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Reduced Heart Rate Volatility
An Early Predictor of Death in Trauma Patients
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Objective: To determine if using dense data capture to measure
heart rate volatility (standard deviation) measured in S-minute in-
tervals predicts death.

Background: Fundamental approaches to assessing vital signs in
the critically ill have changed little since the early 1900s. Our prior
work in this area has demonstrated the utility of densely sampled
data and, in particular, heart rate volatility over the entire patient
stay, for predicting death and prolonged ventilation.

Methods: Approximately 120 million heart rate data points were
prospectively collected and archived from 1316 trauma ICU patients
over 30 months. Data were sampled every 1 to 4 seconds, stored in
a relational database, linked to outcome data, and de-identified. HR
standard deviation was continuously computed over 5-minute inter-
vals (CVRD, cardiac volatility—related dysfunction). Logistic re-
gression models incorporating age and injury severity score were
developed on a test set of patients (N = 923), and prospectively
analyzed in a distinct validation set (N = 393) for the first 24 hours
of ICU data.

Results: Distribution of CVRD varied by survival in the test set.
Prospective evaluation of the model in the validation set gave an
area in the receiver operating curve of 0.81 with a sensitivity and
specificity of 70.1 and 80.0, respectively. CVRD predict death as
early as 24 hours in the validation set.

Conclusions: CVRD identifies a subgroup of patients with a high
probability of dying. Death is predicted within first 24 hours of stay.
We hypothesize CVRD is a surrogate for autonomic nervous system
dysfunction.
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Fundamental approaches to assessing vital signs in the
critically ill have changed little since the early 1900s,
when Cushing' asserted the importance of periodically re-
cording blood pressure and other vital signs. While technical
advancements and clinical research have expanded the num-
ber of physiologic parameters, treatment options, and man-
agement protocols available to the intensive care unit (ICU)
physician,? interpreting physiologic data remains largely a
manual process that uses only a small fraction of potentially
available data.®> A growing body of evidence suggests that
real-time automated analysis of densely sampled physiologic
data can provide information about ICU patient outcome®* ®
or adverse events’?~'! that is far superior to that generated
via conventional processes. The SIMON (Signal Interpreta-
tion and MONitoring) project began at Vanderbilt in 1998
with the aim of continuously capturing physiologic data from
Trauma ICU patients.'?

Our prior work in this area has demonstrated the utility
of densely sampled data and, in particular, heart rate volatility
over the entire patient stay, for predicting morbidity and
mortality.'> This study extends the practical value of our
previous work for real-time patient management by hypoth-
esizing that heart rate (HR) volatility (standard deviation) over
S-minute intervals in patients admitted to the trauma ICU pre-
dicts death in the first 24 hours. Our approach is conceptually
distinct from, yet complementary to, studies that have used
spectral analysis of EKG waveforms to determine HR variability
and then demonstrate that loss of autonomic function sug-
gests a poor prognosis in many disease processes.'* !’
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METHODS

Setting

Vanderbilt University Medical Center (VUMC) is the
only level 1 trauma center serving a 65,000-square-mile area.
Of the facility’s approximately 3200 annual trauma admis-
sions, over 1800 are admitted to a 31-bed dedicated trauma
unit. The 14 trauma unit beds classified as ICU beds accom-
modate 600 to 700 admissions per year. At present, 10 of the
ICU beds are equipped with the SIMON (Signal Interpreta-
tion and MONitoring) data capture system.

Data Sources

SIMON

The SIMON project is an ongoing collaborative effort
between VUMC’s Division of Trauma and the University’s
School of Engineering. Physiologic data from bedside med-
ical devices have been continuously captured and stored from
4 trauma ICU beds'? since December 2000, with an expan-
sion to 10 beds occurring in June 2001. The physiologic
parameters monitored include HR, invasive and noninvasive
blood pressures, intracranial and cerebral perfusion pressures,
arterial and venous oxygen saturations, blood temperature,
pulmonary and central venous pressures, cardiac index, and
end diastolic volume index.

