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ABSTRACT

The human genome encodes the transcriptional
control of its genes in clusters of cis-elements
that constitute enhancers, silencers and promoter
signals. The sequence motifs of individual cis-
elements are usually too short and degenerate for
con®dent detection. In most cases, the require-
ments for organization of cis-elements within these
clusters are poorly understood. Therefore, we have
developed a general method to detect local concen-
trations of cis-element motifs, using predetermined
matrix representations of the cis-elements, and cal-
culate the statistical signi®cance of these motif
clusters. The statistical signi®cance calculation is
highly accurate not only for idealized, pseudo-
random DNA, but also for real human DNA. We use
our method `cluster of motifs E-value tool' (COMET)
to make novel predictions concerning the regulation
of genes by transcription factors associated with
muscle. COMET performs comparably with two
alternative state-of-the-art techniques, which are
more complex and lack E-value calculations. Our
statistical method enables us to clarify the major
bottleneck in the hard problem of detecting cis-
regulatory regions, which is that many known
enhancers do not contain very signi®cant clusters
of the motif types that we search for. Thus, dis-
covery of additional signals that belong to these
regulatory regions will be the key to future pro-
gress.

INTRODUCTION

It is estimated that 1.5% of the human genome encodes
proteins via the `genetic code' (1). Equally important are the
regulatory signals, within a more extended genetic code, that
control the manner in which the proteins are synthesized.
These regulatory signals, or cis-elements, are typically protein
binding sites that possess characteristic sequence patterns

(motifs); however, these patterns are typically too short and
degenerate for accurate detection of cis-elements (2).
Fortunately, there is much evidence that cis-elements occur
in clusters rather than in isolation. Although transcription
factor binding sites may be located many tens of kilobases
away from the transcription start site, they generally occur
within enhancers or silencers extending over a few hundred
base pairs that contain multiple cis-elements (3). There is
further evidence that mRNA 3¢-end processing (4), mRNA
localization (5) and alternative splicing (6) are controlled by
clusters of signals. Thus, it appears to be a widespread
phenomenon for molecular biological processes to be regu-
lated by clusters of signals that are individually weak but
collectively strong.

A number of more or less ad hoc algorithms for detecting
cis-element clusters have been proposed in the past (7±13). To
assess predictions made by such a method, it is extremely
valuable to know the statistical signi®cance of each prediction,
i.e. the probability of obtaining the result merely by chance.
None of the previous methods includes an analytic calculation
of statistical signi®cance, with the exception of a technique by
Wagner based on Poisson statistics (14). The major limitation
of Wagner's method is that it represents cis-elements using
degenerate consensus sequences, rather than the more general
position speci®c scoring matrices (PSSMs) (15). A further
undesirable feature of many previous methods is the use of
arbitrary threshold parameters, such as a window size within
which the cis-elements must occur.

Ockham's razor is a widely accepted criterion for choosing
among alternative methods. With this principle in mind, we
have designed a method to detect cis-element clusters that is
about as simple and general as can be achieved. Our method
®nds the optimal motif cluster obtained by summing PSSM
scores for the motifs, and subtracting a linear `gap penalty' for
the spacer sequences between motifs. In principle there is just
one undetermined parameter: the gap penalty. Unlike most
previous methods, our technique has a solid statistical
foundation, being based on a log likelihood ratio of observing
the data given a model of cis-element clusters versus a model
of background DNA. The Neyman±Pearson lemma states that
log likelihood ratios are the most powerful statistic for
distinguishing between hypotheses. Our model of cis-element
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clusters is for cis-elements to occur with a uniform (Poisson)
distribution of some intensityÐa reasonable minimal assump-
tion model. The intensity parameter of this distribution
corresponds in a one-to-one fashion with the gap penalty. A
DNA background model that adequately re¯ects the properties
of natural DNA is more problematic to construct. We try three
versions: an independent mononucleotide model estimated
from the query sequence, a higher order Markov model
estimated from genomic DNA, and a locally varying
mononucleotide model estimated from a sliding window
within the query sequence.

