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Abstract

Aneuploidy, the gain or loss of large regions of the genome, is a common feature in cancer cells.
Irregularities in chromosomal copy humber caused by missegregations of chromosomes during
mitosis can be visualized by cytogenetic techniques including fluorescence in situ hybridization
(FISH), spectral karyotyping (SKY) and comparative genomic hybridization (CGH). In the current
work, we consider the propagation of irregular copy humbers throughout a cell population as the
individual cells progress through ordinary mitotic cell cycles. We use an algebraic model to track
the different copy numbers as states in a stochastic process, based on the model of chromosome
instability of Gusev, Kagansky, and Dooley, and consider the average copy number of a particular
chromosome within a cell population as a function of the cell division rate. We review a number of
mathematical models for determining the length of the cell cycle, including the Smith-Martin
transition probability model and the “sloppy size” model of Wheals, Tyson and Diekmann. The
program MITOSIM simulates the growth of a population of cells using the aforementioned models
of the cell cycle. MITOSIM allows the cell population to grow, with occasional resampling, until the
average copy number of a given chromosome in the population reaches a preset threshold signifying
a positive copy number alteration in this region. MITOSIM calculates the relationship between the
missegregation rate and the growth rate of the cell population. This allows the user to test hypotheses
regarding the effect chromosomal aberrations have upon the cell cycle, cell growth rates, and time
to population dominance.
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1 Introduction

The vast majority of solid tumors of epithelial origin (carcinomas) often have genomic
imbalances that range from defined chromosomal bands to entire chromosome arms and, in
the most extreme cases, entire chromosomes [1]. This aneuploidy is specific for different tumor
types, specific for certain tumor stages, and late tumor passages (such as in metastases or in
established cell lines) still very faithfully maintain the cancer specific distribution of genomic
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imbalances seen in earlier stages [1]. These facts suggest that continuous selection pressure
for the maintenance of these aberrations exists. Cytogenetic analyses have also shown that
early chromosomal imbalances occur in clusters in a low percentage of cells, and that, at later
stages of tumorigenesis, cells that maintain such aberrations constitute the majority of tumor
cells [2]. Because chromosomal aneuploidy can result from errors during the segregation phase
of mitosis, we present, in the current work, a comprehensive mathematical theory for the
propagation of copy number abnormalities, combining missegregation models with a number
of models for modeling intermitosis time. For the missegregation models, we start from a
synchronized model of Gusev et al. [3,4] and show it can be modified to be made asynchronous,
while enhancing the ability to analyze the model algebraically. We also present simulation
software modeling the accumulation of copy number abnormalities to aid in interpretation of
laboratory data on population dynamics in cancer cell lines.

Studies in population genetics have well established the idea that biological variants occur in
all populations and at different ratios. Under certain conditions, particular alleles or genes can
confer a selective advantage. Some examples of this are antibiotic resistance in bacteria [5,6],
malaria resistance in people heterozygous for the sickle cell allele of hemoglobin [7-9] and
the evolution of drug resistance in tumors [10-12]. Cells with the ability to repair DNA after
ionizing radiation have much greater survival rates compared to cells lacking any number of
these repair enzymes [13-16]. A faster growth rate or the capacity to overcome death or
senescence will, all other things being equal, confer upon a variant cell the ability to eventually
overtake and dominate a population. In fact, this is one of the fundamental principles of
tumorigenesis.

Another well-established tenet of cancer research is that there is an increase in the number of
genomic aberrations during the progression from a benign cell mass to a metastatic tumor
[17]. These alterations of the cellular blueprint can take many forms. Small point mutagenic
events, as in the case of mismatch repair deficient colorectal tumors [18-20], can accumulate
in the genome and affect the function of individual proteins either by rendering them incapable
of performing their biological function or by conferring upon them new functions.
Amplifications or deletions modify the copy number of a given gene(s) thereby affecting
protein expression levels. The affected genes are typically oncogenes or tumor suppressor
genes, respectively, which ultimately alter cell division rates and/or the ability to arrest the cell
cycle to allow repair of damaged DNA. A study by Visakorpi et al. [21] shows that
amplification of the androgen receptor gene is selected for in tumors resistant to androgen
deprivation therapy. Also, thousands of genes can be gained or lost simultaneously through
the unequal partitioning of chromosomes during mitosis or non-reciprocal chromosome
rearrangements. These gross chromosomal aneuploidies affect the expression of most of the
genes on the involved chromosome [22-26].

Cytogenetic observations have provided ample evidence that the gain of chromosome 7 in
colorectal polyps is often the earliest detectable genetic aberration [27-31]. It has been
speculated that this specific chromosomal gain confers a growth advantage through an increase
in the copy number of the epidermal growth factor receptor gene located at 7p13 [32—34]. Some
of the mathematical explanation and all of the simulations below are based on the example of
colorectal polyps and chromosome 7. Likewise, the loss of 17p in these same tumors may
enable the cells to bypass the cell cycle arrest checkpoint as a result of the decreased copy
number of the TP53 gene. Acquisition of extra copies of chromosome 3q in cervical carcinomas
may allow the cells to escape senescence via an increase in the number of hnTERC genes, since
the encoded RNA is part of the machinery involved in the maintenance of telomere length
[2]. These strictly conserved recurrent aberrations and genomic imbalances within or across
tumor types are presumed by many to be instrumental for tumorigenesis, and are therefore
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assumed to confer a selective advantage. However, they shed little light on how large the
selective advantage is and how the advantage is achieved from one generation to the next.

