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E-cadherin, an adhesive transmembrane protein of epithelial adherens junctions, forms two types of deter-
gent-resistant dimers: adhesive dimers consisting of cadherin molecules derived from two neighboring cells
and lateral dimers incorporating cadherins of the same cell. Both dimers depend on the integrity of the same
residue, Trp'>°. While the relative amounts of these complexes are not certain, we show here that in epithelial
A-431 cells, adhesive dimers may be a prevalent form. Inactivation of the calcium-binding sites, located between
successive cadherin ectodomains, drastically reduced the amount of adhesive dimers and concomitantly
increased the amount of lateral dimers. A similar interdependence of adhesive and lateral dimers was observed
in digitonin-permeabilized cells. In these cells, adhesive dimers immediately disassembled after lowering the
Ca’>* concentration below 0.1 mM. The disappearance of adhesive dimers was counterbalanced by an increase
in Trp'®-dependent lateral dimers. Increasing the calcium concentration to a normal level rapidly restored the
original balance between adhesive and lateral dimers. We also present evidence that E-cadherin dimers in vivo
have a short lifetime. These observations suggest that cadherin-mediated adhesion is based on the dynamic

cycling of E-cadherin between monomeric and adhesive dimer states.

E-cadherin, a member of the classic cadherin family, drives
homophilic Ca®*-dependent cell-cell adhesion in epithelial
cells. This transmembrane protein is concentrated within ad-
herens junctions where it mediates physical interactions be-
tween adjacent cells. Despite the important functions of classic
cadherins in tissue integrity (reviewed in references 1, 3, 21, 26,
and 27), the molecular mechanisms of cadherin-based adhe-
sion remain largely unknown. Conflicting data have been pub-
lished about the intercadherin interactions involved in cell-cell
adhesion. In this work we extended our examination of lateral
(or cis-) and adhesive (trans-) E-cadherin homodimers. Both
types of dimers were proposed to be essential intermediates in
the assembly of adherens junctions (9, 19).

The rod-like extracellular portion of classic cadherins con-
sists of five homologous ectodomains (EC domains, which are
numbered 1 to 5 starting from the N terminus). Successive EC
domains are interconnected by three calcium ions (15). To
mediate homophilic cell-cell adhesion, classic cadherins must
form multimeric complexes in which cadherins align in an
antiparallel fashion. However, the bulk of the E-cadherin mol-
ecules, which can be solubilized from cells using different ex-
traction protocols, was found in a monomeric state. On the
basis of this observation, it was proposed that cell-cell adhesion
is mediated by low-affinity intercadherin interactions. By this
assumption, stable cell-cell adhesion can be established only by
large cadherin clusters (1, 7, 13). Nevertheless, evidence for
the existence of stable cadherin dimers potentially important
for cell-cell adhesion has been reported (reviewed in refer-
ences 12 and 24).

Two different lateral dimers were demonstrated by struc-
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tural studies. One type was observed in the crystals of an
N-cadherin EC1 domain (20). The characteristic structural fea-
ture of this dimer is the reciprocal insertion of the conserved
Trp"°° residue (E-cadherin amino acid sequence numbering as
in reference 6) into the hydrophobic pocket of the paired
molecule. These lateral dimers mediated adhesive interactions
through the surface containing His*** and Val***, which had
been suggested to participate in adhesion by experiments using
adhesion-blocking peptides (4, 17). None of these interactions,
however, were detected in crystals of a cadherin fragment
consisting of EC1 and EC2 domains (15, 18, 22). Instead, this
fragment formed a lateral dimer through the Ca®"-binding
region. The Trp'*° residues within this dimer were either dis-
ordered or inserted into the hydrophobic pockets located in
their own molecules. In addition, no Trp'°-dependent lateral
dimers were detected in experiments with the chimeric E-
cadherin molecule ECADCOMP, consisting of the E-cadherin
extracellular region and the assembly domain of the cartilage
oligomeric matrix protein (18). This soluble protein formed
oligomers in which adhesive but not lateral interactions were
abolished by the Trp'*® mutation. This observation implied
that lateral Ca**-dependent dimerization is involved in the
activation of the Trp'*®-dependent adhesive interaction. Due
to the low affinity of lateral interactions, this process was pro-
posed to occur only in cadherin clusters (13). Data from ex-
periments with Xenopus C-cadherin (5, 7) suggested that lat-
eral interactions may play a role in cell-cell adhesion, but the
biochemical features of the lateral dimers reported in these
papers clearly differed from those formed through the Ca**-
binding region.

Coimmunoprecipitation experiments using protein extracts
from epithelial cells demonstrated that E-cadherin is able to form
stable Trp'°-dependent adhesive dimers (9). Like E-cadherin-
based adhesion, this type of dimerization was impaired either by
depletion of Ca®" ions, by deletion of the intracellular cadherin
region, or by mutations of the Ca®"-binding sites or the Trp'*°.
Thus, coimmunoprecipitation data confirm the role of the Trp*>°-
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dependent frans-interactions in cell-cell adhesion. Trp'**-depen-
dent adhesive dimers, however, were stable in solution even in the
absence of calcium ions, which was not consistent with the model
postulating that cadherin-based adhesion was mediated by calci-
um-dependent low-affinity interactions.

The only type of lateral cadherin interactions detected by the
coimmunoprecipitation assay in cells cultured under standard
conditions was Trp'>® dependent (9, 19). This type of lateral
dimerization was not observed in most in vitro experiments.
Unfortunately, the presence of adhesive E-cadherin ho-
modimers made it difficult to assess the amounts of lateral
homodimers in our coimmunoprecipitation assay (9). The ex-
istence of Trp'*°-dependent lateral dimers was documented
solely by the observation that the Ca?"-binding site mutant of
E-cadherin (Ec1QNM) did not form adhesive homodimers
and formed only lateral homodimers. Therefore, an extreme
point of view is that lateral homodimers do not exist under
normal culture conditions but rapidly form after the depletion
of calcium ions (23). This assumption could explain why
Trp'°°-dependent lateral interactions have been found only in
the crystals obtained from the EC1 domain, which lacks Ca*"-
binding sites (20). However, the available data cannot entirely
exclude the alternative radical possibility that the adhesive
dimers we detected are actually Trp'>°-dependent lateral
dimers incorporating cadherins from closely opposed plasma
membranes. If this is true, the amount of adhesive dimers can
be expected to be negligible relative to the amount of lateral
dimers. Thus, to understand the nature of Trp'*°-dependent
adhesive dimers and their role in cell-cell adhesion, it was
important to determine their relative abundance. The present
work indicates that the amount of adhesive dimers in A-431
cells may exceed the amount of lateral dimers. We also show
that both types of dimers are highly dynamic. Defects in the
calcium-binding sites abolish adhesive but promote lateral
Trp'**-dependent dimer assembly. The dissociation of adhe-
sive dimers accompanied by the immediate accumulation of
lateral dimers were also detected in permeabilized cells after
depletion of calcium ions. Taken together, the results reported
here indicate that Trp*>°-dependent adhesive dimerization is a
specific process and distinct from lateral dimerization. Our
data allowed us to propose that the constant assembly of the
short-lived adhesive dimers plays a critical function in the
dynamic nature of cell-cell interactions.

