimJ. The data points indicate
�-galactosidase activities measured after growth in M9 glyc at 37°C
(circles), LB at 37°C (squares), and M9 glyc at 23°C (triangles). �-Ga-
lactosidase activity was measured as described in Materials and Meth-
ods. Error is expressed as �1 standard deviation from the mean.

TABLE 4. Effects of the rimJ-2::mTn10 mutation on fimbrial transcription of the fan, daa, and fim operons

Operon fusion Relevant genotype
�-Galactosidase activitya

37°C M9 glyc 23°C M9 glyc LB

fanABC�-lacZYA Wild type 8,163 � 1,526 95 � 6 1,538 � 188
rimJ-2::mTn10 4724 � 440 92 � 39 1,977 � 706

daa-lacZYA Wild type 72 � 14 45 � 4 7 � 1
rimJ-2::mTn10 36 � 13 38 � 6 10 � 6

fimA-lacZYAb Wild type 2,271 � 273 716 � 195 69 � 10
rimJ-2::mTn10 2,036 � 239 847 � 194 85 � 7

a �-Galactosidase activity is expressed as Miller units (38) and was measured as described in Materials and Methods. Error is expressed as �1 standard deviation
from the mean.

b Strains DL812 (wild type) and CWZ381 (rimJ-2::mTn10) were used to analyze fan transcription, DL1530 (wild type) and CWZ382 (rimJ-2::mTn10) were used for
daa transcription, and AAEC198A (wild type) and CWZ400 (rimJ-2::mTn10) were used for fim transcription.
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repress papBA transcription at 37°C in M9 glyc. Similar to the
results seen at low temperature in M9 glyc, papBA transcrip-
tion in LB medium at 37°C was reduced 1.8-fold in the absence
of IPTG induction (Fig. 3). At increasing concentrations of
IPTG (1 to 1,000 �M), the overexpression of rimJ in LB me-
dium repressed papBA transcription. The complementation in
this case was not as complete as that observed at 23°C in M9
glyc, as papBA transcription did not decrease to the levels
measured for the wild-type strain in LB medium (Fig. 1).

DISCUSSION

In this study, we provide evidence that the function of RimJ
extends beyond that of a thermoregulator. RimJ is involved in
cellular response to other environmental cues, including
growth (LB) medium and glucose as a carbon source. We can
envision two different, and not necessarily mutually exclusive,
models for the role of RimJ in decreasing papBA transcription
in response to these signals. In one model, RimJ alters phase
variation frequencies by decreasing the rate at which cells
transition to a phase ON state and/or increasing the rate at
which cells transition to a phase OFF state. Alternatively, RimJ
may act to inhibit papBA transcription by a mechanism inde-
pendent of phase variation.

In accordance with the first model, our results demonstrate
that RimJ inhibits the transition of cells into the phase ON
state. This effect on the transition rate may be the only mech-
anism required to account for the effect of RimJ on papBA
transcription when glucose is provided as the sole carbon
source. Because glucose does not alter the ON3 OFF rate
(Table 3) (60), we postulate that the only effect of glucose is to
prevent cells that are phase OFF from transitioning into the
phase ON state due to limiting cAMP-CAP. Phase ON cells
used to initiate the culture maintain a transcriptionally active
state after transfer into M9 gluc, but in the absence of a
mechanism to recruit new cells into the phase ON state, papBA
transcription gradually decreases (Fig. 1). Growth of cultures
for longer periods in M9 gluc show further reduction in overall
papBA transcription and the percentage of cells in the phase
ON state, consistent with this model (data not shown). The
increase in papBA transcription in the rimJ mutants, relative to
the wild-type strain, results from an increased frequency of
cells switching to the phase ON state. It is a paradox how phase
OFF cells in a rimJ mutant strain attain a phase ON state in
glucose, since cAMP-CAP should be limiting. We note that the
phase transition rates measured in glucose for the rimJ mutants
are greater than those measured in the wild type in M9 gluc but
are significantly decreased compared to the wild type and rimJ
mutants in glycerol.

In contrast to glucose, low temperature and LB medium
cause a more dramatic reduction in papBA transcription, sug-
gesting that RimJ may play an additional role unrelated to
inhibiting the phase OFF3ON transition. At low temperature,
all of the cells transition to a phase OFF state in the wild-type
strain. If temperature regulation were dependent only upon
phase variation, it would suggest that at low temperature RimJ
both increases the phase ON3OFF rate and decreases the
phase OFF3ON rate. Yet in the rimJ mutant strains, the
ON3OFF rates at 23°C on M9 glyc are basically unchanged
relative to the wild-type strain at 37°C, arguing that RimJ does

not function by simply altering this transition rate. Previous
temperature downshift experiments show that papBA tran-
scription is rapidly repressed within 1 generation of growth at
23°C while approximately 20% of the cells are still in the phase
ON state based on analysis of the DNA methylation states
(57). Thus, RimJ may have an additional role in the rapid
repression of papBA transcription prior to transition to the
phase OFF methylation state. Additional experiments are be-
ing pursued to understand the interrelationship between envi-
ronmental regulation and phase variation, particularly in re-
sponse to LB medium.