One hypothesis for the advantage conferred upon cancer cells by means of chromosomal
aneuploidy is that they can increase the rate of cell division. Thus, once a copy number change
occurs in a few cells, these cells and their descendants could dominate the population. Suppose
our protocol is to count a “gain” in a chromosome (i) once its observed average copy number
is at least 2 + 5, for some value of § > 0. Given a hypothesized rate p for chromosome
missegregation and a function T4 that estimates the population doubling time as a function of
the copy number i, one quantity of interest is the amount of time required to change the average
copy number in our population of cells from 2 to 2 + 8. Several researchers have proposed that,
in cancers of epithelial origin and derived cancer cell lines, chromosome missegregation and
the resulting aneuploidy are dominant genetic aberrations [17,35-37].

Two laboratory techniques now in wide use to measure aberrations in cancer cells are spectral
karyotyping (SKY)/multiplex FISH (M-FISH) [38,39] and comparative genomic hybridization
(CGH) [40]. SKY shows chromosomal rearrangements qualitatively in color in metaphases
from individual cells in a sample preparation. CGH, on the other hand, measures deviations
from the normal chromosome copy number (2 for autosomes) quantitatively averaged over the
entire sample. Since CGH/SKY/M-FISH studies can allow us to measure the average copy
number, an estimate of the time required for a shift in the copy number of a given chromosomal
region to appear in the population would enable us to decide if the assumed values of p and
Tq(i) are biologically plausible.

To study the influence of chromosomal imbalances on cell division rates, we analyzed a
mathematical model for cell growth, using parameters such as chromosome missegregation
rates and population doubling times. Our goal for this model is to allow us to theoretically
determine whether it would be feasible, and how long it would take, to shift the chromosome
profile of a continuously growing cell population. This model could ultimately be used to refine
the various parameters after in situ experimentation.

In Section 2, we present our exponential model for cell division with missegregation errors.
First, we consider a synchronized model for mitosis, with fixed intermitotic times, based on
the work of Gusev et al. We then consider a continuous time model using an exponential
distribution for intermitotic times. We show that the exponential model is amenable to methods
from Markov analysis and linear algebra. Using a computer algebra system, and given a value
of 6 >0, itis possible to obtain an analytic estimate for the time Ts needed to change the average
copy number from 2 to 2 + &. In Section 3.1, we summarize a well-established mitosis model
of Smith and Martin [41], the “transition probability model,” that includes a constant lag time
before mitosis may occur in any daughter cell. The Smith-Martin model is, in principle, more
complex than our exponential model because of an extra parameter (the lag). However, we
point out that this parameter can be eliminated in the asymptotic, steady state by a change of
variables. Thus, the derivations in Section 2 remain applicable with the addition of a constant
lag. In Section 3.2, we summarize a different model of mitosis proposed by Wheals [42] and
Tyson and Diekmann [43] called the “sloppy size” model. In Section 4, we present a computer
program MITOSIM that simulates mitosis using either the exponential, lagged exponential or
sloppy size models, and tracks the propagation of copy number aberrations as they randomly
appear in the population. We show results of representative MITOSIM runs and demonstrate
that they are in good agreement with analytical results for the exponential and lagged
exponential models.
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To clarify the issues involved in modeling mitosis, we first consider an idealized scenario where
all the cells in the population have been synchronized to undergo mitosis simultaneously, and
we make a further assumption that intermitotic times are constant. This simple model is very
similar to the model considered in [3] to study the propagation of chromosomal segregation
errors over the long term. The general Gusev model [3,4] allows for modeling segregation
errors over all chromosomal pairs simultaneously, but we prefer to focus on only one
chromosomal pair at a time, as the explosion in the number of possible combinations of copy
numbers makes computations unwieldy and seriously weakens the statistical power of any
measurements.

Suppose we fix our attention on a specific chromosome, for example, chromosome 7 in a
colorectal cancer cell line, whose copy number is allowed to range from 1 to k. Suppose also
there is a constant missegregation probability p: If a cell with copy number i missegregates
during mitosis, it produces two daughter cells, one with copy number i—1 and one with copy
number i+1. We enforce boundary conditions on the allowed copy numbers: if i=1, the cell
with the smaller copy number dies, and if i=k, the cell with the larger copy number dies. If no
chromosomal missegregation occurs, each of the two daughter cells has copy number i.

This process can be described by a transition matrix M(p) = (m;j), where mj; is the expected
number of cells in state i after mitosis, for each cell in state j before mitosis. Thus

' mjj=2(1-p)foralli

mjj = p if |i —j|=1, with 1 <i, j<k, and
o m=0fori—j>1.

Let v(t) be the vector describing the distribution of cells in each state as a function of time, t,
such that v(0) is the initial state, and let Mt be the t-fold matrix product of M=M(p) with itself.
The expected distribution of cells at time t is v(t,p)= Mt(0). While the exact number of cells
in each state would be of interest, CGH technology only measures the average copy humber
in the cell population. To calculate this quantity, we use the vectors z = (1, 2,..., k) and 1 =
(1,1,...,1) (a vector with k entries). The average copy number in the distribution v(t) can be
calculated as

Wt p)
e, p = FK
vit, p) 14
To help determine the long-term behavior of r(t,p), let u(¢, p) = Lp) the vector in the
vit, p) 14

direction of v(t) scaled so the sum of its entries equals 1.

Let us consider the case where k=5. Let r(t,p) denote the average copy humber of chromosome
7 after t generations. We use the software package Mathematica [44] (calculations omitted) to
calculate r (t, p) for k=5:

t t t t
[~ 325 +(3- 243, +(3+2«/§)15)

((3+ /31, +(3-2v3)A f)

3(/1 (2.1)

r(t, p) =
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where 1 is the it eigenvalue of the matrix M(p). Given any value for p, and any threshold
I'min, We can use Equation (2.1) to find the smallest integral value for t for which r (t, p) >
min- For example, if p=0.01 and ryj, = 2.4, we note that r(2858, 0.01) = 2.39931, while r
(2859, 0.01) = 2.40008.