MATERIALS AND METHODS

DNA constructs, cell culture, DNA transfection, and immunofluorescence
microscopy. The construction of the expression plasmids coding for the E-
cadherin with an internal deletion from His””® to Leu’' and tagged at the
COOH terminus either by myc (Ec1M) or by Flag (Ec1F) epitopes, as well as
mutants EcIM-W156A and Ec1QNM, was described previously (9, 12). As
reported, while not changing any known properties of E-cadherin (such as
subcellular distribution, binding to catenins and to p120°", and mobility in
sucrose gradient), the deletion of His””? to Leu’' completely abolished the
binding of E-cadherin to anti-E-cadherin antibody C20820 (9). This unique
feature of EcIM and EclF allowed us to reveal physical interactions between
E-cadherin molecules by the coimmunoprecipitation approach. Several new E-
cadherin point mutants were produced using site-directed mutagenesis. Mutants
EcIM-Ca2/3, EclM-Ca3/4, and EclM-Ca4/5 contained mutations (N369A/
D370A, N481A/D482A, and N589A/D590A, respectively) in the presumed cal-
cium-binding sites located between the EC2/EC3, EC3/EC4, and EC4/ECS5 do-
mains. The mutants ECIQNM-W156A, Ec1M-Ca2/3-W156A, and Ec1M-Ca3/4-
WI156A contained, in addition to mutations in calcium-binding sites, a point
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mutation (W156A), which affects the formation of any types of Trp'>°-dependent
dimers. All mutants were constructed in the eukaryotic expression vector pRc-
CMV (Invitrogen, Carlsbad, Calif.) containing a neomycin resistance gene. Cor-
rect construction of the recombinant plasmids was verified by restriction endo-
nuclease mapping and nucleotide sequencing of the entire regions derived from
PCR.

Human epidermoid carcinoma A-431 cells were transfected, selected, grown,
and examined by immunofluorescence microscopy as described previously (8, 9).
The following mouse monoclonal antibodies were used: anti-E-cadherin, clone
HECD-1 (Zymed Laboratories, San Francisco, Calif.); anti-myc (clone 9E10,
provided by R. Kopan, Washington University Medical School, St. Louis, Mo.);
anti-Flag M2 (Sigma, St. Louis, Mo.); and anti-E-cadherin C20820 (Transduction
Laboratories, Lexington, Ky.).

Immunoprecipitation and sedimentation analysis. For most immunoprecipi-
tation experiments, 2 X 10° cells were cultured in a 10-cm-diameter tissue culture
dish at 37°C for about 72 h. In coculture experiments, 6 X 10° cells producing
myc- and Flag-tagged forms of E-cadherin were mixed in a 1:1 ratio and were
cultured in a 10-cm-diameter dish for 16 h. Immunoprecipitation assay and
sucrose gradient centrifugation were described previously (9). In brief, the con-
fluent monolayer (approximately 107 cells) was washed and extracted at 4°C with
1.5 ml of immunoprecipitation lysis buffer (IP buffer) (50 mM Tris-HCI [pH 7.4],
150 mM NaCl, 1 mM dithiothreitol, 20 pM (4-amidinophenyl)-methanesulfonyl
fluoride (APMSF), 2 mM EDTA, 1% Nonidet P-40 [NP-40]). The cells detached
from the tissue culture dish after a few minutes in IP buffer and then were
transferred into 1.5-ml microcentrifuge tubes and agitated for 10 min at 4°C.
NP-40-insoluble material was removed by centrifugation at 100,000 X g for 1 h.
The lysates were subjected to immunoprecipitation by subsequent incubations
with a specific antibody (1 h, 1 pg/sample) and protein A-Sepharose (25-p.l
packed gel volume). Before the addition of sodium dodecyl sulfate (SDS) sample
buffer (usually 40 nl of sample buffer was used for an immunoprecipitate ob-
tained from one 10-cm-diameter dish), beads were washed five times with 1 ml
of IP buffer. The duration of washing step did not change the yield of precipi-
tated and coprecipitated proteins.

For sucrose gradient centrifugation, confluent monolayer cells from three
10-cm-diameter dishes were lysed with 2 ml of IP buffer. Lysates (1 ml) were
precleaned by centrifugation at 100,000 X g for 1 h and then loaded on top of a
12-ml linear 5 to 20% (wt/wt) sucrose gradient prepared in IP buffer. Gradients
were centrifuged at 200,000 X g for 17 h in a SW40Ti rotor (Beckman Instru-
ments) at 4°C, fractionated from bottom to top into 12 fractions (1 ml each), and
analyzed by coimmunoprecipitation. The following protein standards with known
S values were centrifuged on replicate gradients: bovine serum albumin, 4.5S;
immunoglobulin G, 7.5S; catalase, 11.35S; and apoferritin, 178S.

Biotinylation of cell surface proteins and metabolic labeling. Confluent cul-
tures in 10-cm-diameter tissue culture dishes were washed with ice-cold phos-
phate-buffered saline containing 0.5 mM CaCl, (PBS-C). Then each plate was
incubated at room temperature (RT) with 7 ml of 0.5 mg of Sulfo-NHS-LC-
Biotin (Pierce, Rockford, Ill.) per ml in PBS-C for 10 min. The reaction was
quenched by washing the cells with 1 M Tris—100 mM glycine buffer, pH 7.4. In
some experiments, cells after biotinylation were dissociated into a single-cell
suspension by 10-min treatment with 5 mM EDTA in PBS at 37°C and mixed
with the same amount of unbiotinylated cells. In this case, cells were then
cultivated for an additional 8 h. To analyze turnover of biotinylated E-cadherin,
the cells after biotinylation were chased in the culture media for up to 16 h. After
cultivation, cells were extracted in IP buffer and immunoprecipitated as de-
scribed above. Biotinylated proteins were visualized with streptavidin-horserad-
ish peroxidase (HRP) conjugate (Pierce) in conjunction with ECL (Boehringer
Mannheim, Indianapolis, Ind.). The intensity of the biotin-derived signals was
quantified using the NIH Image program, version 1.62. The samples were ap-
propriately diluted to ensure the linear character of measurement.