Our method incorporates an analytic calculation of statis-
tical signi®cance, extending the technique of Claverie and
Audic for calculating signi®cance of individual PSSM
matches (16). Having identi®ed a motif cluster with some
raw score (sum of PSSM scores minus gap scores), we can
calculate its E-value, i.e. the number of times we expect to
observe a cluster with this score or greater by chance, in a
random sequence of speci®ed length and nucleotide com-
position. Thus, E-values <1 become increasingly signi®cant.
We demonstrate that, as expected, the E-values accurately
re¯ect the number of motif clusters we observe in synthetic
sequences generated by each of the three background models.
In addition, using the sliding window background model, the
E-values are astonishingly accurate for natural DNA
sequences (after masking the most egregious tandem repeat
and low complexity regions). We name our method COMET:
cluster of motifs E-value tool.

We use COMET to study two types of regulatory region:
promoters regulated by the transcription factor LSF and
muscle speci®c regulatory regions. LSF regulates a diverse set
of cellular and viral genes (17±26). One de®ned biological
function of LSF is an essential role in mediating cell cycle
progression, via regulation of thymidylate synthase expression
(26). There is evidence that the transcription factors Sp1 and
Ets-1 may co-regulate genes with LSF (27,28). In this study,
we restrict attention to sites of LSF regulation close to
transcription start sites, searching for these regulatory regions
by detecting clusters of motifs for LSF, Sp1, Ets-1 and the
TATA box. For muscle speci®c regulatory regions, we look
for clusters of motifs for the transcription factors Mef-2, Myf,
SRF, Tef and Sp1, as previously suggested by others (9).

MATERIALS AND METHODS

COMET's scoring scheme

We wish to ®nd the segment within a query DNA sequence
that has the maximum score according to the following log
likelihood ratio formula:

score (segment) = log{[prob(segment | cluster model)]/
[prob(segment | null model)]} 1

Three different null models were tried: independent nucleo-
tides with frequencies estimated from the entire query
sequence; a ®fth order Markov model based on hexamer
frequencies in human chromosome 20 (29); and independent
nucleotides with frequencies estimated separately at each
position, from a window of width 2w + 1 bp centered on that
position (w = 75 by default). The cluster model assumes that

cis-elements occur in a Poisson process of some intensity,
embedded in random DNA generated by the null model. The
cis-elements are modeled by mononucleotide frequency
matrices that are speci®ed by the user. If a mononucleotide
null model is used, the cluster model is equivalent to the
hidden Markov model shown in Figure 1, with the emission
probabilities of the background state equal to those of the null
model. a in Figure 1 is related to the expected average
distance between motifs in a cluster, a, by a = 1/(a + 1).
COMET allows the user to specify a value for a.

In the Markov case, the cluster model combines a
mononucleotide model of cis-elements with a higher order
model of the spacer sequences between them. Since there has
been some controversy over how best to combine two such
models (30), we give a careful description of our method. The
cluster model generates the DNA segment in two stages, ®rst
generating the locations and sequences of the cis-elements,
and then emitting the sequences of the spacer regions between
them. In the ®rst stage, the model generates a gap length
(possibly zero) from a geometric (memoryless) distribution,
then randomly selects a cis-element and generates its sequence
from the mononucleotide model, generates another gap, and so
on. In the second stage, the gaps are ®lled with spacer
sequences. Two distinct probability distributions can be
proposed for the generation of the spacer sequences:

Pr(spacer sequences | cluster model)
= Pr(spacer sequences | null model) 2

Pr(spacer sequences | cluster model)
= Pr(segment | null model; cis-element sequences) 3

In equation 2, each spacer sequence is generated as if it were
not attached to the rest of the segment. Equation 3 uses the
probability that the null model generates the whole segment,
conditional on the cis-element sequences already being
present. Thus, it considers oligonucleotides that straddle cis-
element boundaries. It seems reasonable that the null model
should apply to these straddling oligonucleotides (conditional

Figure 1. A hidden Markov model of cis-element clusters. The large circles
represent states that emit single nucleotides. The small circles represent
silent states that do not emit, and the arrows represent allowed transitions
between states. The cis-element states emit nucleotides with probabilities
obtained from the count matrix for this cis-element. The background state
emits nucleotides with background probabilities. Non-palindromic cis-
elements are duplicated so that they are represented once on each strand.
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on the sequence within the cis-element), and so we use
equation 3, which combines the mononucleotide and Markov
models in the manner of Liu et al. (31) rather than Thijs et al.
(30).