As of February 2004, data had been collected for over
2200 patients for their entire length of ICU stay in a SIMON-
monitored bed, representing more than 170,000 total hours of
continuous monitoring and over 1.5 billion data points. Data
are automatically sampled every 1 to 4 seconds and stored in
an SQL Server relational database (Microsoft Corp., Red-
mond, WA). For clinical use, patient-specific data are dis-
played on a secure website (Fig. 1) with daily aggregate

summary reports generated and placed in each patient’s
electronic medical record. In addition, daily physiologic data
summaries for all patients on SIMON are sent to the ICU
medical director, chief residents, and nurse manager prior to
rounds (Fig. 2).

Trauma Registry of the American College of
Surgeons (TRACS)

The VUMC Division of Trauma has participated in the
TRACS since 1986. Demographic, clinical, and injury-re-
lated data on all patients admitted to VUMC for trauma or
burns are entered into the database, which is maintained
locally and shared quarterly with the National Trauma Data
Bank after de-identification. Among the more than 300 pa-
rameters currently captured via retrospective chart review are
patient demographics, injuries, diseases, operative proce-
dures, hospital disposition, complications, length of stay at
various levels of care, costs, and resource utilization. For this
IRB-approved study, data from SIMON and TRACS were
linked via medical record number and de-identified prior to
analysis.

Inclusion Criteria

The test set included data from 923 patients who (1)
were admitted to VUMC’s Trauma ICU between December
15, 2000 and December 15, 2002, as identified by TRACS;
and (2) had 12 to 240 hours of stored SIMON HR data.
Patients who had fewer than 12 or more than 240 hours of
SIMON data were excluded. These patients had early death,
were transferred, or experienced a prolonged SIMON re-
corded ICU stay. Data from patients in the exclusion groups
were retained for use in a separate future analysis. The

3 SIMON-Trauma Home Page - Microsoft Internet Explorer = =8 0 LA I =lolx
Fle Edt View Favorites Toolks Help
| Address [&] hetps:/ IS mc.vandecbit.sdf -] @co

|Bed, patient name, mrn, and date appear here|

home page . previous day . next day . patient detads
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FIGURE 1. SIMON physiologic parameter Web display (24 hours).
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validation set consisted of data from 393 patients admitted
from December 16, 2002, until July 31, 2003, with the same
criteria as the test set (Fig. 3).

Measurements

Over 120 million HR data points, representing approx-
imately 100,000 patient-hours of data capture, were stored in
the combined 1316 patient sample. Demographic data ob-
tained from TRACS included age, gender, race, discharge
status (home, rehabilitation facility, skilled nursing facility,
and death), and Injury Severity Score (ISS), an index of
anatomic injury severity that correlates with survival in blunt-
trauma patients.'®!?

Our parameter of interest, short-term HR volatility, is
computed for a given patient once every 5 minutes by
calculating the standard deviation of all HR samples collected
during that time interval. Duration (5 minutes) and intensity
(standard deviation) of volatility are reflected in this measure.

Test Set

The 5-minute time interval follows established practices for
collecting data for HR variability analysis.”* However, our
data differ from that used in traditional HR variability anal-
ysis in that precise instantaneous HR is not acquired at every
beat. The SIMON system samples HR from a standard
monitor (Phillips Viridia) every 1 to 4 seconds. Thus, a
typical 5-minute interval will contain between 100 and 150
HR data samples for a single patient. The standard deviation
of these points is our basic parameter of short-term volatility.

We further characterize short-term volatility according
to an observation window and a distribution range and from
these derive a measure of cardiac volatility—related dysfunc-
tion (CVRD). The observation window defines the length of
time over which short-term volatility is observed, in this case,
arbitrarily, the first 24 hours of ICU stay. Therefore the maxi-
mum number of volatility measurements in the first 24 hours is
288 (ie, one measurement every 5 minutes, 12 five-minute

Validation Set

6501 Trauma Admissions
12/15/00 - 12/15/02

2113 Trauma Admissions
12/16/02 — 7/31/03

|

|

3693 Admissions to
Trauma Service

1020 Admissions to
Trauma Service

|

|

1437 Admissions to

481 Admissions to

- - Trauma ICU
- 396 patients with no
SIMON data
- 92 patients < 12 ¢ excluded
hours HR data
- 26 patients > 240
hours HR data 923 Patient Set

Trauma ICU R .
- 8 patients with no
SIMON data
excludedl - 63 patients < 12
hours HR data
- 17 patients > 240
l 393 Patient Set hours HR data

FIGURE 3. Patient inclusion criteria for test and validation sets.
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intervals per hour X 24 hours). Figure 4 demonstrates patient
mortality by distribution of short-term volatility.