2.2 Comparison with Gusev models

Gusev et al. [3] have presented two models for chromosomal missegregations. In [3], they use
the following framework: During the segregation phase of mitosis, any chromosome can
witness a segregation error (with probability p) that sends both copies of that particular
chromosome to one of the two resulting daughter cells. Thus, for example, a diploid cell will
witness missegregations events of both copies of a given chromosome with probability p2, and
half the time both missegregations will result in a tetrasomic daughter cell (as well as a non-
viable nullisomic daughter cell). Our model ignores this possibility as highly improbable and
is nearly identical to the Gusev model for small values of p, as the matrix entries in the Gusev
model corresponding to higher powers of p are dominated by the linear terms.

In [4], Gusev et al. consider the longer-term, but not asymptotic behavior of this system. Their
simulations are constrained by memory limits, since they keep all cells that are used. They
present simulations that have evolved for 200 generations, and claim to have studied
simulations with more generations, though still with fewer than 1000 generations. Curiously,
they find that the modal copy number in the cell population is 1, i.e. the cell population is
dominated by monosomic cells, even when the system is seeded with one diploid cell. This
phenomenon is a result of their decision to structure the underlying Markov chain such that
monosomic cells are less likely (albeit only slightly less likely) to witness missegregations than
cells with higher copy number. Thus, the stationary distribution of this system has highest
weight on the monosomic state. In contrast, if the Markov chain were structured with identical
missegregation rates for all cells, then the stationary distribution would necessarily be
symmetrical about the mean of the copy numbers allowed (k/2 in our nomenclature).

In practice, though chromosomal losses are commonly observed in tumor cells, it is far from
desirable to have a mathematical framework that necessarily implies that monosomic cells
must represent the dominant clone line. Similarly, it would be undesirable to require an
expected average copy number as high as k/2. In the following work, we allow for a variety of
possible stationary distributions by allowing variation of the mitosis rates as a function of the
copy number of the chromosome in question. It would also be desirable to allow for variation
of the segregation rates by copy number and, when possible, by chromosome type. The current
work does not concern itself with the problem of tracking missegregations across different
chromosomes, as this more difficult problem leads to computational unwieldiness. By
restricting our attention to one chromosome we only need consider a k-state Markov chain,
where K is the maximum allowed copy number. If we were to consider all of C chromosomes
simultaneously, this would require a Markov chain with kC states. Gusev et al. (4) use such a
Markov chain, but to achieve computational feasibility are forced to use a biologically
unrealistic fixed intermitotic time to study the long-term behavior of the system. Also, the
Gusev Markov chain implicitly makes the biologically unrealistic assumption that all copy
number aberrations should be equally likely, ignoring the selective advantage or disadvantage
given by individual aberrations. Studies have shown (e.g., [17]) that copy number aberrations
are not uniformly distributed, and, in fact, certain aberrations tend to be much more likely than
others.

2.3 Continuous time modeling

While the discrete time model in Section 2.1 is useful for examining the long-term behavior
of a synchronized population of cells with a constant mitosis rate, the assumptions used are
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biologically unrealistic. Consider, for example, the role of the APC gene, a tumor suppressor
that controls cell birth and death processes. It is believed that the inactivation or loss of both
copies of APC leads to an increased cell birth to death ratio [45]. Thus, clone lines including
this mutation would grow rapidly in the cell population. To address the problem of continuously
varying mitosis rates in an asynchronous population, we need to shift from a discrete time
model to a continuous time model for mitosis. The simulations of Gusev et al. [3] use two
distributions for intermitotic time: a truncated normal distribution and a uniform distribution.
Neither possibility has a biological justification, and both contradict studies modeling
intermitotic times with real data [41-43,46-49]. We prefer an exponential distribution, for
reasons that will become clear in Section 3.

Suppose that the time T for a cell ¢ with copy number i to undergo mitosis can be described as
an exponentially distributed random variable with parameter A; and let X;(t) denote the number
of cells with copy number i, fori =1, 2, ..., k. We can describe the overall behavior of this
system using a system of differential equations:

X/ @B=(=-2)XD+2A (1 = PXD+r,_ pX, (D+A, pX, (2.

i i+

The expected behavior of the system is described by M(t) = exp(Qt), where

1+/1—2/11p /'lzp 0 0
/11p
Ap 0
Ajgp 1HA =200 Ay p
0 Ap 0
A

kP
0 0 ﬂ.k_lp 1+/'lk—2/'lkp

i.e. Gjj = 1 + & — 24ip, Gi-1i = Gi+1i = Aip, and gjj = O for [i — j|> 1. Given known values for the
mitosis rates (), we can express the entries of M(t) in closed form as a function of p (although
the exact formulae can be quite complicated). Given the decomposition of Q

d1 0
as Q=HDH™L where p={: . : l|issadiagonal matrix, note
0 - dk
exp(d;t) .. 0
that exp(D?) = : : . We can then express M(t) as
0 -~ expld, t)

M(t)= Hexp(Dt)H 1

Consider a cell population growing at an exponential rate. The relationship between the

doubling time T4 of the population and the exponential parameter A is given by A = 1_;33 As
d
an example, consider the case where the doubling time of a population of unaltered cells is 18

hours, k =5, and cells with three or more copies of chromosome log 7 have an increased rate

of growth with a doubling time of 17 hours; i.e., A=A, = l—‘;%g, and Ay=Ay=Ag= 1—3873 Let
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us consider a missegregation rate of p = .01 (suggested by Lengauer et al. [35]) and examine
the behavior of M(t). In this case,

1.03774 0.000385 O 0 0
0.000385 1.03774 0.0004077 O 0

Q=10 0.000385 1.03996 0.0004077 O
0 0 0.0004077 1.03996 0.0004077
0 0 0 0.0004077 1.03996

Let us assume we start with one cell with copy number 2. At time t, the expected state of the
system can be described as

v1(t)
(1) vo(2)
v(#) = M(HW0) = exp (@10 = [v3(D)].
O vy
0
ve(?)

