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It is well known that the height of an isotonic after-loaded twitch depends on
the load lifted by the muscle; thus the larger the load the less it is lifted. The
exact explanation of this fact is not clear. As Fenn (1923) showed, it is not
simply that during a twitch a fixed unit of energy is liberated that can be used
either to lift a heavy load through a short distance or a light load through
a long one; for Fenn, and more recently Hill (1949a), have demonstrated that
the energy liberated by the muscle varies in a complex way with load and
shortening.

A simple qualitative explanation emerges from combining two known facts
about muscle: first, that the velocity of shortening of the fully active tetanized
muscle is a function of the force (Fenn & Marsh, 1935; Hill, 1938); and
secondly, that after a single stimulus the muscle is fully active for a more or
less fixed period of time (Hill, 19495; Macpherson & Wilkie, 1954; Ritchie,
1954 a). Thus, the smaller the load, the higher the velocity and the further the
muscle will be able to shorten in that fixed time. If at the end of this time the
activity suddenly disappears, the curve of twitch-height against load should
have the same shape as the curve of velocity against load, and this is found
to be roughly the case. However, the conditions during muscular contraction
are much more complicated than this, for the active state following a single
stimulus disappears gradually and not suddenly (Hill, 19495). Also, as the
muscle shortens it moves to a less powerful region of its tension-length curve.
For both these reasons the velocity of shortening falls off gradually throughout
the twitch.

A theory which explains both the shape and the size of a muscular contrac-
tion under any specified mechanical conditions has to take all these factors
into account. We have tried to develop such a theory, but only for the phase
of contraction because the mechanics of relaxation are still not understood
quantitatively.



DYNAMICS OF MUSCULAR CONTRACTION 105

THEORY

The problem is to describe the dynamical behaviour of contracting muscle in
terms of the known mechanical properties of the contractile substance of active
muscle, i.e. to show how muscle length, force and time (z, P and t) are related
throughout a contraction. It is assumed that the muscle consists of two
elements arranged in series, a contractile element of length z. and an elastic
element of length we.

Thus T=T,+,.

The following four curves must be determined experimentally.

(1) The load—extension curve of the series elastic component. This passive
element is important because all the experimental records have to be corrected
for the distortion which it introduces. The form of this curve is expressed
algebraically by saying z,=f,(P).

(2) The tenston-length curve. This can be determined either by tetanizing
a muscle at fixed length and measuring the final tension developed, or by
allowing a tetanized muscle to shorten fully against a constant load, i.e.
Py=f, () is determined for the condition dz/dt=0.

(3) The force—velocity curve. For a given constant force the initial velocity
of shortening of a tetanized muscle is measured at body-length L, i.e.
—dx/dt = — dwc/dt =f3(P), is determined at z. corresponding to L.

(4) The active-state curve. After a stimulus the muscle takes some time to
return to its resting state; the ability to develop isometric tension diminishes
with time, i.e. Py=f, (t) at a given z, for the condition that dz /dt=0.

These four curves may be accurately determined on a single muscle, but
each gives only a partial picture of the active muscle. What happens when P,
z and ¢ vary together, as they do in the living body? One approach to this
complex problem is to use Hill’s equation, which makes it possible under
suitable conditions to write for —dz,/dt=f,(P) the algebraic expression:

—dz,/dt=(Py—P) b/(P+a);

a and b being constants. We have allowed for the way in which isometric
tension development varies with muscle length by writing for P, the expression
Ja(@,) - fa(t)/ P§, where P§ is the isometric tension when z, corresponds with L.
This is the same as the P, of Hill’s original equation and is a constant for each
muscle. The whole equation then becomes:

a - dat @ P+a dt

During isotonic contraction the second term is zero.
Preliminary experiments were in promising agreement with this theory, so
the matter was examined more closely.
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EXPERIMENTAL TECHNIQUE