In order to calculate equation 1, the standard Forward
algorithm can be applied to a given DNA segment (32), but we
wish to determine which segment within a sequence has the
maximal score. One pass of the Forward algorithm suf®ces to
obtain the score of every segment with a given starting point.
Therefore, to cover every segment it would be necessary to
repeat the Forward algorithm starting from every nucleotide in
the sequence. The time requirement of this procedure scales
quadratically with sequence length. Desiring a faster algo-
rithm with linear scaling, we use the Viterbi algorithm instead
of the Forward (32). This has the effect that, rather than
calculating the total probability of the DNA segment given all
possible arrangements of cis-elements within the segment, we
just calculate the probability for the optimal (most probable)
arrangement of cis-elements. An additional advantage is that
for this Viterbi case, we are able to calculate E-values.

The algorithm to ®nd the highest scoring segment is a one-
dimensional analog of the Smith±Waterman algorithm (33)
for pair-wise sequence alignment. If Si is the score of the
optimal segment that ends at position i in the sequence, we
obtain the recurrence:

Si � max
x
�SiÿWx

�MXi ÿ T ; Siÿ1 ÿ g; 0� 4

where g is the gap penalty: g = ±ln(1 ± a), WX is the width of
cis-element X, and MXi is the log likelihood ratio score for cis-
element X, ending at position i in the sequence:

MXi� ln

QWX

k�1

Pnk

Pr�sequence from iÿWX � 1 to i j null model�

2664
3775 5

Pnk is the probability of observing nucleotide n at position k of
the cis-element, where n refers to the nucleotide at position
i ± WX + k in the sequence. The values of Pnk are obtained from
a user-supplied count matrix for the cis-element, which
speci®es how often the nucleotides A, C, G and T are
observed at each position in a sample of known cis-elements
of this type. One pseudocount was added to all counts in
estimating the cis-element and null models (corresponding to
use of a uniform Bayesian prior).

Each motif contributes MXi ± T to the overall score, where
T = ±ln(a/number of cis-elements in the model). To ful®ll an
assumption of the E-value calculation, choices for X in
equation 4 where MXi ± T would be negative are ignored. After
®nding the optimal segment in the sequence, suboptimal
segments are found using a one-dimensional analog of the
Waterman±Eggert algorithm (34).

E-value calculation

To attach statistical signi®cance to cluster scores, we calculate
the number of times a cluster of a given score or greater would
be expected to occur under the null modelÐthe E-value. We
approximate the occurrence of positive-scoring motifs in a

random sequence as a compound Poisson process. In other
words, motif locations are Poisson distributed with frequency
n, and each motif has a score drawn independently from some
distribution Z. It is necessary to calculate n and some
properties of the distribution Z; we explain how this is done
below. The cluster scores S follow an extreme value distri-
bution with the E-value (E) de®ned as:

E � K N ÿ S

F

� �
eÿ�S 6

where N is the length of the sequence, l is the unique positive
root of:

� � �
g

Efe�Z ÿ 1g 7

K � �g
1ÿ �g EfZg
� �2

�
g EfZe�Zg ÿ 1

8

and the ®nite length correction is given by:

F � �EfZe�Zg ÿ g 9

E{ } indicates the expected value of a distribution. If a motif
cluster is found as a result of scanning multiple sequences, the
E-values calculated for each sequence are summed to give an
overall E-value.

This result is related to the well-known BLAST statistics of
Karlin and Altschul (35). They consider the optimal segment
score in a sequence where each residue type receives a score si,
and occurs with probability pi. This optimal segment score
also follows an extreme value distribution, where l is the
unique positive solution to:X

i

pie
�si � 1 10

Their K is given by a more complex formula. Our equation 7
for l can be obtained as a continuous limit of equation 10.
Suppose that a sequence consists of many small fragments of
width e. In each fragment, a motif can occur with probability
en, or a `gap', with score ± ge, can occur with probability
1 ± en. Equation 10 then becomes:

�1ÿ ���eÿ�g� � ��Efe�Zg � 1 11

In the limit where e tends to zero, equation 11 reduces to
equation 7. The equations for K and F can be derived in a
similar manner, but in practice their values are far less
important than that of l, which appears in the exponent of the
extreme value distribution. A detailed mathematical treatment
of this and related results will be presented elsewhere
(J.Spouge, manuscript in preparation).