In this formulation, each function vj(t) is a linear combination of the non-zero entries of exp
(Dt), i.e. a linear sum of five exponential functions. We are interested in the value of t for which
the average copy number of a cell in the population will be at least 2.4, as this is the threshold
for detection of a copy number aberration using the CGH methodology as explained below.
(See du Manoir et al [50] for an extended discussion of threshold choices in CGH studies.) The
average copy number in a sample can be found by considering the ratio

()= 25\—"“')

15 u(?d)

where, as in Section 2.1, z5 = (1, 2,3, 4,5) and 15 = (1,1,1,1,1). The numerator of this ratio
counts the total number of chromosomes of interest (e.g., chromosome 7 in a colorectal polyp),
while the denominator counts the total number of cells. With the parameters chosen, r(809.374)
=2.4000005. Thus with the parameters chosen, one would expect a CGH signal that would be
interpreted as a gain sometime between 809 and 810 hours, i.e. after 33 days and 17-18 hours.
This is considerably faster than the estimate from Section 2.1, a result attributable to the
increased mitosis rate hypothesized for cells with larger copy numbers.

Inthe CGH literature, a gain is considered to be present when the fluorescence ratio comparing
a tumor cell to a healthy cell is 1.2 or greater. In principle, the fluorescence ratio of 1.2
corresponds to an average copy number in the tumor cells of at least 2*1.2=2.4. In experimental
practice, when the fluorescence ratio is 1.2, the average copy number may be slightly higher
or lower than 2.4 due to imprecision.

3 Modeling mitosis: a historical perspective

3.1 Transition probability model

In Section 2, we considered some simple models for mitosis, to facilitate a simultaneous
consideration of mitosis and mutation. In this section, we consider several historical models
for mitosis.

Smith and Martin provided one of the first coherent mathematical models of the cell cycle
[41]. The cell cycle can be broken into four phases: the G; phase before DNA synthesis, the S
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phase during which DNA is synthesized, the G, phase after DNA synthesis and before the M
phase, when mitosis occurs. Whereas the G, S, and M phases are typically of fixed duration
in most cell types, the length of the G, phase can vary greatly, even within a single tissue
sample. Smith and Martin proposed modeling the process as consisting of a state of
indeterminate length (state A), contained in the G, phase, and a state of fixed length
encompassing the other three phases (state B).

This process is modeled as follows: let T be a random variable describing the intermitotic time
ofacellc. Then T =Ta + Tpg, where T is a random variable describing the time spent in state
Aand Tgis a constant describing the time spent in state B. Consideration of observed interphase
data led Smith and Martin to conclude that T is exponentially distributed.

The assumption that T is exponentially distributed has been widely used in practical flow
cytometry (see e.g., Sahar et al [51]and Bertuzzi et al [52]), with or without the additional
assumptions of the transition probability model. The assumption of an exponential distribution
was used implicitly by Gray [53] to generate simulated data that was later used by Dean [54]
to design and test the popular software SFIT for estimating DNA distributions in flow
cytometry. Smith and Martin showed that the transition probability model together with the
conclusion that T is exponentially distributed imply that T is exponentially distributed (see
Appendix). Let Ap be the parameter of this distribution, such that, for values of t greater than
Tg and small values of At, P[T €(t,t + At) | T > t] = ApAL.

Suppose a population of cells is growing according to the Smith-Martin model. Let A(t) denote
the set of cells in state A at time t, B(t) denote the set of cells in phase B at time t and let N (t)
=|A(t) U B(t)|. Cell lines usually have a doubling time that is experimentally repeatable if there
is enough space to grow and culture conditions (such as the amount and type of nutrients in
the media) are approximately the same. This observation implies that, if one ignores cell loss,
then the behavior of the system as a whole can be modeled as exponential growth, such that N
(t) = N(0) exp(\t) for some constant A.

We consider the growth rate as follows: let ¢ be a cell chosen uniformly from X(t) = A(t) U B

(t), and let T be the amount of time that passes before ¢ undergoes mitosis. An exponential

distribution P is based on the proposition that there is a constant

A= lim P T<t+Atl T> 7]thatisindependent of t. Smith and Martin provided a formula
At—0

relating A, A and Tg. We present the formula and its derivation in the Appendix.