For pulse-labeling experiments, confluent A-431 cells grown on 5-cm-diameter
plates were first starved for 1 h in methionine- and cysteine-free Dulbecco
modified Eagle medium supplemented with 10% dialyzed fetal calf serum. The
cells were then biotinylated as described above and immediately afterward pulse-
labeled with 0.25 mCi of [*>S] methionine/cysteine (Amersham, Arlington
Heights, II1.) per plate in the same medium for 20 min. Plates were then washed
with Dulbecco modified Eagle medium containing excess cold methionine and
cysteine and chased in the regular medium for up to 3 h. After chase periods,
cells were lysed in the IP buffer, as described above, and biotinylated proteins
were precipitated with streptavidin-agarose (Sigma). Next, the proteins were
cluted from the beads by incubating with 100 wl of the 1% SDS solution at 90°C.
The eluted proteins were then diluted 15-fold in the IP buffer and immunopre-
cipitated with anti-E-cadherin C20820 antibody, as described above.
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FIG. 1. Schematic representation of the mixed-culture coimmuno-
precipitation assay. Two clones of A-431 cells expressing E-cadherin,
tagged with either myc or Flag epitopes (AEcM and AECF cells,
respectively), were mixed and cocultivated overnight. Both tagged E-
cadherin forms lack the epitope for the anti-E-cadherin antibody,
C20820, in the intracellular segment of endogenous cadherin (indicat-
ed by an open box). The extracellular E-cadherin region consists of five
repetitive ectodomains, which are indicated by numbers. Anti-myc
immunoprecipitation of these cocultures results in coimmunoprecipi-
tation of wild-type E-cadherin (wt) which can be derived from either
EcIM-E-cadherin adhesive (box 1), or EcIM-E-cadherin lateral (box
2) dimers. In contrast, Ec1F can be derived only from adhesive Ec1M-
EclF dimers (box 3).

Adhesive dimer analysis in permeabilized cells. Confluent monolayers of the
cocultured cells in 10-cm-diameter tissue culture dishes were rinsed at RT in
permeabilization buffer (PB buffer) (50 mM HEPES-KOH [pH 7.0], 100 mM
KCI, 4 mM MgCl,, 20 pM APMSF) supplemented with 1 mM CaCl,. Cells were
then incubated at RT for 2 min (unless indicated otherwise) in the same buffer
containing a desirable concentration of digitonin (Calbiochem, La Jolla, Calif.)
and CaCl,. In some experiments, the PB buffer used for permeabilization was
gently replaced with a fresh PB buffer containing a different concentration of
digitonin or CaCl,. After permeabilization, cells were either extracted in the IP
buffer or were fixed for immunofluorescence microscopy.

RESULTS

Inactivation of calcium-binding sites specifically abolishes
adhesive E-cadherin dimerization. To monitor cadherin ho-
modimerization, we have developed a mixed-culture coimmu-
noprecipitation assay (9) (Fig. 1). This approach utilizes cocul-
tures of two clones of epithelial A-431 cells (AEcM and AEcF)
expressing recombinant E-cadherin tagged C terminally either
by myc (EcIM) or by Flag (Ec1F) epitopes. In addition, both
recombinant molecules lack the epitope for C20820 anti-E-
cadherin monoclonal antibody. We demonstrated that in such
cocultures, anti-myc antibody coimmunoprecipitated both
Flag-tagged (EclF) and endogenous (C20820-reactive) forms
of E-cadherin. Together with sucrose gradient analysis, our
data showed that the coimmunoprecipitated EclF is derived
from adhesive Ec1M-Ec1F cadherin dimers. The endogenous
E-cadherin in the same immunoprecipitates can be derived
from both adhesive and lateral dimers (Fig. 1). The replace-
ment of the Trp'*® with Ala (in the Ec1M-W156A mutant) or
a defect of the Ca”*-binding site located between the EC1 and
EC2 domains (in the EcIQNM mutant) impaired adhesive
dimerization (9). Notably, the Ec1QNM mutant, in contrast to
EcIM-W156A mutant, was still able to produce dimers with
endogenous E-cadherin. This observation suggested that the
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FIG. 2. Schematic representation of calcium-binding mutants of
EcIM (A) and coimmunoprecipitation analysis of corresponding mu-
tants for adhesive and lateral dimer formation (B and C). (A) The
Myc-tagged form of E-cadherin, Ec1M, consists of five extracellular
EC domains (only the number shown in the figure), transmembrane
domain (TM), intracellular region, and myc epitope. The open box in
the intracellular region indicates the deletion of the monoclonal anti-
body (mAb) C20820 epitope. The positions of the Trp'*® residue and
the presumed calcium-binding sites (1/2, 2/3, 3/4, and 4/5) which were
mutated are indicated by arrows. Homogeneous cultures (C) or cocul-
tures with AEcF (B) of A-431 cells producing Ec1M, Ec1M-Ca2/3
(Ca2/3), Ec1M-Ca3/4 (Ca3/4), Ec1M-Ca4/5 (Ca4/5), Ec1QONM (Cal/
2), EcIM-WI56A (WI156A), EclQNM-WI156A (Cal/2-W156A),
EcIM-Ca2/3-W156A (Ca2/3-W156A), and Ec1M-Ca3/4-W156A (Ca3/
4-W156A) were immunoprecipitated by an anti-myc antibody and
probed for the presence of the immunoprecipitated myc-tagged pro-
teins (Myc) or coimmunoprecipitated endogenous E-cadherin (Ec) or
EclF (Flag) by Western blotting.

inactivation of the calcium-binding site specifically affected the
adhesive, but not the lateral, mode of dimerization.

