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In a recent paper Fuortes & Hodgkin (1964) proposed a non-linear
electrical filter model for the Limulus (horseshoe crab) visual response.
This model, with modifications to improve its agreement with the data,
has been studied by means of the computer program NIH-OMR 9B21
developed by Berman, Weiss & Shahn (1962) which, given a model and a
set of experimental data, finds the values of the model parameters which
give a least squares fit to the data. The Fuortes—Hodgkin model consists of
a cascade of identical stages, each composed of a series isolating or
amplifying unit, and a shunt resistance and capacitance. The necessary
non-linearity is introduced by a feed-back loop, which makes the shunt
resistors decrease as the output increases. Since this model gave good
qualitative agreement with the data obtained on Limulus (Fuortes &
Hodgkin, 1964) and also with some data on the human visual system
(J. G. Robson, Cambridge, personal communication) it seemed worth
while to investigate its properties further by means of the computer
program 9B21.

The general conclusions are that the behaviour is not, within limits,
very sensitive to the number of stages in the chain—nine, ten, and eleven
stage chains gave almost equally good fits. However, changing the location
of the feed-back loop alters the system behaviour substantially, and the fit
was greatly improved by making the shunt resistances depend not on the
output of the last stage, but of the stage preceding it.

METHODS

Fuortes and Hodgkin Model. The experiments are described in detail by Fuortes &
Hodgkin (1964) and Fuortes (1959), but a brief summary will be given here. The stimuli
were short pulses and steps of light of varying amplitudes, and the responses were the
generator potentials measured by micro-electrodes in the eccentric cells of the Limulus
ommatidium in conditions of dark and light adaptation, at 8° C. Fuortes and Hodgkin
observed that with background light, or pre-exposure, both the time constant and sensitivity
of the system decreased, the latter by a far larger factor than the former. This type of
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relation characterizes the filter shown in Fig. 1, in which the time constant is proportional
to R and the sensitivity or gain to R"-1, where n is the number of stages, B the shunt
resistance, and C the capacitance of each stage. The elements x are isolating elements,
having an infinite input impedance, and a gain of x. These isolating elements are a mathe-
matical convenience; since the behaviour of each stage is independent of the stage following
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Fig. 1. Correspondence between electrical filter model, proposed by Fuortes and
Hodgkin, and its compartmental equivalent, used with the 9B21 computer

program.

it, the filter can be simply analysed stage by stage, starting at the beginning. The output
Vn for an impulse function input, of area v,At, was derived by Fuortes and Hodgkin, and is
given by

nm-lg-t(7

V, = voAt(ft) e

: (1)
where 7 = RC.
If only R changes during light adaptation, then it can be shown that, for a brief flash of

light, sensitivity (S) and time to maximum (¢,,,) satisfy the equation
8 = A(twax)" 2)

where A is a constant, and S is the ratio of peak output to input.

These equations make possible 2 independent ways of evaluating n for a system: curve
fitting of a single flash to eqn. (1), or the relating of S to £y, for a set of curves, from eqn. (2).
Fuortes and Hodgkin found that the mean value of n for a number of experiments was 10-1
using curve fitting, and 86 using the time-gain relation. This suggests that the resistance of
most but not all of the stages changes with adaptation level. In their analysis, R is assumed
to remain constant during each pulse, which is approximately true if the pulses are of low
amplitude. The value of R is fixed by a previous or simultaneous exposure to a background
light. Therefore the time course of changes of R, i.e. the details of the feed-back loops, need
not be considered in the small input observations.

Fuortes and Hodgkin proceeded with the analysis of large inputs, arguing that the linear
beginning of the response and absence of a rise after the step was turned off showed that the
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R’s must be controlled by the output rather than by the input. They present numerical
studies done on EDSAC2 at Cambridge which reproduce the qualitative features of the
response quite well, but which, for step functions, have larger overshoots and undershoots
than those observed, and which return too slowly to the resting value when the light is
switched off. These responses to large amplitude inputs, during which R cannot be assumed
constant, depend on the time course of the change of R, and it is this feature of the model
that the present study is largely concerned with.