The distribution range is that portion of the distribution
where the measure optimally predicts the dependent variable,
death. We chose a distribution range of 0 to 0.5, noting the
substantial difference in mortality associated with this range
(Fig. 4), as well as substantial prior research by others suggest-
ing reduced variability is associated with poor outcome.

Finally, we define CVRD as the percent of time during
the observation window (in this case, the first 24 hours in the
ICU) that a patient’s short-term HR volatility fell within the
distribution range (ie, 0—0.5). Thus, a patient whose short-
term volatility readings were evenly distributed between zero
and 2 during the first 24 hours would be assigned a CVRD
value of 25%.

Our primary outcome of interest (dependent variable)
was death as documented in TRACS, and defined as any
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[ Survival (N=825)
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FIGURE 4. Distribution of short-term heart ratevolatility over
ICU stay by mortality in the 923 patient test set. Percent < 0.5
was used to define cardiac volatility related dysfunction
(CVRD) measurement. Bin size = 0.01.
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inpatient death from any cause during the index hospital
admission.

Statistical Analysis

Statistical analyses were performed using STATA v. 7
(College Station, TX) and SPSS v. 12.0 (Chicago, IL). To
assess the equivalency of the test and validation sets, we used
t tests and Mann-Whitney U tests to compare continuous
variables pertaining to patients (age) and clinical episodes
(LOS, ISS, ventilator days). Contingency tables and the x*
statistic were used to compare categorical variables (gender,
race, and mechanism of injury).

We performed logistic regression to measure CVRD’s
value for predicting death. Univariate analyses were per-
formed to identify variables that should be included in the
multivariable analyses. Multivariable model development
and verification was performed on the test set. We used
logistic regression to construct multivariate models incorpo-
rating age and ISS. To control for the curvilinear relation of
age and death, we divided age into 5 binary categorical
variables representing 20-year intervals, with age <20 years
serving as the reference category. Using the regression equa-
tion developed on the test set, we evaluated the performance
of the model on the validation set. Finally, we computed
receiver operator curves (ROC) to compare the resulting
models.

RESULTS
The demographics of the test and validations sets were
sufficiently comparable (Table 1) to enable combining both
groups for additional characterization and analysis. Stratify-
ing CVRD by gender and race across the combined data sets

TABLE 1. Comparison of Test Set and Validation Set
Demographics

Test Set Validation Set P value

Number 923 393
Age 38.7 = 19.5 39.6 = 18.1 0.17
Gender 0.10

Male 642 (69.6%) 291 (74.0%)

Female 281 (30.4%) 102 (26.0%)
Race 0.06

White 752 (81.5%) 295 (75.1%)

Black 103 (11.2%) 68 (17.3%)

Hispanic 58 (6.3%) 24 (6.1%)

Other 10 (1.1%) 6 (1.5%)
Death 98 (10.6%) 37 (10.4%) 0.51
1SS 28.1 =124 257+ 11.9 0.001
CVRD (% < 0.5) 3.6 £9.0 3383 0.73

ISS, injury severity score; CVRD, cardiac volatility—related dysfunction.
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(Table 2) revealed no differences over the first 24 hours of
SIMON data, although significant differences were observed
when stratifying by outcome and mechanism of injury. The
difference in mechanism of injury was likely due to a higher
ISS in the blunt trauma patients. CVRD increased as age and
ISS increased (Fig. 5). Morbidity, defined as number of
ventilator days and units of blood transfused, also increased
with CVRD (Fig. 5).

Without incorporating age or ISS, we also stratified
patient deaths in the combined data set by CVRD and found a
3.8% mortality rate in patients without CVRD. Conversely,
patients with any abnormality in CVRD had a 21% mortality
rate. The mortality rate increased as CVRD increased (Fig. 6).