As indicated above, we now brie¯y describe three ways to
calculate n and the required expectations involving the
distribution Z. The most direct approach is to enumerate all
possible DNA sequences of length equal to the longest cis-
element, and simply measure the frequency of positive scoring
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motifs and the distribution of their scores. An alternative
method is random generation of a large number of these
sequences. Finally, n and Z can be obtained using a dynamic
programming technique introduced by Staden (36). To use this
method the PSSM scores must be discretized into bins.
Furthermore, n and Z must be calculated separately for each
PSSM and then added. Overall, the E-value calculation makes
three assumptions: that positive scoring motifs are rare (~1%
in practice), and that the motifs do not have a signi®cant
tendency to overlap themselves or one another.

As described above, the E-value calculation cannot be used
with a null model that varies along the sequence, as the sliding
window model does. To handle this case, after obtaining
clusters and their raw scores, the sequence is broken into
fragments of length 2w + 1 bp. E-values are calculated
separately for each fragment, using equation 6 without the
®nite length correction, and taking the nucleotide frequencies
to be uniform within each fragment. These E-values are then
summed. Two ®nal technicalities are that motifs are not
permitted to overlap masked nucleotides, and the sequence
length N in equation 6 is conservatively replaced with the
number of unmasked bases. (Masking is described later.)

The results reported below were obtained with parameter a,
the expected distance between cis-elements in a cluster, set to
35 bp. COMET is robust to changes in a: setting a to 20 or 50
gave essentially the same results. If w (the sliding window
parameter) is increased signi®cantly from the default value of
75, the E-values for clusters in genomic DNA become
underestimated (i.e. lower than they should be), owing to
local ¯uctuations in nucleotide abundances. We experimented
with a scheme to train a and also the transition probabilities
leading into each cis-element type (Fig. 1), but did not observe
any improvement in performance (data not shown).

Count matrices for cis-elements

LSF binding sites were assumed to cluster with binding sites
for Sp1, Ets and the TATA box. We constructed a novel count
matrix for the Ets motif (Table 1) from a manual alignment of
39 natural binding sites of several members of the Ets protein
family (37). The LSF matrix was described in Frith et al. (11),
the TATA box matrix in Bucher (38) and the Sp1 matrix was
taken from the TRANSFAC database (39), accession no.
M00196. We obtained data for muscle speci®c motifs from the
logistic regression analysis (LRA) study of Wasserman and
Fickett (9). These regulatory regions are assumed to consist of
Mef-2, Myf, SRF, Tef and Sp1 binding sites. These ®ve motifs
were represented using one of two alternative sets of count
matrices: `muscle derived' (derived from data including the
sequences that the method will be tested on) and `non-muscle
derived' (from data entirely independent of the test
sequences). The muscle derived matrices more accurately
represent these cis-elements, but involve a circular depend-
ence on the sequences to be tested.

Human Promoter Database

Human transcription start sites were located by aligning
sequences from three sources against the draft human genome.
The sequence sets used are: 274 human promoter sequences
from the Eukaryotic Promoter Database (EPD), 2312 full-
length 5¢ untranslated regions (UTRs) (40) and 2251 cDNAs
constructed using the oligo-capping method (41). These

sequences were aligned against the April 16, 2001 version
of the draft human genome at NCBI (1) using megablast (42).
Low complexity regions and human repeats were masked
during the word ®nding stage, but not the extension stage,
using the option -F `m D;R'. Strict criteria were used to
remove sequences with ambiguous alignments. EPD se-
quences were removed if megablast returned more than one
alignment, or if the alignment did not include the transcription
start site. For the 5¢ UTRs and the oligo-capped cDNAs,
sequences were removed if: they aligned with more than one
genomic contig; they aligned with both strands of the contig;
more than one alignment was returned, and these alignments
did not occur in an order consistent with a single transcript
with introns spliced out; more than one of the transcript's
alignments overlapped in the genomic sequence; more than 10
bases in the transcript were aligned to multiple positions in the
genomic sequence; the ®rst nucleotide in the transcript did not
align, allowing for a possible non-aligning partial oligo-cap
sequence.