The NIH-OMR 9 B21 program. The 9B 21 computer program was originally devised as an
aid to biologists studying tracer, chemical, and enzyme kinetics. The fundamental model
is that of a system of compartments, connected by pathways having stated rates of flow.
Any compartment can be connected to the exterior by a path in either direction. A known
amount of a substance is injected into one or more compartments, and observations are made
of its subsequent presence in one or any linear combination of compartments. Given the
number and connectivity of the compartments, the programme will compute the value of the
flow rate constants that give the best least squares fit to the observed data, compute the
output of the system with those rates, and calculate the deviations between observed and
computed values. The program can deal with certain types of non-linear as well as linear
systems, and bypasses for the user the analytical solution of the differential equations
involved. (For a full description of the program see Berman, Shahn & Weiss, 1962, and
Berman, Weiss & Shahn, 1962.) The type of computation shown in Fig. 2, finding the best
values of three parameters to fit the pulse and step response of a nine-stage non-linear
system, took about 3% min on an IBM 7094. Calculation of the output of this system for
pre-assigned values of the parameters took 20 sec.

Correspondence between filter and compartment models. The correspondence of the compart-
mental model to the filter is shown by the following equations which refer to the systems
shown in Fig. 1.

Filter

d .
%‘: —‘%-I-lév‘_l t=12...,n),

where v, is the input voltage and is proportional to light intensity.
Compartmental

d .
a%—i = = (Appa,i+ A)i+ Aq-18ia (=12 ...,n),
where g, is the quantity in the ¢** compartment, A, ;_, is the flow rate constant from the -1
to the ¢** compartment.

Equating coefficients of corresponding terms, we have

1
(Agr, i+ Aoy = > =557 = g,

Ay i = -g.

The conductance g is the reciprocal of the resistance, R. Since our model consists of a series
of identical stages, A;,; ¢ = A, ¢, and so finally we have

Agiaa = gi
A = %_Ié

This represents the linear model. The non-linearity is introduced by making g dependent on
one of the ¢’s, say g¢;:
9 = g,(1+f(g)-
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The design of the program requires that the dependence be linear.

The variables in the model structure were

(1) The length of the chain—7 to 11 stages were tried.

(2) The origin of the feed-back loop—the non-linearity was made to depend on the last
compartment (as previously done by Fuortes and Hodgkin), the next to last, the second
from the last, and the sixth from the last.

(3) The nature of the last compartment—it was either identical to the others, or had a
constant g, not dependent on any ¢, adjusted independently by the programme.

For each model, the 9B 21 program cornputed the values of the parameters to give the
best fit and, as a measure of the goodness of fit, the sum of the squares of the deviations, and
the average deviation per point.

The data available for the study consisted of records of responses to very short (20 msec)
pulses, and to square pulses lasting about one second. The input amplitudes covered a range
of approximately 4-2 log units. The extremes of the range were not included in the study,
but a set of five input amplitudes covering a range of 2:4 log units was chosen, and the
responses to pulses and square waves fitted. Linear analysis performed by Fuortes and
Hodgkin (unpublished) had given a value of n between 9 and 10.

Initially the procedure followed was to fit simultaneously the experimental results obtained
for a light pulse and a light step of the same amplitude. If the model is an accurate rep-
resentation of the system, the best-fit values of the parameters for each of the five input
levels should coincide, and therefore the spread in values could be considered a rough measure
of the goodness of fit of the model used. However, this is not a good quantitative measure.
Some studies fitted the five pulses simultaneously, and then the five steps simultaneously.
This method, which gives two values for each parameter of each system, seems to yield the
clearest results.

RESULTS

The location of the feed-back loop. Fuortes & Hodgkin (1964) point out
that the decrease in conductance and consequent reduction in gain cannot
be input controlled, because input control would result in two effects which
are not observed in the Limulus responses. The first is non-linearity at the
beginning as well as at the end of the response, and the second is a transient
increase in output when the light is switched off. They concluded that gain
was controlled by changes at or near the output, and therefore used output
control. Their figures, as well as Fig. 2a, show that output control gives
excessive sharpness for the pulse, and overshoot for the square wave. The
overshoot is caused by too great a delay in gain reduction—if the gain is
reduced sooner, the overshoot is much reduced, as is shown in Fig. 2b in
which the conductances depended on the stage preceding the last. Figure 2¢
shows the effect of too early gain reduction (from the second from the last
stage); the rise is not steep enough. An even more extreme case is shown
in Fig. 2d with feed-back from the 4th stage. Note the rise following the
light extinction.