It is not known whether the acetyltransferase activity of
RimJ is necessary for the regulation of papBA transcription,
although the evidence presented here is suggestive. The two
sequenced rimJ::mTn10 insertions are inserted between motifs
A and B (59), motifs conserved in the N-acetyltransferase
superfamily and that encompass the acetyl-coenzyme A bind-
ing site (19, 34, 40, 49). Minicell analysis demonstrated that
fusion proteins of RimJ with the mTn10 elements are ex-
pressed (59), suggesting that it may be the disruption of the
acetyl-coenzyme A site and not loss of the entire protein that
leads to the loss of papBA repression. This conclusion is fur-
ther supported by the observation that the rimJ-2::mTn10 and
�rimJ mutations have similar effects on papBA transcription
and phase variation. A search using only the N-terminal por-
tion of RimJ did not detect homology to any known conserved
domain: no other known function can, at present, be attributed
to RimJ.

RimJ may be acting indirectly by altering the quantity of a
regulatory protein or directly by modifying a protein involved
in papBA transcription and influencing its activity. While it has
been shown that RimJ is highly specific for its ribosomal sub-
strate, S5, RimJ may have additional nonribosomal substrates
(27, 63). Given that H-NS controls transcription of the papBA
operon and that studies have indicated that H-NS is posttrans-
lationally modified (17, 51), one possible model argues that
RimJ acetylates H-NS, modulating its activity under varying
environmental conditions. Our results are not consistent with
this conclusion but rather indicate that RimJ and H-NS func-
tion in separate pathways. In addition, RimJ does not alter
H-NS levels, as these levels remain unchanged at 23 and 37°C
(57). While alternative substrates for RimJ must be consid-
ered, it is possible that the acetylation of S5 determines
whether full-length papBA transcription is completed only un-
der the activating, but not the repressive, conditions. In addi-
tion to their well-known structural roles, the ribosomal pro-
teins S4, S10, and L4 also play roles as transcriptional
antiterminators (23, 31, 48, 50, 56, 62). S5 may play a similar
dual role. Studies in our laboratory are aimed at determining
RimJ substrate specificity and the importance of the acetylase
activity for the repression of papBA transcription.

With these ideas in mind, it is intriguing to consider how
RimJ responds to environmental conditions to repress papBA
transcription. Transcription of rimJ may itself be modulated by
environmental signals, but this simple mechanism is undercut
by the rimJ overexpression results. An inducible promoter is
used in this experiment, making rimJ transcription unrespon-
sive to environmental conditions. Nevertheless, increasing rimJ
mRNA levels under activating conditions is insufficient to re-
press papBA transcription, indicating that functionally active
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RimJ protein, capable of decreasing papBA transcription, is
not being produced in M9 glyc at 37°C. Thus, alternative hy-
potheses must be proposed for how the function of RimJ is
sensitive to environmental conditions. It is possible that rimJ
mRNA stability, RimJ protein stability, or RimJ translation is
environmentally controlled, thus ensuring production of RimJ
only under repressive conditions. Alternatively, it may be that
RimJ protein is equally expressed under all growth conditions
but that it is only active under repressing environmental con-
ditions. Lastly, it may be that the substrate of RimJ is itself
regulated by environmental conditions. Our preliminary exper-
iments rule out the environmental modulation of at least one
important RimJ substrate: S5 is present under all of the con-
ditions tested, and S5 expression levels are not altered by the
�rimJ mutation (data not shown).

From our overexpression data, we note that the function of
RimJ can be modulated by multiple environmental cues and
that the presence of a single repressive cue will determine the
activity of RimJ. When grown in M9 glyc, the ability of RimJ to
repress papBA transcription is temperature dependent. How-
ever, when the medium is changed to LB, RimJ is able to
repress papBA transcription even at a higher growth temper-
ature. Thus, while one stimulus is activating (temperature), the
other stimulus is repressive (growth medium), and the repres-
sive stimulus dictates the activity of RimJ. This represents an
efficient mechanism for regulation that may be important in
vivo, where it may be necessary to control virulence gene ex-
pression based on multiple environmental cues.

Taken together, our investigations of RimJ demonstrate its
importance for regulating the expression of papBA expression
in response to multiple environmental cues. Environmental
cues play an integral role in regulating virulence gene expres-
sion that may impact a pathogen’s ability to colonize a host and
its survival in external environments. Consequently, RimJ may
play a significant role in the adaptation of uropathogenic E.
coli to changing environments.
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