The experiments were carried out on frogs® sartorii at 0° C in Ringer’s fluid: (mum) NaCl 115-5,
KCl 2-0, CaCl; 1-8, Na phosphate buffer (pH 7) 2. The muscles were maximally stimulated by
alternating condenser discharges (time constant 0-1 msec) on a multi-electrode assembly. The
arrangements for mechanical recording, the connexions, etc., were essentially similar to those
already described (Wilkie, 19564, b). Since the calculation depended on maintaining the muscle
in a steady condition throughout a long series of measurements, the number of tetani was kept
to a minimum in each experiment. Stimuli were given automatically at regular intervals, usually
every 2 min, whether records were being taken or not, in order to keep the muscle in a steady state.
The four curves required were determined in the following way:

(1) Load—extension curve of the series elastic component (Fig. 1 4). The shape of this curve was
determined by the quick-release technique (Aubert, 1956, p. 76; Wilkie, 19565). Unfortunately
no method is known of measuring z,, the actual length of the elastic component. Moreover,
z, becomes indeterminate when the force is very small. We have therefore called z, zero at the
lowest tension with which we are concerned, 1-5 g wt. This is equivalent to subtracting an unknown
constant from z, and adding it to z,, and does not alter the result of our calculation.

(2) Tension—length curve (Fig. 1 B). Most of the experimental points (open circles) were obtained
by adjusting the muscle to various initial lengths and recording the tension developed in an
isometric tetanus (30 shocks/sec). This procedure is not satisfactory with short initial lengths (say,
less than 23 mm in a 30 mm muscle) because the muscle is so slack that it does not make reliable
contact with the electrodes; the points corresponding to short muscle lengths were therefore found
by measuring the total shortening in an isotonic tetanus under the required small load. The points
obtained by the two methods always cross-checked satisfactorily with one another. All points
were then corrected for the change in length in the series elastic component and connexions (solid
circles, Fig. 1), in order to determine . The topmost solid circle gives the value of z, corresponding
with L,.

(3) Force—velocity curve (Fig. 1C). This was determined from the initial slope of after-loaded
isotonic contractions against various loads. Tetani were used for the large, and twitches for the
small, loads. Hill’s constants a and b were determined by fitting a theoretical curve to the points
in Fig. 1C. Although the measurements with different loads were all made with the muscle at L,
%, will have been smaller when the tension was higher because the muscle had to contract iso-
metrically before it begins to lift its load. This almost certainly does not matter when, as in Fig. 1,
all the relevant values of z, lie on the flat top of the tension-length curve. In other cases, when
the local P, was less than its maximum P¥, a small approximate correction was made by multiply-
ing the measured velocity by (P§ - P)/(P, - P). ’

(4) Active-state curve (Fig. 1 D). This was determined by recording the redevelopment of tension
resulting from a 3 mm release at various times after a single shock (Ritchie, 19545). The solid
circles represent the active-state curve at the standard length, L,, and the open circles, the curve
at Ly — 6 mm.

Legend to Fig. 1

Fig. 1. The four characteristic curves of a single frog’s sartorius at 0° C. L, =32 mm, wt. =88 mg.
4: load-extension curve of series elastic component. B: tension-length curve. The open
circles are the measured points; the solid circles are the same points corrected for the change
in length of the series component, i.e. they give values of z,. The region to the left of the
broken line is the ‘reversible zone’ (see text). (' force-velocity curve. The curve has been
drawn from Hill's equation with a =13-65 g wt., b=16-5 mm/sec, P,=49 g wt. D: active-
state curve. Ordinates, intensity of the active state in %; 1009, represents 49 g wt.
Abscissae, time in msec measured from the end of the latent period (10 msec after the
stimulus). @, final muscle length = L,; O, final muscle length =L, -6 mm.
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CALCULATION AND RESULTS

_dz_ (fal=.)- fult)/ P§ —P)b
de P+ta

a, b, fo(x,), f4(t) and P§ have been determined experimentally, so that for each
chosen value of the isotonic force P, the curve of z against ¢ can be calculated.
As the equation cannot be integrated algebraically we tested our equation in
the earlier experiments directly in the differential form. Values of dz/dt were
obtained from experimental curves of z against ¢ by measuring their slopes at
chosen values of z or t. Thus we were able to calculate the shape of the function
Ja(t) or of fy(xc) and to compare the one or the other with the corresponding
experimentally determined curves.