As the origin of the feed-back loop moves from the input to the output,
the initial response shifts from roughly logarithmic, approaching the steady
value slowly, to the steep overshoot of the final value. The off response
drifts from an initial rise to a steeper and steeper decline. The feed-back
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Fig. 2. Effect of location of feed-back loop on response. Chain length = 9; log
input attenuation = 0-9. (a) Shunt conductances depend on the output of the
last of nine compartments. (b) Shunt conductances depend on the eighth of the nine
compartments. (¢) Shunt conductances depend on the seventh of the nine com-
partments. (d) Shunt conductances depend on the fourth of the nine compart-
ments. Solid lines indicate observed, and interrupted lines computed, responses.
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loop originating at the next-to-last stage is obviously the best for this set
of data.

Effect of chain length. Probably the best way to study the effect of chain
length would be to fit simultaneously the five steps and pulses for each
length, and compare them visually and by means of the average deviation
of computed from observed values. This was impossible because the 9B 21
program cannot handle simultaneously more than five different sets of
data, and each pulse or step constitutes one sequence. The first method
used was to fit the five pulses simultaneously, and then the five steps for
chains of 7, 9, 10 and 11 stages (each with feed-back from the next-to-last
stage). The value of n estimated by the methods of eqn’s (1) and (2) was
about 10, and the value of 7 was used to show the effect of a significant
shortening of the chain. As might be expected from eqn. (2), using a value
of n too small makes the change of ¢,,,, too great, since the least squares

TasiE 1
Chain length D(G) D(u/fc) D(1/7) o, %108 oy x 108
7 0-0077 0-072 0-145 0-34 0-27
9 0-0082 0-056 0-119 0-20 0-21
10 0-0 0-054 0-109 0-19 0-21
11 0-0024 0-46 0-993 0-22 0-23

fitting tends to match the sensitivity. Thus, the ratio of #,,,, for the largest
and smallest pulses was observed to be 0-585. That for the 7 chain was
only 0-435, while for 9, 10, and 11 the figures were 0-5, 0-538 and 0-546.
The averaged squared deviations were 0-34, 0-20, 0-194 and 0-22. Thus on
the basis of the 5 pulses, a value of 7 for n is inferior to 9, 10 and 11.
Fitting of the five steps gave similar results.

If the model used is a perfect representation of the system, then the
same set of parameters should give the best fit for both pulses and steps.
Thus the discrepancies between the sets of values for the two runs, as well
as the mean square deviations, can be used as a merit indication of the
model. For each chain length, we have a pair of values for each of the
three parameters fitted—one for the pulse run, and one for the step run.
Table 1 shows the ratio of the deviation (called D(G®), D(u/c), and D(1/r))
of each point of these pairs from their mean value to that mean value. The
parameters are G, the non-linearity factor, u/c, the gain factor, and 1/7,
the reciprocal time constant. Also shown are 0, and o, the mean square
deviations per point between computed and observed values for the pulse
and step runs respectively. If we rank the four chain lengths by smallness
of deviations, we find that the seven chain is poorest in all but D(@), but
that, as before, the differences among 9, 10 and 11 are slight, with 10
probably the best. Figure 3 shows the set of pulses for a chain of 10, with
feed-back from the 9th stage, one of the best fits.
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Effect of varying the last stage. Since feed-back from the penultimate
stage gave the best results, it seemed reasonable to suppose that the last
stage might not be affected by feed-back at all. This hypothesis was tested
by making gR of the last stage independent of any voltage, and allowing
the program to find its best value. The fit was poorer than that for all g’s

varying.
25 - - - -
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Fig. 3. Observed and computed outputs for five pulses. Chain length = 10,
feed-back is from the ninth compartment. The inputs are, from left to right, log
A = 33, 2:7, 21, 1-2, and 0-9 or a range of 256 to 1. Solid lines indicate observed,
and interrupted lines computed, responses.