Having identified the key covariates (age and ISS) that
contribute with CVRD to death, we developed a regression
model incorporating both elements. The covariates that were
significant in both the test and validation set were age >80
and ISS (Table 3). The formula using the regression equation
generated a score ranging from 0 to 1. The cutoff value,
which maximized sensitivity and specificity in the test set,
was found to be 0.1. This same model was then prospectively
evaluated for predictive accuracy in the validation set. The
ROC for both the test and validation sets (Fig. 7) show no
statistical difference. The ROC area for the validation set was
0.816, and the sensitivity and specificity were 70.1% and
80.0%, respectively (Table 4). To further evaluate the effec-
tiveness of the model, we compared the true positives and
false negatives to the days to death (Fig. 8). This demon-
strated that the regression equation above remains effective
for predicting death beyond the first several days.

TABLE 2. Characteristics of Cardiac Volatility—Related
Dysfunction (CVRD)

Characteristics of CVRD Combined Data Sets, First 24-h

N Mean P Value
Discharge status <0.001
Alive 1181 2.45
Dead 135 10.9
Gender 0.69
Female 383 3.16
Male 933 3.39
Race 0.19
White 1047 3.6
Black 171 2.29
Hispanic 82 2.16
Other 16 541
Mechanism 0.02
Blunt 1116 3.56
Penetrating 194 1.92
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DISCUSSION
This study explores the clinical value of dense physio-
logic data, captured in the ICU and automatically stored in a
relational database. It is our global hypothesis that the SI-
MON project’s automated dense data capture and systematic
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TABLE 3. Logistic Regression Model Parameters

Logistic Regression Model Parameters, Developed on Test Set
(N = 923)

95% Confidence

Parameter Coefficient Interval
[Constant] —4.114 N/A
ISS 0.053 1.035-1.074
If age >80 1.254 1.273-9.645
CVRD 0.050 1.033-1.071

ISS, injury severity score; CVRD, cardiac volatility—related dysfunction;
and N/A, not applicable.

1F
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c
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=0.472 {ROCs not statistically diff.)
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0 0.2 04 0.6 0.8 1
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FIGURE 7. Logistic regression model ROC curves for test and

validation sets. P value shown is comparing test and validation
set curves. P value for both curves < 0.0001.

analysis of multiple physiologic variables will, over time,
facilitate both the identification of patients at risk for adverse
events and development of decision support tools useful for
early intervention. Our previous work demonstrated that
measures of long-term HR volatility (standard deviation,
percent of time in extremes during the entire hospital course)
were better predictors of survival in a population of trauma
patients than were measures of central tendency (mean,
median)."?

This study extends that effort by investigating whether
patterns of short-term volatility in 5-minute intervals (CVRD)
aggregated over the initial 24 hours of ICU stay have predic-
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TABLE 4. Receiver Operator Characteristic (ROC)
Curve Statistics

Validation Sample (N = 393) ROC Curve Cardiac Volatility—
Related Dysfunction

Time
Interval Sensitivity Specificity ROC P value
First 24 70.1% 80.0% 0.816 <0.0001
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FIGURE 8. True positives (patients predicted to die who die)
and false negatives (patients predicted to live who die) rates
versus days to death. combined test and validation sets (N =
1316).

tive value during a patient’s entire hospital course. We chose
the 5-minute interval to maximize comparability with previ-
ously described HR variability analyses, which also measures
HR changes over 5-minute intervals.

In this manuscript, we use raw data to demonstrate that
CVRD in the first 24 hours of ICU stay is an independent
predictor of death. This measure also predicts morbidity
(ventilator days and transfusion).

CVRD varies with age, ISS, and mechanism of injury.
We use regression data incorporating age and ISS in an
independent validation set to demonstrate the sensitivity and
specificity of this measure in predicting death. Using the
ROC, we show that 82% of variation is accounted for by our
model. However, we do not advocate that CVRD be used in
isolation to predict individual patient mortality.