Sequences longer than 100 bases that did not survive this
process were shortened to 100 bases and re-aligned, and a few
more good alignments were obtained. Similarly, rejected 5¢
UTRs <100 bases were lengthened to 100 bases using the
GenBank sequences referenced in this dataset, to get a few
more good alignments. Finally, the transcription start sites
extracted from this process were made non-redundant. If any
pair of sites was located on the same strand of the same contig
within 2000 bases of one another, one of them was removed
(with priority EPD > 5¢ UTRs > oligo-capped cDNAs). In the
end, 2005 transcription start sites remained.

RESULTS

We developed a C++ program, called COMET, to search for
clusters of cis-element motifs in DNA sequences. COMET is
available as a web server or for download at http://zlab.bu.edu/
~mfrith/comet. The program takes as input a set of sequences
to search and a set of user-speci®ed motifs in the form of count
matrices. It then ®nds optimal scoring motif clusters in the
sequences, where a candidate cluster receives positive scores
for the motifs that it contains, minus a linear `gap penalty' for
the spacer regions between its motifs. In this way, a `raw
score' is associated with each predicted motif cluster. Finally,
the program calculates an E-value for each predicted cluster,
i.e. an estimate of how many times a cluster of this raw score
or greater would be expected in random DNA sequences of
given lengths and nucleotide compositions.

Accuracy of the E-value calculation

The E-value indicates the number of times we expect to see a
motif cluster of a given raw score or greater purely by chance,

Table 1. Count matrix representation of the Ets cis-element motif

1 2 3 4 5 6 7 8 9 10 11

A 7 15 2 29 0 0 39 33 10 6 7
C 3 5 17 7 0 0 0 0 2 8 1
G 10 12 18 3 39 39 0 0 26 6 13
T 5 5 1 0 0 0 0 6 1 18 2
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under a null model. The challenge here is that natural DNA
sequences possess statistically unusual properties that are not
captured by any straightforward null model. Problematic
phenomena include tandem repeats, so-called low complexity
sequence and local ¯uctuations in GC content. So it is
necessary to test whether the E-value calculation gives
meaningful results for natural sequences. To this end, we
analyzed a set of 2005 sequences, each of length 2 kb,
extracted from random locations in the draft human genome
(NCBI version dated April 16, 2001). We crudely handled
tandem repeats and low complexity regions by masking them
using the programs Tandem Repeats Finder (43) and dust
(R.Tatusov and D.Lipman, manuscript in preparation), thus
eliminating ~5% of the total sequence from consideration. We
then used COMET to identify clusters of either LSF associated
or muscle derived motifs. Since 4 Mb of sequence only covers
~0.1% of the genome, we do not expect it to contain a
substantial number of regulatory regions of these types. For
comparison, we also tested each null model against synthetic
sequences: for the two mononucleotide null models these were
pseudorandomly shuf¯ed versions of the genomic sequences,
and for the Markov null model a random 4 Mb sequence was
generated from the model itself. Figure 2 indicates that, using
all three null models, the E-value calculations are highly
accurate for the synthetic sequences.

The null model of independent nucleotides estimated from
each query sequence consistently overestimates the statistical
signi®cance for natural sequences (Fig. 2A). This result can be
explained by ¯uctuations in GC content within each sequence.
We had higher hopes for the Markov null model, which can
incorporate higher abundances of both GC-rich and AT-rich
oligonucleotides, as well as accounting for the reduced
presence of the CpG dinucleotide and similar phenomena.
Figure 2B shows that the E-values for natural sequences
become reasonably accurate only after the ®rst 70 or so
clusters. We do not expect this number of genuine cis-element
clusters to be present. That the predictions with the most
signi®cant E-values are indeed false positives is suggested by
their occurrence in sequences with unusual GC composition.
While the Markov model captures GC content biases in small
oligonucleotides, it does not capture extended biases over
longer sequence regions. In contrast, E-values calculated for
natural sequences with the sliding window null model show
remarkable agreement with theoretical expectations (Fig. 2C).
A certain degree of random ¯uctuation from the theoretical
mean is inevitable, and the dashed black line indicates the 95th
percentile of expected ¯uctuations (under a Poisson distribu-
tion). The numbers of LSF associated motif clusters never
exceed the 95th percentile, and the muscle derived clusters do
so only marginally. In comparison, one would only trust