3.2 Sloppy size models

The Smith-Martin model for mitosis described in Section 3.1 provides a good fit for observed
statistics of the cell cycle [55], and has been widely used and highly cited. The essential
hypothesis that time to mitosis is exponentially distributed was used in developing the SFIT
software, as noted above. However, its simplicity has been criticized for example, by Murphy
et al [46] for failing to explain the correlations in generation times of sister cells, by Tyson
[56] for failing to match some experimental data comparing the size and age of cells at mitosis,
and by Koch [57] for lacking a biological basis. The exponential distribution, which Smith and
Martin use to describe the lag time the cell experiences in the A state, is used often in the
physical sciences but rarely in biological sciences. Whereas the exponential distribution
requires a “memoryless” system, biological systems tend to be too complex to be accurately
described as memoryless. Thus, the Smith-Martin model does not allow for any correlation
between cell mass and the probability of mitosis, nor does it allow for any correlation between
the intermitotic times of sister cells.
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In contrast to the transition probability model, which expresses the probability of mitosis as a
(fixed) function of time, the sloppy size model first proposed by Wheals [42] and then
formalized by Tyson and Diekmann [43], expresses the probability of mitosis as a function of
cell size (where ‘size’ can mean mass, volume, length, or some other measure of the cell). In
later papers [47,58], which benefited from increased understanding of the molecular
mechanisms of mitosis, size was modeled as the number of molecules of one or more proteins
in the mitosis-associated CDC protein family.

In sloppy size modeling, it is typical to scale cell sizes to lie in the interval (0,1). The sloppy
size model also presumes that there is a constant a, with 0.5 < a <1, such that cell mitosis only
occurs in those cells whose size is at least a, but must occur in any cell before it reaches a size
of 1 (on this scale). The lower bound serves the mathematical purpose of preventing the
possibility of a new daughter cell from a mitosis immediately redividing a second time. Some
biological justification for the lower bound on a can be found in the experimental data of
Wheals [42], although that study concerns itself solely with asymmetric cell division in yeast.

Each daughter cell resulting from a mitosis inherits approximately half of the size s of the
parent cell (and thus has size in the interval (a/2,1/2)). To allow some deviation in the sizes of
the daughter cells, we divide the cell mass into two parts of size rx and (1-r)x, where r is
normally distributed about p=0.5 with a standard deviation of 6=0.016. These values of p and
o have been estimated by Sveiczer et al [48]. Letting x(t) represent the size of a cell at time t,
we model cell growth using a growth function V(x) according to the differential equation

dx
E = V(X)

Tyson and Diekmann [43] suggest a number of candidates for V(x), two of which we discuss
below.

In the sloppy size model, mitoses occur according to a probability distribution b(x) on the size
variable x; i.e., if At is the length of a small interval, the probability of witnessing a mitosis of
a cell of size x is b(x)At.

Consider an individual cell c. Let x(0) be the size of c at the time of its separation from a parent
cell. Then ¢ will grow to at least the size a before mitosis is possible. Letting To denote the
amount of time required for this initial stage of growth, we observe that

_ [a -1
To= [2 o VT Lax

For x > a, let P(x) be the probability that ¢ will grow to at least size x before dividing. Then

P(x) = exp

- [V& e

With the constraint that no cell grows greater than 1, the choices of b and V must result in the
equality P(1) =0, i.e.

X
im [P o
llm_/V(§)d§_ o .
x—>1 a

To model exponential growth, we let V(x) = kx for some constant k. With this choice of V, the
distribution b must have a singularity near x=1 and must approach zero as x approaches a from
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above, since b(x) = 0 for x <a. To ensure continuity on the interval (0,1), Tyson and Diekmann
suggested the following choice for b:

0, 0< x<a,

A= Mx=a® ¢ pert,
1-x

. 1
where 5 is a constant such that /&(¢£)d¢ = 1.. Alternatively, rather than forcing the mitosis
0

probability distribution to have a singularity as x approaches 1, we could use a growth function
that leads to decelerating growth as x approaches 1. The logistic growth function V(x) = kx(1
—X) allows the usage of any bounded distribution b with the constraint that b = 0 outside the
interval (a,1). Following [43], we have used

0, 0< x<a,

Hx) = i)(X_a)z, al x<1,

. 1
again with b chosen such that /H(£)dé = 1.
0

4 Simulation software

4.1 Software description

We have developed the software package MITOSIM, implementing the model of chromosomal
missegregation described in Section 2 and the models of mitosis described in Section 3.
MITOSIM maintains a queue of cells, ordered by the time to mitosis. The basic function is
sampleTime: this function selects the cell at the front of the queue, creates two daughter cells,
randomly determines whether the chromosomes divide equally to the two daughter cells, and
calculates the subsequent division times for each daughter cell. Division time can be calculated
according to any of the following distributions: normal, exponential, exponential with user-
provided lag, discrete, constant, and sloppy size (with either exponential or logistic cell
growth).

MITOSIM tests for chromosomal missegregation with each simulated mitosis. If no
missegregation occurs, a cell with copy number i for the chromosome under consideration
yields two daughter cells with copy number i, but a missegregation produces one daughter cell
with copy number i—1 and one with copy number i+1 for the chromosome in question. Only
cells with copy numbers in the range [1,k] are considered viable: if i—1 = 0, the cell has lost all
copies of the genes residing on that chromosome (i.e. is nullisomic), is not considered to be
viable and is removed from the simulation. Similarly, if i = k, the cell with copy number i+1
is considered not to be viable and is removed from the simulation.

After each mitosis, the program adjusts the total chromosome count: 3 # ¢ where ¢ ranges
c

over the cells in the queue, and #c is the copy number of the selected chromosome in cell c.
The total copy number is then divided by the number of cells to calculate the average copy
number. If the average copy number exceeds a user-provided threshold, the program notes the
time elapsed and terminates, returning statistics including total time elapsed, total number of
mitoses, total number of missegregations, total number of cells eliminated due to a zero or an
excessively high copy number, and the average doubling time witnessed as the population
grew.
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In the laboratory setting, the cell lines may be resampled after a predetermined period of time,
to maintain a limit to the size of the cell population. This resampling is modeled by MITOSIM
by including each cell uniformly with a constant probability when a certain amount of time
has passed. In theory, the resampling process should have a negligible effect on the average
copy number, presuming the minimum sample size is sufficiently large (the default setting uses
n=1000). Also, using similar logic, this modeling ignores the possibility of regular cell death,
as random cell deaths should have a negligible effect on the average copy number of the
population.