A more satisfactory procedure, which was adopted later, was to integrate
the equation directly, thus obtaining the amount of shortening « as a function
of the time ¢. This was kindly done for us on a differential analyser by the
Department of Mathematics at the National Physical Laboratory. The result
is shown in Fig. 2, where theoretical curves (full lines) are compared with
experimental ones (circles) for after-loaded isotonic twitches starting at the
body length L, (Fig. 24) and also for twitches starting at a shorter length,
L,—6 mm (Fig. 2B). The general agreement between theory and experiment
is quite good, although it should be noted that some of the agreement is
arbitrarily imposed by the nature of the mathematical procedure used. Thus
the initial slopes of the corresponding experimental and theoretical curves in
Fig. 24 are obliged to be the same; this restraint does not apply to Fig. 2B.
Nevertheless, some discrepancies are obvious.

The same degree of agreement between theory and experiment as that seen
in the experiment of Fig. 2 was found in the seven complete experiments that
were done though the discrepancies did not fall into any perceptible pattern.
The agreement has certainly not been improved by the various refinements
and elaborations we introduced from time to time in the hope of improving
the precision of our result. No great improvement resulted from correcting all
lengths carefully for the changes in the series elastic component or changing
the active-state curve so as to be a function of muscle length as well as of time
(see Ritchie, 1954b); both corrections were applied in the calculation of Fig. 2.

In the equation

DISCUSSION
As a result of the experiments just described it seems to us that the discre-
pancies between theory and experiment are genuine and are not random
experimental uncertainties, as we had at first supposed. Some at least

of the discrepancy must arise from properties of muscle that our theory has
neglected.
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Fig. 2. Theoretical and experimental isotonic twitches compared; same muscle as in Fig. 1.
O, points from the experimental curves; —, theoretical curves derived from Fig. 1. A4, initial
muscle length was L, (32 mm); B, initial muscle length was L, - 6 mm. The tension in g wt.
is indicated beside each curve.
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Our theory supposes that the muscle becomes fully active immediately after
the stimulus and that at every instant afterwards its velocity of shortening is
a function only of the force acting and of the muscle length, without any
reference to its previous history, until the active state begins to decline. The
degree of accuracy with which these assumptions are obeyed can be gauged
from Fig. 3, which is an experimental record of an isotonic tetanus against
a tension of 5 g wt., in which the after-loading stop was moved so as to alter
the initial length of the muscle from L, — 4 mm first to Ly and then to Ly+4 mm.

«oONEeSIENIRSEENRERERn
Ly-4 mm
Ly
Ly+4 mm
L 411 1 1 1 1
0
Time (sec)

Fig. 3. Isotonic tetani (30 shocks/sec) against a tension of 5 g wt. beginning at L, ~4 mm (upper
line), L, (middle line), and L, +4 mm (lowest line). Abscissa, time after beginning of stimulus
(sec). The system recording length becomes somewhat non-linear at lengths greater than
Ly +2 mm. Sartorius, Ly=32 mm, wt. =105 mg.