The practical and operational evidence that dense data
capture can occur in a working ICU enhances the clinical
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significance of our findings. While others have demonstrated
similar technology®' 2* or analysis of periodically sampled
dense data in a similar population,*’** our work demon-
strates the value of overcoming barriers associated with
patient identification, reliability, storage, and analysis of
dense physiologic data. Further, we demonstrate that linking
dense data captured in a large trauma population to clinical
outcomes facilitates identification of new risk factors for
death and morbidity.

Strengths and Limitations

Strengths

The strengths of this study include use of (1) a diverse
population of patients with a wide range of injuries spanning
a 3 year period; (2) a large, prospectively collected test data
set (N = 923); and (3) an independent, prospectively col-
lected validation set (N = 393).

Clinicians were blinded to these data during the course of
care; therefore, the results are independent of clinician interven-
tion; this de facto blinding also serves to establish our institu-
tion’s baseline practice pattern against which future interven-
tions designed to highlight CVRD can be benchmarked.

Finally, this study defines a methodology for ICUs to
collect, store, distill, and distribute electronically patient-
specific physiologic data in real time to clinicians both at the
bedside and in remote locations.'>**2° In addition to their
clinical value, the data are readily accessible for research and
operational applications.

Limitations

We expect that dense physiologic data capture will
become an increasingly important tool in the ICU, but for that
to occur limitations of our study must be addressed. In the
first year of the study period, when SIMON only existed for
2 to 4 beds, sample bias may have occurred if clinicians
tended to allocate the SIMON beds, a scarce resource, to the
sickest patients. If this occurred, the problem would have
resolved by the second year of the study, when all admission
beds in the ICU were equipped with the SIMON data capture
system. Further expansion of SIMON to all 31 beds on the
trauma unit will allow dense data capture to continue
throughout a patient’s entire hospitalization, facilitating de-
tection of potentially unique physiologic patterns occurring at
different time points in the patient’s hospital course. In
addition, the absence of pharmacology data rendered us
unable to determine whether B-blockade or administration of
other drugs explains the increasing loss of volatility associ-
ated with age, injury severity, or mortality.

With regard to the regression model, loss of 30-day
mortality data on cases discharged to long-term care facilities
may have had the effect of understating true positives, and
failure to include mechanism of injury despite its positive
association with mortality may have diminished the model’s

© 2004 Lippincott Williams & Wilkins

predictive power. Finally, construction of chronologically
distinct (serial) test and validation sets renders the analysis
vulnerable to variations occurring over time. The fact that our
model performed better in the validation set could be due to
such variations. We will address these issues in future anal-
yses by means of bootstrapping, time series analysis, segmen-
tation into shorter critical periods of observation as predictors
of outcomes, and other appropriate techniques. These analy-
ses are ongoing.

Future Work

This work represents a series of compromises between
the rigor of the laboratory and the realities of delivering
bedside care. Previous work in HR variability has been
largely based on waveform analyses'>° that assess auto-
nomic function via precise R-R interval computation from
EKG waveforms. The increase in precision obtained via this
methodology comes at a cost: waveform analysis requires
several orders of magnitude more storage and processing
capacity than the methods presented here. We have begun to
compare the methods of waveform analysis with CVRD to
determine if the loss of short-term volatility represented by
CVRD is a measure of autonomic dysfunction. While we
hypothesize CVRD is an indicator of autonomic dysfunction,
it is possible that we are measuring intrinsic cardiac dysfunc-
tion, failure of resuscitation, physiologic exhaustion, patient’s
genetic ability to respond to injury, global hypoperfusion, or
a parameter specific for neurologic dysfunction.

Continued refinement of our measure will help to iden-
tify the time interval of standard deviation, the standard
deviation distribution range, and the observation window that
optimizes the ROC curve. Since our data are prospectively
collected and stored indefinitely, we can use test/validation
and bootstrapping methodologies to find the most powerful
measurement tool and model to predict outcome in our ICU.