4.2 Parameter settings

To test MITOSIM, we modeled the growth of intestinal cells, with a specific eye toward the

presence or absence of chromosome 7. We tested the rate of signal appearance based on two

possibilities: a null hypothesis that missegregation of chromosome 7 has no effect on mitosis
rates, and the hypothesis that cells with extra copies of chromosome 7 divide at an accelerated
rate. The increased rate of cell division was calculated based on the following information.

On average, the lining of the colon is replaced (through a combination of shedding and
apoptosis) every 3-5 days in mammals [59]. Thus, a proliferating crypt cell must divide around
once every 96 hours in order to keep pace with the rate of cell loss. A colon polyp of 1 cm3
containing 1x10° cells takes about 7 years to develop, and would require 30 population
doublings (i.e. 239). The healthy colon tissue growing at a standard exponential rate would go
through approximately 640 generations over a seven year period. Thus, the appearance of a
tumor reflecting an additional 30 population doublings could be accomplished by an increase
in the growth rate of approximately 5%. We have modeled this increase in the growth rate by
assuming that cells with at least one extra copy of chromosome 7 witness an increase in their
mitosis rates of approximately 5% per extra copy. These calculations assume that an increase
in cell proliferation, and not a marked reduction in apoptosis, is the dominant result of a genetic
growth advantage. This is supported by the fact that Ki67 protein levels, a marker of cell
proliferation, are increased [60].

Most CGH studies declare that a gain of a chromosomal region has occurred when the
fluorescence ratio exceeds 1.2, which corresponds to 2.4 chromosomes per test cell against 2
chromosomes per reference cell. Thus, we have enforced a stopping point when the average
copy number for cells in the population of the chromosome under consideration exceeded 2.4.
(The value of 2.4 is provided as input by the user; analogous experiments could be done using
any threshold.) CGH is the typical research tool used to assess gains and losses of chromosome
material in tumor samples since it can be performed without needing the tumor to grow in
culture, and also can be used (retrospectively) on formalin-fixed archived material. Nullisomic
cells (i.e. cells missing all copies of a given chromosome) were eliminated from the simulation
population because such cells are usually not observed in vivo.

4.3 Comparison of various distributions

In this section, we consider the time required for the stop threshold to be reached under various
conditions. We tested each of the following distributions: exponential, exponential + 4 hour
lag, exponential + 8 hour lag, normal, sloppy size with an exponential growth rate, and sloppy
size with a logistic growth rate. To test the null hypothesis, we calibrated the parameters of
each distribution to have a doubling time of 18 hours. The 18 hour estimate was based on the
behavior of colorectal cancer cell lines HCT116 (American Type Culture Collection cat #
CCL-247), p53HCT116 [60], and DLD-1 (American Type Culture Collection cat # CCL-221)
in our laboratory. The calibration was done analytically for the various exponential
distributions, and by simulation for the sloppy size distributions. (The normal distribution was
simply set to have a mean mitosis time of 18 hours, as the expected intermitotic time equals
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the expected doubling time in this case.) In contrast to the 5-state model used in prior sections,
these simulations were performed using a 7-state model. Results of these simulations are shown
in Figure 1.

Figure 1 also includes a curve labeled “algebraic” that shows the values expected according to
Mathematica calculations performed as described in Section 2.2 (but using 7 states instead of
5). As we see, the plot of signal time vs. missegregation rate is nearly identical regardless of
which distribution is used to model the cell cycle when the missegregations rate is high.

To test the effect of an increased division rate, we then performed the same test, but scaled the
rate of the cell cycle as a function of the number of chromosomes in a cell. Using the rough
approximation of a 5% increase in the cell division rate for tumor cells, we scaled the mitosis
rate parameters such that doubling times were decreased by 1 hour for each extra copy of
chromosome 7 (and increased the doubling time of cells with copy number 1 by one hour).
This hypothesis led to considerably faster growth of aberrant subpopulations, and to
considerably faster achievement of the stop threshold. Results are shown in Figure 2.

Again, we see that the shape of the curve does not depend on the choice of the distribution used
to simulate the cell cycle. The exponential curve suggests that, regardless of the distribution
used for intermitotic times at the cellular level, an asynchronous population will observe
mitoses at an exponential rate.

4.4 Calculating p-values

Ultimately, the intended uses of MITOSIM are to test hypotheses about the missegregation
ratio, the growth advantage for cells with extra chromosomes, and other parameters of the
model. To compare two parameter settings P, and P» in a hypothesis testing framework, it is
desirable to know to what extent the output distributions for time to CGH signal (and other
outputs) under Pq and P, overlap, if at all. Suppose that parameter setting P results in generally
shorter times to reach the CGH ratio of 1.2. Then one could say that the time distribution for
P4 differs from that of P, at P-value (confidence level) a, if the lower (1 — ) fraction of the
times for P4 do not overlap with the times for P, or if the upper (1—a) fraction of the times for
P, do not overlap with the times for Pq; which rule is applicable depends on which of P4 or
P, corresponds to the “null hypothesis”. The standard value of a is 0.05. To facilitate such
tests, MITOSIM prints out the 0.05 and 0.95 level for time to CGH signal and other quantities
of interest.