The final length of the muscle is almost the same in the three cases but during
the contractions the curves at any given muscle length are not exactly parallel
to one another, though they should be parallel if the theory were strictly
obeyed. The discrepancy is most striking in the contraction that begins at
Ly—4 mm, and it can be detected in the one beginning at L,. This presumably
means that the active state takes some time to reach its maximum especially
at the shorter length. Even the condition (satisfied in Fig. 3) that the final
length of the muscle be independent of the initial length, only applies if the
initial length has been kept within the ‘reversible zone’ whose boundary is
indicated by the broken line in Fig. 1 B. Otherwise, for example, if the muscle
is free-loaded, the final contracted length does depend on the initial length and
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equations like the one we used cannot be obeyed (Blix, 1895; Buchthal, Kaiser
& Rosenfalck, 1951 ; Maréchal, 1955). A number of other situations are known
in which a muscle’s behaviour depends on the whole history of the contraction
(see, for example, Katz, 1939; Abbott & Aubert, 1952) rather than on the
conditions at each instant.

Moreover, as A. V. Hill has frequently pointed out, a muscle is not of
perfectly uniform strength along its length. The effect of this non-uniformity
will be only partly neutralized by our having measured the four basic curves
on the same, non-uniform, muscle.

The equation we used is a development of Hill’s well-known equation which
has the merit that in it mechanical and thermal parameters are combined.
However, in the course of examining many force-velocity curves we have
found a fair proportion, about a third, that are not fitted well by Hill’s
equation, because they have a straight region at the high-force low-velocity
end, i.e. the muscle lifts a heavy load faster than is predicted by Hill’s equation.
In such cases, Aubert’s equation (1956, p. 223) often gives a better fit. This
discrepancy was not noticed in earlier work probably because of the consider-
able uncertainty that used to exist about the appropriate value of the isometric
tension (see, for example, Abbott & Wilkie, 1953, fig. 3). Here, too, we are not
dealing with random errors, for a given muscle consistently gives a force-
velocity curve of the same shape.

In this situation there is much to be said for the more empirical approach
to the problem adopted by Carlson (1957), which is not tied down to any
specific algebraic formula for the force~velocity curve. His equation for the
motion of a tetanized muscle is

dz
P=E()+E(T).

where F(z) and Fy(dz/dt) are empirieal functions describing the shapes of the
tension-length and force-velocity curves respectively. This corresponds to a
physical model comprising a non-linear elastic element in parallel with a non-
linear viscous one.

For the tetanic case our own equation reduces to

_do_(fyw)—P)b
de Pia

since f,(t) = constant = P§. This equation was shown by Abbott & Wilkie (1953)
to be obeyed with reasonable accuracy. We have tested the two equations
side by side against the same experimental results on two occasions when we
found somewhat better agreement with Carlson’s equation than with ours.
However, with both equations the discrepancies between theory and experi-
ment were substantial enough to make it difficult to decide on their relative
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merits. Aubert’s equation, modified so as to take account of the change in
isometric tension with length, gave no better result.

The present investigation illustrates a familiar dilemma, that as experi-
mental precision improves it usually becomes harder to fit experimental results
into a theory. We think that, at least as far as present theories of muscular
contraction are concerned, the precision of our experiments may have reached
(or passed) the limit of usefulness. Nevertheless, we are able to draw some
general conclusions that bear on the nature of the contractile mechanism.
Regardless of the rate at which mechanical work, heat production or shortening
takes place, the contractile machinery is switched on for a more or less fixed
time following a single shock. The ability to shorten actively and the ability
to develop tension run parallel with one another and to a first approximation
the dynamical behaviour of the muscle depends on the mechanical conditions
at each instant and not on the full history of the whole contraction. The
secondary phenomena that are revealed by study in detail are of a kind that
cannot easily be allowed for quantitatively and are of such a magnitude that
they make it impossible to decide critically between one theory and another.

SUMMARY

1. A mathematical formulation is proposed to account for the mechanical
changes in a muscle twitch.

2. This theory has been tested by making an extensive series of different
mechanical measurements on a single muscle. Some of these measurements
were then used to calculate theoretical values for the other measurements, the
comparison providing a test of the theory.

3. The scope and limitations of this theory and of other theories of muscular
contractions are discussed.
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