We must also continue to investigate the time course of
this measure. While the model predicts reliably death occur-
ring within 5 to 10 days based on the first 24 hours of data,
accuracy decreases as the patient’s stay lengthens. If CVRD
predicts death equally well later in a patient’s disease process,
it may herald the onset of the hyperinflammatory/septic state.
Aggregation of data into 24-hour blocks reported here is a
preliminary step in a wider exploration of the clinical signif-
icance of continuous physiologic data in the ICU. Analysis of
short-term volatility in finer observation windows such as 1-,
6-, and 12-hour blocks is also necessary for CVRD to evolve
into a powerful real-time bedside tool.

Each physiologic parameter (blood pressure, oxygen
saturation, intracranial pressure, pulmonary artery pressure,
cardiac index, pulmonary capillary wedge pressures, SVO,,
and others) stored by SIMON must also be explored and
described in the context of at least 3 types of measures: (1)
volatility, (2) central tendency, and (3) waveform analysis.
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We must define each parameter and determine if it is best
characterized by measures of central tendency or statistical
variation and begin waveform analysis to analyze the poten-
tial of each to predict outcome. Once these individual phys-
iologic parameters are defined, we will analyze the interactive
effects of the parameters and determine the best overall and
organ system specific indicators of patient status. Only by
employing rigorous scientific process can we create data-
driven alarm systems for individual patients to predict dete-
rioration or poor outcome. Finally, we must replicate the
system in other clinical contexts to determine if patterns of
physiologic response observed thus far are applicable to other
populations of hospitalized patients.

CONCLUSIONS

In conclusion, CVRD is potentially the first new vital
sign born from the concept of dense physiologic data capture
in the ICU. CVRD predicts death in the first 24 hours of ICU
stay, with 70% sensitivity and 80% specificity when incor-
porating age and ISS. We hypothesize CVRD is a measure of
autonomic dysfunction and have demonstrated that patients
who lose short-term volatility are at higher risk for death.
Further studies are under way to more robustly define CVRD
and assess its clinical utility. Dense physiologic data capture
may be a powerful new tool for defining subgroups of
patients with poor outcome.
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Discussions

Dr. ROBERT J. WINCHELL (PORTLAND, MAINE): I very
much enjoyed the presentation, and I would like to commend
the authors both for the data that they presented today and
also for the underlying data collection and analysis system
that they have developed, and that is indeed novel. Certainly,
we collect a lot of data in the ICU, but we analyze it very
imprecisely. We do not appreciate much of the data that is
potentially there, because we simply are not looking for it.
This area of investigation has incredible potential.

I have 3 brief questions. One, how did you arrive at the
threshold value of 0.5 for your lower level of standard
deviation? Second, have you considered the effect of arrhyth-
mia within your data set? This is a known confounder in other
analyses of heart rate variability in these analyses of heart rate
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variability in these settings. Finally, have you begun to try
and link your episodes of variability related disorder to the
other physiologic parameters within your data set?

Dr. RicHARD J. MULLINS (PORTLAND, OREGON): Dr. Mor-
ris, congratulations on your novel observations in this chal-
lenging group of patients.

Is the loss of HRV a physiologic indication, in your
judgment, Dr. Morris, of cerebral ischemia and therefore can
we use loss of HRV in a practical realtime way to identify a
patient with a cerebral ischemic episode. Do you see a
realtime application of this technology to therapeutic decision
making?

My second question, Dr. Morris, did you look at the
pharmacologic manipulation of the patients as a factor deter-
mining variation in HRV response?

Dr. Davip B. HoyT (SAN DieGo, CALIFORNIA): Dr. Mor-
ris, a very nice study.

Heart rate variability is a real phenomenon that goes
largely undetected in our current ICU monitoring systems,
and your analysis and others like it allow us to observe subtle
changes that we normally don’t see, just as new radiographic
tests undercover pathology that we have not previously ap-
preciated.

Our ability to assess autonomic dysfunction I think is
going to be increasingly important. Overall autonomic ex-
haustion becomes a symptom that may emerge as a predictor
of mortality, as you suggest. Whether this reflects autonomic
signal instability or apoptosis is unclear, but this type of study
increasingly allows us to identify these phenomenons, under-
stand them and their association with death, and ultimately
target therapy.