DISCUSSION

Evaluation of the model. The behaviour of the RC filter or its equivalent,
the straight-chain compartmental model, is fairly easy to grasp intuitively,
and describes the data reasonably well over a wide range of input ampli-
tudes. The chief systematic error is the rapid attainment of a steady state,
shown by the perfectly flat top of the computed square wave response.
The gradual decrease in the observed response over the first second or more
shows that there is some process with a long time constant in the system,
which this model does not include. Some attempts were made to include
a second feed-back loop with a longer time constant, but this computation
was very lengthy, and preliminary results indicated that the expenditure
was unwarranted for present purposes.

A general criticism of this model is that it does not seem to be based on
any physical reality, i.e. a chain of filter stages may suggest propagation
of an electrical impulse (although the isolating elements are not consistent
with propagation)and a chain of compartmentssuggests a series of chemical
reactions. In these experiments the output is measured at a point so close
to the visual pigment that electrical propagation seems unrealistic and,
while as many as ten chemical reactions could possibly be involved, they
would not be expected to have identical time constants. In short, the
physical system does not possess any obvious analogues to this model.

While it is not necessary that a mathematical model reflect the details of
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the physical structure it corresponds to, a model that does is more satisfying
aesthetically, and more likely to suggest further research, than one which
does not.

Remarks on models for non-linear systems. The property of linearity is
defined in many different though equivalent ways. The fundamental
definition is as follows:

If R(s,) and R(s,) are the responses to stimuli s; and s,, then
R(as, +bs,) = aR(s;)+bR(s,).

This is often simplified into the statement that output is a linear function
of the input. The differential equations of such a system have the property
that the coefficients of the dependent variables and their derivatives do
not involve the dependent variables. Both sand R are considered dependent
variables, and only ¢ is independent, according to modern usage. (That the
coefficients be constant, often referred to as the condition of stationarity,
is sufficient but not necessary for linearity, since coefficients involving only
the independent variable will not make the system non-linear.) In the
models used in this study, the non-linearity is introduced as a dependence
of g on ¥} in the filter model, and of A, ; on @, in the compartmental model.

Any non-linear system can be considered linear if the excursions of the
variables are kept small enough for the changes in the coefficients to be
neglected. In our system, this is equivalent to the statement that, in a
sufficiently small region, the curve of steady-state output versus input,
which is approximately logarithmic, may be approximated by a straight
line. These small excursions may be obtained by an input of a very low
amplitude step or pulse, in which case eqn. 1 may be used. To such data the
well-known methods of linear analysis may be applied. This procedure was
used by Fuortes and Hodgkin in formulating their model. This type of
observation also eliminates from our consideration one variable which we
have found to be very significant—the location and, in general, the time
course of the feed-back loop. The chain length and values of the parameters
as functions of output could be established first, and then the feed-back
loop fitted, which would be a simpler procedure than fitting all simul-
taneously. Note that at even the lower amplitudes used in these experi-
ments the present system is non-linear. For example, the input for the
second of the five pulses is 4 times that of the first, but the output is only
2} times as great. The difficulty with this procedure is that if preparations
are somewhat noisy or unstable, low amplitude outputs are hard to read.
This can be overcome by repeating the input many times, and using an
automatic averaging device such as the Mnemotron computer to extract
the signal from the noise. Another possibility is to use sinusoidal modulation
and measure the gain and phase shift as a function of frequency. As a
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matter of fact, such data were available for this system. However, the
9B21 program is much better suited to the analysis of pulse than
sinusoidal data, and fitting the latter was not attempted.

It seems that the best procedure for future use of the 9B 21 program
in fitting models of this type would be to use averaged pulses of small
amplitude to determine the chain length, and then to use pulses of large
amplitude and steps to determine the temporal form of the feed-back.

SUMMARY

1. The Fuortes—Hodgkin non-linear electrical filter model for visual
response of Limulus gives a fairly good fit over a wide range of input
amplitudes.

2. The behaviour of the model is rather insensitive, within limits, to the
number of filter stages.

3. The behaviour is quite sensitive to the location of the feed-back loop.

4. The NIH-OMR 9B21 program is a convenient and powerful tool
for the study of both linear and non-linear filter in compartmental models.

The author wishes to thank Dr M. G. Fuortes, who generously provided advice and
assistance throughout the course of this study. For guidance in the use of the 9B21 com-
puter program, the author is indebted to Dr Wilfrid Rall, Mrs Marjory Weiss and Dr
Mones Berman.
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