Consider two examples based on the simulations summarized in Figures 1 and 2. First compare
P4 = 5% mitotic advantage for an extra copy to P, = no advantage, with other settings fixed at
exp + 8hr lag for the time to mitosis and 0.01 as the missegregation rate [35]. In this case, we
consider P as the null hypothesis. The 0.95 level for time to CGH signal under Pq is 818.73
hours, while the minimum time under P, is 1440.02 hours, so these parameter settings lead to
statistically distinguishable outcomes. Second, compare P1 = 0.05 missegregation ration, P, =
0.01 missegregation ratio, and P3 = 0.005 missegregation ratio with all other settings fixed at
5% mitotic advantage and exp+8hr lag time for mitosis time. Again we consider P as the null
hypothesis, since 0.01 was the missegregation ratio measured in [35] for a colorectal cancer
cell line. Under the P hypothesis, 95% of the simulations required less that 363.01 hours, while
none of the 1000 simulations under the P, hypothesis took less than 506.3 hours, which
indicates that P1 and P, can be statistically distinguished. In contrast, under the P3 hypothesis,
95% of the simulations required at least 774.97 hours, a threshold also achieved by 166 of the
P, simulations, indicating that the P, and P53 distributions have a non-trivial overlap.
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5 Discussion

We have presented a matrix algebra model, and accompanying simulation software MITOSIM,
to consider the effects of chromosome copy number changes in cancer cell lines on mitosis
times. Our simulations with MITOSIM agree with estimates of the matrix algebra model
calculated using the software package Mathematica [44]. This modeling can be useful in testing
hypotheses about why aberrant cells eventually dominate the population in a tumor. The
presence of chromosome copy number changes can be measured by CGH. A much simpler
modeling and simulation method has been used by Roschke et al. [61] to test predictions about
chromosome rearrangements in cancer cell lines as measured by SKY.

The work of Gusev etal. [3,4] introduced the possibility of an algebraic model for chromosomal
missegregations. Nowak et al. [62] and Komarova et al. [63] have also used mathematical
modeling to investigate the onset of cancer and the role played by chromosomal instability
during this process. The Nowak/Komarova models, though mathematically sophisticated, are
more concerned with isolated genes than aneuploidy, and are not suitable for modeling the
appearance of CGH signal in a population of cells.

There are numerous ways in which our models are more useful and relevant to real cell line
data than the models of Gusev et al. First, the previous models did not allow for variability in
the growth rates of cells with different copy numbers, which is the hypothesis we wish to test.
Second, the Gusev model, by treating missegregations of each chromosome as an independent
event with equal likelihood (as opposed to considering missegregations by chromosome
type), creates a situation where monosomic cells are necessarily found in the most stable cell
lines. While some chromosomal losses are believed to lead to a selective advantage for the
respective clone line, it is undesirable for a mathematical model to have this as a necessary
relationship. Third, our non-synchronized model using the exponential time distribution, with
or without lag, can be solved algebraically to find the time to CGH signal for any amount of
time; in contrast, the Gusev et al. method requires repeated multiplication of a non-sparse
matrix. Fourth, the predictions of our models are expressed in terms of average copy number,
which can be directly estimated in the laboratory by CGH. The Gusev et al. model does not
lead to predictions easily testable by CGH or SKY. Fifth, we introduced in MITOSIM the
technique of sampling, which overcomes the limitation on simulation time that Gusev et al.
encountered. Sampling in the simulation is realistic because cell lines are sampled every few
population doublings when they are grown in the laboratory.

The software MITOSIM offers two classes of cell cycle models, the transition probability of
Smith and Martin [41] and the sloppy size control model as formulated by Tyson and Diekmann
[43]. When viewed in the aggregate, a population of cells growing according to the complex
process known as the cell cycle lends itself to analysis using the tools of linear algebra. The
key to the current analysis is the usefulness of the exponential distribution that arises in the
Smith-Martin model. The idea that the Smith-Martin model is a good starting point to make
analytic estimates is also emphasized by Cain and Chau [64] and Baker et al [65], for example.

Aside from the transition probability model and the sloppy size model, there have been a
number of previous models for the distributions of intermitotic times or the growth of cell
populations. Some studies have focused on the statistical properties of intermitotic times, as
did Smith and Martin. In [46,66], the Eyring-Stover survival theory was shown to better explain
the observed positive correlation between sister cells than the Smith-Martin model (which
implies no such correlation). Cain and Chau [64] extended the Smith-Martin model to consider
variables such as cell death, a post-mitotic state of constant length, and also introduced
substrate-dependent unbalanced growth using variable cell maturity velocity and/or an extra
quiescent state during the B phase that growing cells can randomly enter or depart [67].
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Tomasovic et al [68] used matrix algebra to estimate and compare parameters of the cell cycle
under different conditions. This work attempted to estimate delays in the cell cycle caused by
either x-rays or a drug, using a state space corresponding to time periods in the cell cycle. In
theory, this type of approach can be used for any further refinement of time, though it would
only be useful when distinct observations are available for each of the time periods in question.
A set of coupled differential equations structurally similar to those we used for continuous time
modeling was proposed by Gray [53]. Like Tomasovic et al., Gray used the states to mean
subintervals of the cell cycle. He used the differential equations to drive a computer simulation
and parameter fitting for the cell cycle, but did not use matrix algebra to obtain closed-form
solutions.

Other models of the cell cycle have focused less on the intermitotic times than on either the
cell sizes or the accumulation of mitosis initiator enzymes, just as the sloppy size model does.
Kimmel et al [49] modeled mitosis probabilities purely as a function of the accumulation of
the unequal division of nucleic acids. The 4-parameter continuum model of Cooper [69] is
another model for cell mitosis where occurrence of mitosis happens as a function of cell size
or of the amount of mitosis initiator in each cell. The continuum model suggests that variable
lengths of the G1-phase are a consequence, rather than a cause, of varying intermitotic times.
Since the lengths of the M, G,, and S phases are essentially constant, the variation in
intermitotic times, regardless of its cause, leads to a variation in the length of the G, phase.
This model can explain the lack of the G phase in prokaryotic cells, a lack generally ignored
by most models.