In order to determine whether the calcium-binding sites
located between other EC domains of E-cadherin were also
required for adhesive dimerization, three new Ec1M mutants
(EclM-Ca2/3, EclM-Ca3/4, and EcIM-Ca4/5) were con-
structed (Fig. 2A). They contained similar mutations convert-
ing the conserved Ca®*-binding motif DxND/E located at the
EC2/EC3, EC3/EC4, or EC4/EC5 boundaries into DxAA.
A-431 cell clones expressing these mutants at the same expres-
sion level as Ec1M in the AEcM cells were selected. As shown
by surface biotinylation, all these mutants were efficiently de-
livered to the cell surface. Furthermore, these mutants induced
a strong dominant-negative effect on cell-cell adhesion (not
shown), similar to the effect which was described for the
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TABLE 1. Possible versus detected adhesive and lateral dimers

Dimer produced from“:
Dimer type

IP#1 IP#2
Adhesive EcIM-EclF® Ec-EclF*
Ec1lM-Ec Ec-Ec
Ec-EclF EclF-EclF
Ec-Ec
Lateral None detected Ec-Ecl1F¢
Ec-Ec
EclF-EclF

“IP#1, anti-myc immunoprecipitate from AEcM/AECF coculture; IP#2, an-
ti-Ec (endogenous E-cadherin) immunoprecipitate from AECF culture. For
IP#1, only dimers present on the surface of AEcM cells are shown. The dimeric
species which were detected in the immunoprecipitate by anti-Flag staining of
the Western blots are shown in bold type.

P If all E-cadherin forms are expressed at the same level, then this type of
dimers composes 25% of all adhesive dimers.

¢ If all E-cadherin forms are equally present, then these dimers compose 50%
of all dimeric forms.

Ec1ONM mutant (9). Mixed-culture coimmunoprecipitation
experiments with these cells showed that all three mutants
similar to Ec1IQNM associated with the same amounts of en-
dogenous E-cadherin, but not with Ec1F (Fig. 2B). These data
suggest that defects in any of the Ca®"-binding sites specifically
affect the adhesive interaction of E-cadherin.

Previously we showed that the removal of calcium ions from
the culture medium induced the formation of lateral dimers
which were completely independent from the Trp'>® residue
(23). Therefore, we wished to determine whether the lateral
dimers formed by the Ec1M mutants containing defects in
their calcium-binding sites are Trp'*® dependent. To study this,
the Trpl56Ala substitution was introduced into the mutants
Ec1QNM, EclM-Ca2/3, and EclM-Ca3/4. The results pre-
sented in Fig. 2C show that this substitution completely abol-
ished the association of the calcium-binding site mutants with
endogenous E-cadherin. Taken together, these data show that
inactivation of any single Ec1M Ca®"-binding site dramatically
decreased its adhesive dimerization with Ec1F. Notably, none
of these mutations changed its Trp'*°-dependent dimerization
with endogenous E-cadherin.

The amounts of adhesive and lateral dimers in A-431 cells
are in the same range. Our finding that the inactivation of
EclM Ca*"-binding sites selectively abolished its interaction
with EclF, but not with endogenous E-cadherin, has two pos-
sible explanations. First, the amount of adhesive dimers may
have been so small that their elimination does not detectably
change the sum of adhesive and lateral dimers. Second, the
defect in calcium-binding sites may have resulted in the for-
mation of an abnormally large amount of lateral dimers, coun-
terbalancing the loss of adhesive dimers. To distinguish be-
tween these two possibilities, we assessed the relative amounts
of adhesive and lateral dimers.

To this end, we compared the amounts of EclF in two
immunoprecipitates: (i) in the anti-myc immunoprecipitate ob-
tained from the coculture of AEcM and AECF cells (IP#1) and
(ii) in the anti-E-cadherin (monoclonal antibody C20820) im-
munoprecipitate obtained from the homogeneous culture of
AECF cells (IP#2). As described above, in IP#1, EclF was
derived exclusively from adhesive dimers, while in IP#2, Ec1F
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FIG. 3. Relative amounts of the adhesive and lateral dimers in
A-431 cells. (A) Confluent AEcM and AECF cells were extracted with
IP buffer, adjusted to the same protein concentration, and analyzed by
immunoblotting with two different anti-E-cadherin antibodies, C20820
(Ec) or HECD-1 (Hec). Note that the amounts of endogenous E-
cadherin (Ecad) in both cell lines were equal; the amounts of Ec1M
(Ec1M) and endogenous cadherin in AEcM cells were also equal.
(B) Ten microliters of the myc immunoprecipitate (IP:#1) obtained
from AEcM/AECF coculture and 2, 4, and 8 pl of the anti-E-cadherin
(monoclonal antibody C20820) immunoprecipitate (IP:#2) obtained
from a homogeneous AECF culture were analyzed with HECD-1
(Hec) and anti-Flag (Flag) antibodies (the number of microliters of
immunoprecipitate is shown below the blots). In IP#1, EclF was
derived exclusively from adhesive dimers, while in IP#2, it was derived
from both lateral and adhesive dimers. The staining with the HECD-1
antibody shows that 10 pl of IP#1 and 8 pl of IP#2 contain equal
amounts of immunoprecipitated components, EcIM (Ec1M) in IP#1
and E-cadherin (E-cad) in IP#2. Staining the identical blot with anti-
Flag antibody shows that the amount of coimmunoprecipitated Ec1F
in 10 pl of IP#1 is about four times less than in 8 wl of IP#2.

was derived from both lateral and adhesive dimers (Table 1).
To estimate the contribution of adhesive dimerization in IP#2
based on IP#1, the expression levels of all forms of E-cadherin
must be determined. Western blot analysis of AEcF and AEcM
cells with antibody C20820 showed that both cell clones ex-
pressed equal amounts of endogenous E-cadherin (Fig. 3A,
left panel). Similar analysis of the AEcM cells using the
HECD-1 antibody reacting with all forms of E-cadherin
showed that these cells have the same amounts of Ec1M and
endogenous E-cadherin (Fig. 3A, right panel). Therefore, the
expression levels of endogenous E-cadherin in AEcF and
AEcM cells, as well as Ec1M in AEcM cells, are equal. The
amount of EclF cannot be estimated precisely. However, over-
expression of recombinant E-cadherin was found to reduce the
level of endogenous E-cadherin (16; also data not shown).
Therefore, equal levels of endogenous E-cadherin in AEcM
and AECF cells suggest that the levels of Ec1M and EclF in
these cells are also similar.