Our understanding currently of the autonomic system
and the relationship to shock and post-injury inflammation is
an object of intense study. In fact, your observations are in
direct alignment with the specific goals of the NIH road map
for computational biology and bioinframatics. So a better
understanding of autonomic function is important. I have 3
questions.

First of all, which group of patients now and in the
future should actually have this kind of monitoring? I realize
you are still studying it. But what do you think will be the
future?

Second, shouldn’t we in fact be studying this in animal
models, particularly chronic animal models of sepsis, head
injury, and multiple organ failure? Animal models would
substantiate what are really at this point observational phe-
nomenons.

Finally, what is the likely cost of this, and is the
industry going to in fact pick up on this as a value added, or
is this simply going to be something that is going to remain
investigational?
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Again | enjoyed your study and your presentation and
I thank you for the opportunity to discuss it.

DRr. GREGORY J. JURKOVICH (SEATTLE, WASHINGTON): Dr.
Morris, congratulations on a beautiful blend of bioengineer-
ing and the medical sciences. I have 2 questions that pertain
to the outcome measures.

If I understood the presentation and the abstract, you
excluded patients who were in the Simon bed for greater than
10 days. ICU deaths generally occur in 2 different time
frames: the acute deaths and the rather late deaths. I am
curious why you excluded those late deaths.

Secondly, you gave a hint that the mechanism of injury
may be an important predictor of who might have this
autonomic dysfunction. Specifically, did you characterize the
injury by AIS score or by injury location, such as head injury,
in those patients who were more likely to have less variability
in the heart rate?

Dr. BasiL A. Pruitt, JR. (SAN ANTONIO, TEXAS): Since
the heart rate volatility change in the first 24 hours was the
best predictor of death, does this simply reflect the intensity
or frequency of pharmacologic intervention which might be
greatest during that time period? If you are going to use
changes in HR volatility to predict death, how secure would
you be in determining futility and ceasing care in the first 24
hours based upon these data?

Dr. Joun A. Morris, JR. (NASHVILLE, TENNESSEE): First
of all let me start with Dr. Hoyt’s questions because they are
the most fundamental.

What is the target group for this monitoring strategy?
And the simple answer is, we don’t know. We have every
intention of looking at these tools in the non-ICU environ-
ment to see if they are early harbingers of deterioration. But
we simply don’t have that data yet.

Second, what do these systems cost? Back of the
envelope, it is about $3000 a bed. Let me put in perspective
for you that the Hewlett Packard monitor is about $20,000 a
bed.

And finally, what about the use of animal models in
terms of supporting this kind of work? I think there is going
to be tremendous need to do that. But I think that those
models will become most effective for us once we have
defined what the individual aberrations within these param-
eters are and start to look at the interaction between those
aberrations.

And that gets to a whole series of questions, some by
Dr. Pruitt and Dr. Jurkovich, what other things have we
looked at, at this point in time? Well, the answer is not much,
because we spent a lot of time looking at 120 million data
points.
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Do we have the ability? Given the data sets that we
have currently linked, yes, we have the ability. We don’t have
yet the analytical fire power needed to analyze these large
data sets. There are a whole series of new collaborations and
new disciplines that are going to emerge from analyzing these
dense data sets continuing promise.

Finally, Dr. Winchell’s questions are somewhat tech-
nical in nature. Why did we choose 0.5? Thank you for
anticipating our AAST submission where we will show
where that data comes from. The use of arrhythmias. We have
not looked at that. WAVE form analysis is by far a stronger
tool, and we are currently collecting WAVE form data.
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And Dr. Jurkovich, about the 10 days—you are correct.
People die early or they die late. And they die late of sepsis.
We do not have Simon operational in our septic unit. That
was one of the reasons why we use that 10-day cut-off.

I think Dr. Hoyt’s observation about physiologic reserve
hits the nail right on the head here. What we are seeing in the
first 24 hours is a new, unexpected indicator of physiologic
reserve. It is our profound hope that we are going to be able to
use that concept of physiologic reserve, not only in the first 24
hours where we are used to thinking about it, but throughout the
course of a patient’s stay including defining when damage
control patients are ready to go to the operating room.
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