There are several other models of the cell cycle, which might be considered as alternatives.
For most of the models mentioned here, it is unclear how to represent the simple hypothesis
that an extra copy of a chromosome leads to faster mitosis within the numerous model
parameters. One model, the “tandem model” proposed by Tyson and Hanngsen [70], is
intermediate between the two models we have considered. The tandem model uses two states
like the Smith-Martin model but uses rigid size control instead of sloppy size control.

Koch has considered the historical evolution of the transition probability model, and has
criticized it for being primarily phenomenological, with insufficient biological motivation
[57]. But for our purposes, namely considering the large-scale growth behavior of a cell
population while trying to reduce the number of variables considered, the transition probability
model appears to be adequate. All of the models we considered, including the more complex
sloppy size models, yielded nearly identical exponential decay curves (Figures 1, 2) describing
the appearance of CGH signal as a function of missegregation rate. One can see some
differences in the estimated time for low missegregation rates in Figure 1 when the expected
mitosis time is the same for all copy numbers, but the ability to discriminate between small
advantage for extra copies (Figure 2) and no advantage (Figure 1) is virtually identical. Thus,
though the sloppy size model (and presumably other models) may represent a more
comprehensive biological understanding, the increased complexity of these models does not
appear to add to our understanding of the growth of larger populations. Indeed, the sloppy size
model requires the usage of density functions that we have defined arbitrarily, and whose direct
observation would be problematic given typical data set sizes. In conclusion, given the easy
transition from the simple transition probability model to the matrix algebraic formulation of
the problem, we prefer the TP model based on a consideration of the limit of the amount of
data readily available, and a general preference for simpler models over more complex models,
when both models appear to be adequate for a given task.
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In this appendix, we review the relationship between the expected intermitotic time of a single
cell T and the expected doubling time Ty of a population of cells. We also consider how the
doubling time varies when considering the Smith-Martin distribution where the intermitotic
time T is generated as the sum of an exponentially distributed variable T and a constant Tg.
The derivations are from Smith and Martin [41] under their assumptions that the set of cells
have a doubling time Tq4, and that one can ignore cell loss because the cells are sampled to start
a new culture every few days. The derivations are presented here for the sake of completeness.

In the simplest case, T is a constant over all cells, and E[T] = E[T4] = T; i.e. the doubling time
equals the expected intermitotic time. But in general, this equality need not hold. Consider the

case where T is exponentially distributed with parameter A. In this case, E[ T] = % but

ET,l= % The doubling time is less than the expected mitosis time because quickly

dividing cells decrease the doubling time more than slowly dividing cells increase it. In practice,
we let f"d be the observed doubling time, and solve for our estimate for A, A = 1;—2

d
Now consider the Smith-Martin distribution, where T =Ta + Tg, Tp is random and Tg is a
constant. The goal is to show, given that T is exponentially distributed (with parameter A, that
Tpa is itself exponentially distributed, and to derive a closed form for its parameter A5 as a
function of A and Tg. Let A(t) and B(t) denote the sets of cells in state A and B respectively at
time t, and let N (t) = |A(t) U B(t)|, the total number of cells at time t.

Let ¢ be a cell in the population at time t. The cell ¢ undergoes mitosis at time t if and only if
c leaves state A at time t — Tg. Since the former event is memoryless event whose passage time
can be described by an exponentially distributed variable T, the passage time of the latter event
can also be described by an exponentially distributed variable. It follows that Ty is also
exponentially distributed, and we can define its parameter Aa using the equation:

AAt = Plc divides in interval (#, t+ A#)]

= P c leaves state A in interval (+— T

5 t- TB+At)]

=Plc€ A(t - TB)]/IAAt.
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Let Na(t) and Np(t) denote the number of cells in the population in state A or state B,
respectively, at time t, such that N(t) = Na(t) + Ng(t). Let tg be an arbitrary real number, and
lett; =ty + Tg. The number of new cells created in an interval of length Tg is precisely equal
to the number of cells in state B at the beginning of the interval. Thus

N( t1) - I\I(to) = NB( to).

Also, presuming exponential growth of the population, the behavior of N(t) can be described
by the equation

N(1) = N(0)exp(A2). (A1)
Thus

N(ty)exp(AT g — N(ty) = N g(¢). (A.2)

Adding Na(tg) to (A.2) yields

N( to) =[ N( tO)exp(/l TB) - N( to)] + N A( to),

which leads to (after dividing by N(tg))

N (2

N(zy)

=2 —exp(d TB),

so Na/N is invariant as a function of t.

Therefore, one introduces a “rate constant” A such that the expected number of cells
undergoing mitosis at time t + Tg is

AN(t+Tp =4 N ,(2). (A.3)
The equation relates the rate of mitosis to the rate at which cells leave state A. Since the time
to mitosis is exponential, the set of cells in state B is decaying exponentially with parameter

A, and hence the set of cells in state A at time t will also decay exponentially with parameter
Aa, We can use Equation (A.1) to transform the left-hand side of (A.3):

AN(t+ T p) = AN(B)exp(AT p).

B
and thus
Aexp ATPN() A exp(ATp)
A= N (D) T2 exp(ATp"
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Signal times for constant rate mitosis models
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Signal times for varying rate mitosis models
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