The comparison of Ec1F signal in both immunoprecipitates
is shown in Fig. 3B. Both immunoprecipitates were stained
with the HECD-1 antibody (Fig. 3B, left panel). Only the
directly immunoprecipitated forms, EcIM (in IP#1) and en-
dogenous E-cadherin (in IP#2), are visible under this staining
condition. This staining shows that the amount of Ec1M in 10
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pl of the first immunoprecipitate was the same as the amount
of E-cadherin in 8 pl of the second immunoprecipitate. The
parallel samples were analyzed for the presence of the coim-
munoprecipitated EclF (Fig. 3B, right panel). After correction
for the differences in protein concentrations, these data
showed that IP#1 (in which Ec1F was derived from the adhe-
sive dimers only) contains approximately 20% of Ec1F relative
to IP#2.

These data allowed us to conclude that the adhesive dimers
appear to be more abundant than lateral dimers. This is sug-
gested by two additional considerations. First, considering that
in a totally random AEcM/AECF coculture, each AEcM cell
interacts with equal numbers of AEcF and AEcM cells, one
may conclude that approximately 40% of the E-cadherin ho-
modimers detected in our coimmunoprecipitation assay were
derived from adhesive dimers. This assumption was strength-
ened by immunofluorescence microscopic examination of the
AEcM/AECF cocultures used for coimmunoprecipitation. It
showed that in fact, among direct neighbors of a given AEcM
cell, the number of AEcM cells was approximately two times
more than that of AECF cells (not shown). Second, as indicated
in Table 1, if the amounts of all forms of E-cadherin in our cells
are the same, the amount of the detected adhesive dimers
(Ec1M-Ec1F) in IP#1 is four times less than the actual amount
of adhesive dimers. The amount of adhesive dimers detected in
IP#2 (E-cad-EclF) is only two times less than their total
amount. Thus, at these conditions, the percentage of adhesive
dimers must again be doubled.

Of course, the amounts of Ec1F in both immunoprecipitates
reliably reflect the abundance of the adhesive and lateral
dimers if all E-cadherin molecules (tagged and untagged) form
lateral and adhesion dimers equally well with each other. In-
deed, sucrose gradient centrifugation did not reveal any dif-
ferences in dimerization efficiency of different E-cadherin
forms (9). It was also shown that C-terminal tags did not
change the known properties of classic cadherins (2, 9, 19).
Also, cell-to-cell variations in Ec1M or EclF expression in the
AEcM and AECcF cell clones were not detected by immuno-
fluorescence microscopy. Therefore, while approximate, our
data show that under standard culture conditions the amount
of the immunoprecipitated adhesive dimers is significant and
even exceeds the amount of lateral dimers. These data strongly
support the hypothesis that the impairment of Ca**-binding
sites in E-cadherin results in the activation of lateral and re-
duction of adhesive Trp'>®-dependent dimerization.

Assembly and disassembly of adhesive dimers in semi-intact
A-431 cells. The dependence of adhesive and lateral dimeriza-
tion on the integrity of the calcium-binding sites suggests that
removal of calcium ions from the cell culture medium could
also shift the mode of cadherin dimerization from the adhesive
to the lateral state. Such a change in intercadherin interactions,
however, is difficult to monitor in living cells, since the calcium-
free conditions induced Trp'*®-independent lateral cadherin
dimerization (23). In search of conditions which would specif-
ically affect the formation of such Trp'*®*-independent cadherin
dimers, we examined cadherin dimerization in permeabilized
A-431 cells. The AEcM/AECF cocultures were permeabilized
with 0.007% digitonin in the presence or absence of Ca** ions,
followed by immunoprecipitation with an anti-myc antibody.
As shown in Fig. 4, permeabilized cells retained their normal
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Control

Digitonin

FIG. 4. Immunofluorescence microscopy of AEcM cells stained
with anti-myc antibody. Before the cells were stained, they were either
fixed with acetone-methanol (Control) or incubated for 2 min in dig-
itonin-containing (0.007%) low-calcium PB buffer (Digitonin) before
fixation. Bars, 40 pm.

morphology and E-cadherin distribution independently of cal-
cium concentration. Under this condition, more than 90% of
cells were permeabilized as determined by cell labeling with
fluorescein isothiocyanate-phalloidin (not shown). Cell perme-
abilization in the presence of calcium ions did not change Ec1F
coimmunoprecipitation. However, incubating the cells for 2
min in the PB buffer without calcium ions completely abolished
adhesive dimerization (Fig. 5A, lane 3). The amount of coim-
munoprecipitated endogenous E-cadherin remained un-
changed. These data indicate that adhesive dimers in perme-
abilized cells are much more sensitive to the lack of calcium
ions than adhesive dimers in intact cells. In the latter, the
complete disappearance of the dimers was evident only 10 to
15 min after removing of calcium ions (not shown). The high
level of coimmunoprecipitated endogenous E-cadherin in per-
meabilized cells suggests that calcium removal immediately
induced the rapid formation of lateral dimers. Importantly, the
significant change in the balance between adhesive and lateral
dimers was not accompanied by any detectable changes in the
distribution of E-cadherin, as observed by immunofluores-
cence microscopy (Fig. 4).

In order to examine the nature of lateral dimers detected in
the permeabilized cells in Ca®"-free conditions, we performed
experiments with cells expressing the Ec1IM-W156A mutant.
This mutant is unable to form any dimers under standard
culture condition but forms lateral dimers after the removal of
calcium (23). However, this mutant did not form dimers with
endogenous E-cadherin (not shown) when cells were perme-
abilized for 2 min with low-Ca?* buffer. These data suggested
that the lateral dimers, assembled in permeabilized cells after
Ca?* removal, were Trp'>® dependent.

Next, we studied whether adhesive dimers could be recon-
stituted after raising the calcium concentration to the normal
concentration. Figure 5A (lane 5) shows that the addition of 1
mM calcium for 2 min to cells which were previously perme-
abilized in the low-Ca®" buffer nearly restored the amount of
adhesive dimers. Notably, there was no significant effect on the
amount of coimmunoprecipitated endogenous E-cadherin.
The opposite experiment (Fig. 5B) showed that adhesive
dimers present in cells permeabilized with calcium-containing
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FIG. 5. Assembly and disassembly of adhesive dimers in permeabil-
ized cells. (A) Coimmunoprecipitation of AECM/AECF cocultures with
an anti-myc antibody were performed under standard conditions (con-
trol) or after incubation of cells in PB buffer with 0.007% digitonin for
various times in the presence or absence of calcium as follows: 2 min
with buffer containing 1 mM Ca*" (lane 1); 30 s without Ca®* (lane 2);
2 min without Ca®* (lane 3); 2 min without Ca®" and then 30 s with 1
mM Ca®" (lane 4); 2 min without Ca®* and then 2 min with 1 mM
Ca** (lane 5); 2 min without Ca®" and then 5 min with 1 mM Ca®"
(lane 6). (B) Comparison of assembly and disassembly of adhesive
dimers at digitonin concentrations of 0.007 or 0.05%. Before lysis, cells
were incubated with PB buffer for various times in the presence or
absence of calcium as follows: 2 min without Ca** (lane 1); 2 min
without Ca*" and then 2 min with 1 mM Ca?* (lane 2); 2 min with
Ca** (lane 3); 2 min with Ca®" and then 2 min without Ca®" (lane 4).

buffer were rapidly disassembled by removing calcium ions.
Thus, adhesive dimers were reversibly assembled or disassem-
bled in the semi-intact A-431 cells by shifting the calcium
concentration in a time course on the order of several minutes.