Figure 2. Motif clusters found by COMET in natural and synthetic
sequence sets, using three different null models. Either of two motif sets
was searched for: muscle derived and LSF associated (see text for details).
The y-axis indicates the number of clusters found with E-value lower than
the value indicated on the x-axis. (A) Null model = independent nucleotides
with frequencies estimated from each query sequence. (B) Null model =
®fth order Markov. (C) Null model = independent nucleotides with
frequencies estimated from a sliding window. The theoretical lines indicate
the mean and 95th percentile for the number of observations at each
E-value, according to a Poisson distribution.
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BLAST E-values to be accurate plus or minus a few orders of
magnitude. Using the sliding window null model, we have
accurately solved the problem of ascribing statistical signi®c-
ance to motif clusters in natural as well as synthetic DNA
sequences, and we use this null model for the remainder of the
study. A potential disadvantage of this technique is that it may
penalize regions of unusual sequence composition that are
caused by the presence of cis-elements, e.g. some CpG islands
may be arrays of Sp1 binding sites. If the sequences are not
masked, a handful of extremely signi®cant motif clusters
appear, but otherwise the results look extremely similar to
those in Figure 2C (data not shown).

Motif clusters in known regulatory regions

We obtained the sequences of 27 experimentally supported
muscle speci®c regulatory regions, and nine LSF regulated
promoters. The 27 muscle regulatory regions are a non-
redundant subset of 43 sequences from the LRA study (9). The
LSF-regulated sequences are taken from our earlier study (11),
with sequences >2 kb shortened to 2000 bp, centered on the
known LSF binding site. To investigate the feasibility of
detecting these types of regulatory regions by searching for
motif clusters, we examined the E-values of clusters in these
sequences. Equation 6 indicates that the E-values are linearly
proportional to the sequence length (we do not use the ®nite
length correction). Since these sequences have differing
lengths, we rescaled all the E-values to mimic a sequence
length of 2 kb, so that the results are more easily comparable.
The sequences were not masked for this investigation. The
LSF count matrix was constructed, in part, from LSF binding
sites in the nine LSF regulatory regions. Therefore, we used a
jack-knife procedure to scan these sequences, omitting from
the LSF count matrix any sites that came from the sequence
being scanned. To scan the muscle regulatory regions, we used
both the muscle derived and non-muscle derived matrix sets,
following the procedure used in the LRA study (9).

Figure 3 plots the proportion of known regulatory regions
containing a motif cluster with E-value below a particular
threshold. With muscle derived matrices, approximately half
of the sequences contain clusters with E-values <10±2; a few
sequences contain clusters as signi®cant as 10±7. For all three
sets of matrices, 70% or more sequences contain a motif
cluster with E-value below the randomly expected value of 1.
Approximately 30% of the sequences do not contain signi®-
cant motif clusters, indicating that discrimination of regula-
tory regions from background sequence is likely to be a
dif®cult problem, at least based on our current biological
knowledge concerning the subtle signals in these regulatory
sequences.

Motif clusters in human promoters

Although transcription factor binding sites are frequently
distant from transcription start sites, they are believed to be
enriched in proximal promoter regions. Hence, by restricting
predictions of regulatory signals to promoter sequences, it
should be possible to decrease the false positive rate dramat-
ically without increasing the false negative rate too much. By
considering several sets of experimental data, we have
constructed a database of human transcription start sites,
which we call the Human Promoter Database (HPD). With
2005 entries the HPD was, to our knowledge, the largest

database of human promoters until recently (44). We use
COMET to look for LSF and muscle related regulatory signals
in sequences obtained from the HPD.

We extracted genomic sequences from ±1499 to +500
relative to 2005 transcription start sites in our HPD. These
sequences were masked and scanned with COMET to identify
clusters of LSF associated or muscle derived motifs. Figure 4
shows that clusters with low E-values occur more often than is
expected for random DNA, indicating that COMET is
sensitive to the enrichment of cis-elements in promoters.
This effect is more pronounced for LSF associated motifs,
which is not surprising since this motif set includes the
ubiquitous TATA box and Sp1 sites.