To determine whether digitonin level influences the disas-
sembly of adhesive dimers, the AEcM/AECF cocultures were
permeabilized in the presence of calcium and different digito-
nin concentrations. Afterward, cell samples were either di-
rectly lysed or incubated for an additional 2 min with low-Ca**
buffer containing the same digitonin concentration (Fig. 5B
and data not shown). This experiment showed that concentra-
tions of digitonin of 0.015% or higher (concentrations up to
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0.1% were tested) abolished the dissociation of adhesive
dimers, while the cellular distribution of E-cadherin or its total
amount in the immunoprecipitates were not changed. Further-
more, a digitonin concentration of 0.015% abolished disassem-
bly of adhesive dimers during permeabilization in low-calcium
buffer (Fig. 5B). Thus, some cellular activity sensitive to high
concentrations of digitonin was required for both dissociation
and assembly of adhesive dimers.

Assembly and disassembly of adhesive dimers occur at the
same calcium concentration in intact and permeabilized cells.
The disassembly of adhesive dimers in the permeabilized cells
in low-calcium buffer could be caused, in theory, by an increase
of cytosolic calcium concentration above the 1 WM concentra-
tion that activates calcium-dependent signaling pathways. To
examine this possibility, we compared the Ca®" concentration
dependence on the adhesive dimer disassembly in permeabil-
ized and in intact cells. Before anti-myc immunoprecipitation,
the AEcM/AECF cocultures were incubated for 2 min in PB
buffer containing different Ca®>" concentrations. These exper-
iments showed that adhesive dimers were not detected below a
Ca®* concentration of 0.1 mM (Fig. 6A). The 0.1 mM thresh-
old level of adhesive dimer dissociation makes involvement of
intracellular calcium signaling in the dissociation process un-
likely, since this threshold would not change the calcium-bind-
ing state of the signaling cytosolic proteins. To determine the
extracellular Ca?* concentration, which is critical for the dis-
sociation of adhesive dimers in intact cells, AEcM/AEcF co-
cultures were exposed for 10 min to different levels of Ca*" in
Hanks balanced solution. Figure 6B shows that the same 0.1
mM Ca®* threshold was also critical for the intact cells. Below
this concentration, adhesive dimers gradually disappeared.
Furthermore, when the calcium concentration was decreased
below 0.1 mM, the morphology of intact cells changed and the
dimers dissociated (not shown). We also studied the require-
ment of Ca®" ions for the assembly of adhesive dimers after
they had dissociated in the low-calcium PB buffer (Fig. 6C).
Again, the assembly proceeded only at a Ca®>" concentration
above the 0.1 mM threshold. The equal Ca** dependence of
the adhesive E-cadherin interactions in the intact and perme-
abilized cells strongly suggests that, despite different kinetics,
the assembly or disassembly of adhesive dimers follow the
same basic mechanisms in both types of cells.

The half-life of cadherin dimers may be very short. Al-
though adhesive dimers are stable and calcium independent in
solution, they are extremely sensitive to calcium concentration
changes in intact and semi-intact cells. This paradox can be
explained by the possibility that adhesive dimers in living cells
are dynamic structures and the removal of calcium ions spe-
cifically blocks their assembly by inhibiting an important inter-
mediate step in this process. Thus, we next studied the dynamic
behavior of E-cadherin dimers in A-431 cells. First, we as-
sessed the metabolic stability of monomeric and dimeric forms
of Ec1M. Surface proteins of AEcM cells were biotinylated,
and then the cells were chased for different time periods (up to
16 h) before anti-myc immunoprecipitation. The immunopre-
cipitates were analyzed by Western blotting using an anti-myc
antibody or a HRP-streptavidin conjugate. The quantification
of the biotin-derived signal in Ec1M and endogenous E-cad-
herin bands showed that the half-lives of both immunoprecipi-
tated (Ec1M) and coimmunoprecipitated (endogenous E-cad-
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FIG. 6. Dependence of the disassembly (A and B) and assembly
(C) of adhesive dimers on Ca®" ions in intact cells (B) and permeabil-
ized cells (A and C). (A) AEcM/AECF cocultures were incubated for
2 min in PB buffer with 0.007% digitonin and different calcium con-
centrations (micromolar calcium concentrations indicated below the
blots) and then subjected to coimmunoprecipitation with an anti-myc
antibody. (B) Intact AEcCM/AECF cocultures before coimmunoprecipi-
tation were incubated for 10 min at different calcium concentrations.
(C) Cocultures, before coimmunoprecipitation, were preincubated for
2 min in PB buffer with 0.007% digitonin and without Ca>* ions and
then allowed to assemble dimers in the same buffer with different
calcium concentrations. The immunoprecipitates were analyzed with
an anti-Flag (Flag) or an anti-E-cadherin C20820 (Ec) antibody.

herin) proteins were about the same (Fig. 7A). The same rates
of degradation for both E-cadherin forms were also found in
experiments where cell lysates were fractionated by sucrose
gradient centrifugation (Fig. 7B).

This approach cannot distinguish adhesive dimers from lat-
eral dimers. Similar half-life values for the immunoprecipi-
tated EcIM and coimmunoprecipitated E-cadherin indicate
that either both monomeric and dimeric cadherin forms have
the same turnover rate, or cadherin dimers are highly dynamic.
In the latter case, the degraded biotin-labeled dimers are re-
placed with new ones assembled from the pool of biotin-la-
beled monomers. To examine this hypothesis, we studied
whether biotinylated E-cadherin was able to form adhesive
dimers. The surface-biotinylated wild-type A-431 cells were
dissociated by EDTA and mixed with nonbiotinylated AEcM
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cells. In a control experiment, the same amounts of biotinyl-
ated A-431 and nonbiotinylated AEcM cells were cultivated
separately and were mixed only after lysis (Fig. 7C). This ex-
periment showed the specific incorporation of biotinylated E-
cadherin molecules into adhesive dimers.

Finally, to determine the kinetics of cadherin dimer assem-
bly, pulse-chase labeling experiments with prebiotinylated cells
were performed. A-431 cells were surface biotinylated and
then pulse-labeled with [**S]methionine/cysteine. This subse-
quent labeling produced two separate *>S- and biotin-labeled
pools of proteins. At different chase periods, biotinylated pro-
teins were pulled down by streptavidin-agarose, eluted by SDS,
and then immunoprecipitated with an anti-E-cadherin anti-
body (Fig. 8). Because E-cadherin does not interact with any
other biotinylated proteins (not shown), radioactively labeled
E-cadherin in this experiment derives exclusively from dimers
containing both biotin- and *S-labeled cadherin molecules.
This experiment showed that the amount of such dimers
reached a maximum very rapidly, within a 30-min chase period.
The absence of the *>S-labeled E-cadherin in the control im-
munoprecipitate (Fig. 8, lane C) showed that differently la-
beled forms of E-cadherin do not associate after cell lysis. The
observation that the amount of pulse-labeled E-cadherin in the
dimers with biotinylated counterparts rapidly reached a maxi-
mum supports the idea that the assembly and disassembly of
cadherin homodimers are highly dynamic processes.

DISCUSSION

In the past decade, evidence has emerged for the participa-
tion of classic cadherins in different kinds of homophilic
interactions. At least two types of lateral (Ca**- and Trp'*°-
dependent) and two types of adhesive (His?**/Val**>- and
Trp'°°-dependent) interactions were revealed by different ap-
proaches (reviewed in references 12 and 24). In all of these
cases, the interactions are mediated by the EC1 or EC1/EC2
domains of the extracellular cadherin region. It is assumed that
lateral dimerization activates an adhesive interaction, and at
least one of these interactions is weak, so adhesion can proceed
only in cadherin clusters. Another type of low-affinity intercad-
herin adhesive interaction was described by surface force mea-
surement (14) and by bead aggregation assay (7). These ex-
periments suggest that intercellular adhesion is established by
entirely overlapping extracellular cadherin regions. Whether
only one unique type or a cascade of different interactions
mediate cadherin-based adhesion is not yet clear.

In this paper we further characterized the Trp'®-dependent
adhesive and lateral homodimerization of E-cadherin, the only
intercadherin interactions strong enough to be detected in
living cells by the coimmunoprecipitation assay (9). Similar to
cadherin-based adhesion, adhesive dimerization depends on
the binding of E-cadherin to calcium ions or catenins and on
the integrity of the Trp'>® residue. Furthermore, the specificity
of adhesive dimerization exemplified in cadherin-based adhe-
sion is governed by the amino-terminal domain (11). The im-
portance of Trp'*°-dependent interactions in the formation of
trans-cadherin complexes was also shown by electron micros-
copy (18).

While ample circumstantial evidence suggests that adhesive
Trp'°®-dependent dimers are structural components of inter-
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FIG. 7. Metabolic stability of the dimeric and monomeric forms of
E-cadherin. (A) Surface proteins of AEcM cells grown in 5-cm-diam-
eter dishes were biotinylated and then chased in regular media. The
chase times (in hours) are indicated above the blots. Cells were im-
munoprecipitated with an excess of anti-myc antibody, and the immu-
noprecipitates were adjusted to 60 pl with SDS-polyacrylamide gel
electrophoresis sample buffer. Five microliters of each immunoprecipi-
tate was loaded. The blots were probed either with streptavidin-HRP
(Str-HRP) or anti-myc antibody (Myc). Three different exposure times
of the blot developed by Str-HRP are shown. After an exposure time of
10 s [Str-HRP (10)], only the Ec1M protein was visualized, allowing us to
estimate the half-life of the monomeric E-cadherin. A longer, 60-s expo-
sure [Str-HRP (60)] visualized coimmunoprecipitated endogenous cad-
herin (Ec). The blots at the bottom of panel A [Str-HRP (E)] show blots
of different exposure times equilibrated on the Ec1M signals, which al-
lowed us to demonstrate that the ratio of EcIM to endogenous cadherin
did not change during the chase periods. Panel B is identical to panel A
except that cell lysates before anti-myc immunoprecipitation were sub-
jected to sucrose gradient centrifugation either immediately after the
biotinylation (blot 0) or after the 16-h chase (blot 16). The exposure time
of blot 0 was shorter than that of blot 16, showing that during the 16-h
chase the Ec1M/E-cadherin ratio did not change. Note that immunopre-
cipitation of Ec1M leads to coimmunoprecipitation of the endogenous
E-cadherin (Ec) only in fractions 4 to 6. (C) Surface-biotinylated
A-431 cells were dissociated by EGTA and either cocultured for ad-
ditional 8 h with AEcM cells (lane 1) or cultivated separately and
combined after lysis (lane 2). The latter served as a control, showing
the absence of interactions between cadherin molecules in solution.
The small black bars on the left of the blots indicate the positions of
molecular mass markers of 116 and 97.4 kDa.
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FIG. 8. Fast incorporation of **S-labeled E-cadherin into dimers.
A-431 cells were biotinylated and then pulse-labeled with [>*S]methi-
onine/cysteine. Next, the cells were chased for 15, 30, 60, or 180 min
(chase times in minutes are indicated above the blots). After extraction
and precipitation by streptavidin-biotin agarose, proteins were eluted
from the beads and then immunoprecipitated with an E-cadherin-
specific antibody. The autoradiogram (*°S) of the immunoprecipitates
shows that the incorporation of the **S-labeled E-cadherin into dimers
containing a biotinylated form of the same protein reached a plateau
after 30 min. Staining the same blot with E-cadherin antibody (Ec)
demonstrated that all precipitates contained the same amounts of
E-cadherin. In the control experiment (lane C), lysates obtained from
biotinylated and metabolically labeled cells (after 30-min chase), were
mixed and processed as described above. No E-cadherin-derived signal
was detected in the autoradiogram.

cellular junctions, there is still room for other interpretations.
For example, one may argue that these dimers in fact represent
a rare and nonspecific event of lateral Trp'*°-dependent inter-
action between two E-cadherin molecules exposed on the sur-
faces of tightly adjacent cells. However, in this work we present
strong evidence that the amount of adhesive dimers exceeds
the amount of lateral dimers. Additionally, adhesive dimeriza-
tion was selectively abolished by mutations of the Ca**-bind-
ing sites. Taken together, these observations indicate that ad-
hesive dimers are products of specific interactions and are
unlikely to be an artificial subtype of the lateral dimers. An-
other skeptical point of view is that the formation of adhesive
dimers is a consequence but not a reason for cell-cell adhesion.
In the present work, we describe new features of the adhesive
dimers supporting their role in cell-cell adhesion. These fea-
tures may explain how these dimers, stable and calcium insen-
sitive in solution, can mediate dynamic and Ca®"-dependent
cell-cell adhesion.

In this work we showed that A-431 cells, permeabilized by
0.007% digitonin in low-calcium buffer, did not dissociate cell-
cell contacts or change subcellular distribution of E-cadherin.
The cell shape stability of the permeabilized cells is apparently
due to the inhibition of cell contraction, possibly caused by the
depletion of intracellular factors required for this process. On
the other hand, cell permeabilization in low-calcium buffer
induced complete dissociation of adhesive dimers. The disso-
ciation of the dimers occurs at calcium concentrations below
0.1 mM, i.e., exactly at the same concentration threshold as the
dissociation of adhesive dimers and intercellular contacts in
intact cells. Adhesive dimers, which have been dissociated by
low calcium, could be rapidly reconstituted by raising the cal-
cium level above 0.1 mM. The reconstitution took only 2 min
and had the same dependence on digitonin concentration as
the dissociation. Thus, the adhesive dimers can be rapidly
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assembled and disassembled in permeabilized cells by switch-
ing the calcium concentration around the 0.1 mM level.

While the dependence on Ca®" of adhesive interaction in
intact and permeabilized cells was very similar, the time course
of adhesive dimer disassembly was significantly longer in the
intact cells. In a typical experiment, the complete dissociation
of the adhesive dimers in standard culture took about 10 min,
whereas in permeabilized cells the same effect was completed
in just 2 min. We cannot entirely exclude the possibility that
the mechanisms of adhesive dimer dissociation in both cases
are different. However, the most obvious explanation for this
difference is that it is due to the greater rate of calcium diffu-
sion in permeabilized cell cultures.

Notably, the total amount of cadherin dimers, which was
estimated by staining the anti-myc immunoprecipitates with an
anti-E-cadherin antibody, did not change after permeabiliza-
tion of cells in low-calcium buffer. Apparently, lateral dimers
immediately counterbalanced the loss of adhesive dimers. The
lateral dimers, formed in permeabilized cells in low calcium,
are Trp'*® dependent. The fast assembly of the lateral dimers
and simultaneous disassembly of adhesive dimers suggest a
dynamic relationship between these two processes. The sim-
plest interpretation of this effect is that the incorrect confor-
mation of the E-cadherin ectodomain, induced by the lack of
calcium ions, impedes the assembly of adhesive dimers but
does not affect their dissociation rate. Instead of forming ad-
hesive dimers, an incorrectly folded E-cadherin extracellular
region efficiently participates in lateral interactions. This point
of view is also consistent with the observation that the inacti-
vation of any single calcium-binding site within the extracellu-
lar cadherin region led to the elimination of adhesive interac-
tions without significant changes in the total amount of
E-cadherin dimers.

Several control experiments presented in this paper and
elsewhere (9, 19) demonstrate that the E-cadherin dimers de-
tected by coimmunoprecipitation assay are not produced in
solution. Moreover, they do not dissociate upon recentrifuga-
tion (9), and their yield is not affected by the duration of
immunoprecipitation, numbers of washing steps, or the pres-
ence of 0.2% SDS in the lysis IP buffer (data not shown). The
absence of association or dissociation of dimers in vitro and
their dynamic behavior in permeabilized cells suggest a specific
mechanism responsible for Trp'>°-dependent dimerization.

The same mechanism involved in the formation of highly
dynamic adhesive dimers could function in living cells. To
strengthen this hypothesis, we approximated the half-life of
E-cadherin dimers in vivo. Surface biotinylation showed that
the labeled dimer-derived E-cadherin degraded with exactly
the same half-life (about 5 h [data not shown]) as monomeric
E-cadherin. A similar half-life value for E-cadherin was ob-
tained by pulse-chase labeling experiments for MDCK cells
(25). One possible interpretation of our results is that the
half-life of E-cadherin dimers could be exactly the same as that
of monomers. In this case, once formed, the dimers persist on
the cell surface until decaying together with the bulk of E-
cadherin. This idea cannot be reconciled, however, with the
dimerization kinetics of newly synthesized E-cadherin. We
showed that as early as 30 min after pulse-labeling, *>S-labeled
E-cadherin associates with its cell-surface-biotinylated coun-
terpart and the amount of such double-labeled dimers did not
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increase during further cultivation. Previously, it was shown
that it takes E-cadherin about 30 min to be delivered to the
plasma membrane (10). Thus, E-cadherin assembles into
dimers almost immediately after reaching the cell surface. Fur-
thermore, the fact that the peak of double-labeled dimers is
observed at this point suggests that the equilibrium between
the assembly of such dimers and their disassembly is reached
very fast. This observation implies that there is a specific mech-
anism responsible for either dissociation or selective degrada-
tion of the E-cadherin dimers. The latter possibility seems to
be unlikely, since the Ec1M-W156A mutant unable to form
dimers has exactly the same half-life as EcIM (data not
shown). In either way, the same apparent half-lives of dimeric
and monomeric forms of E-cadherin as well as the very fast
E-cadherin dimerization are consistent with the highly dynamic
nature of E-cadherin dimers.

In summary, the features of adhesive dimers we report sug-
gest a new working model of how adhesive dimers mediate
cell-cell adhesion. In this model, E-cadherin molecules in ad-
herens junctions continually form adhesive dimers which then
quickly dissociate. The lateral dimers can be an intermediate
step in the assembly of adhesive dimers. The short lifetime of
individual adhesive dimers and their low level relative to the
level of monomeric E-cadherin may establish, in theory, highly
dynamic adhesive structures. The collapse of the rod-like con-
formation of the extracellular E-cadherin region, induced by
the depletion of calcium ions or by defects in the calcium-
binding sites, attenuates the formation of adhesive dimers and
results in an unusually high level of lateral dimers. The mech-
anisms underlying the assembly and disassembly of adhesive
dimers and the role of the lateral dimers in cell-cell adhesion
remain to be explored.
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