The promoters with the most signi®cant clusters of LSF
associated (considering only those with at least one LSF
motif) and muscle related motifs are listed in Table 2.
Compared with muscle speci®c gene regulation, LSF is not
very well studied and, therefore, not much information is
available for the regulation of predicted genes in Table 2A.
For four of the ®ve predicted muscle-related genes in Table 2B,
various experimental data support our predictions. (i) The
14-3-3 family of proteins has been shown to be a signal-
dependent regulator of muscle cell differentiation. One study
indicates that 14-3-3 binds to histone deacetylases HDAC-4
and HDAC-5, and prevents them from binding to and
inhibiting myocyte enhancer factor-2 (MEF2) (45). Another
study shows that 14-3-3 forms a complex with MEF2 in vivo
and speci®cally enhances MEF2 transactivational activity
(46). Here, we predict that 14-3-3 is regulated by MEF2. This
is an intriguing and testable hypothesis. (ii) In agreement with
our prediction, experiments show that serum response factor
(SRF) binds to the promoter region of a-cardiac actin and
regulates its expression (47,48). (iii) In agreement with our
prediction, recent work shows that MEF2 and SRF regulate
carnitine palmitoyltransferase (49). (iv) Adenylate kinase 1

Figure 3. E-values of motif clusters found by COMET in known regulatory
regions. COMET was used to ®nd clusters of LSF associated motifs in LSF
regulatory regions (solid line), and clusters of muscle derived (dashed line)
and non-muscle derived motifs (dotted line) in muscle regulatory regions.
The y-axis indicates the proportion of regulatory regions that contain a
motif cluster with E-value lower than that indicated on the x-axis.
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(AK1) catalyzes phosphotransfer reactions, which couple ATP
production and utilization. AK1 is essential for the mainten-
ance of cellular energetic economy, enabling cardiac and
skeletal muscles to perform at the lowest metabolic cost
(50±52). Its expression is muscle speci®c and developmentally
regulated (53,54). Here we predict that AK1 is regulated by
MEF2.

Discrimination of known regulatory regions from large
sequence sets

A basic question is: To what extent can COMET discriminate
known regulatory regions from background sequence? To
investigate this question, we can pick an E-value threshold that
achieves a given sensitivity for identifying known regulatory
regions, and examine the corresponding prediction rate in
background sequences. A higher prediction rate indicates
lower speci®city. We examine two sets of known regulatory

regions: the 27 muscle regulatory regions using the muscle
derived matrices, and the nine LSF regulatory regions using
the LSF associated matrices. We examine two sets of
background sequences: 2005 randomly chosen human geno-
mic sequences and 2005 human promoter sequences. All
sequences were masked. It is possible that the background
sequences may contain genuine muscle or LSF regulatory
regions. However, we do not observe signi®cant clusters for
random genomic sequences (Fig. 2C). We predict, with some
con®dence, a few human promoter sequences to be regulated
by muscle derived matrices (Table 2B). Nonetheless, these
represent only 0.25% of the 2005 sequences. Thus, for the
analysis in this section, it is reasonable to treat the above two
sets of sequences as negative controls.

After obtaining raw scores for motif clusters in the known
regulatory regions, we calculate their E-values as if these
scores had been found in one of the background sequence sets.
Thus, the raw scores are similar to those calculated for
Figure 3, but the E-values are less signi®cant since we mimic
discovering them in a larger sequence set. Figure 5 includes
superimposed plots of the proportion of known regulatory
regions detected at each E-value threshold, along with the
prediction rate in background sequences at the same E-values.
These plots can help to judge whether or not COMET is
discriminatory enough for a particular application. For
example, if we would like to achieve a sensitivity of 60% in
known muscle regulatory sequences, we need to use an
E-value cutoff of 102, which corresponds to a prediction rate
of 1 per 50 kb in random genomic sequences (Fig. 5A), and
1 per 29 kb in human promoter sequences (Fig. 5C). Such a
performance may be acceptable for some applications, for
example, searching for muscle related regulatory sites in a
100 kb stretch of genomic sequence identi®ed by linkage
analysis.

Comparison of COMET's performance with Cister and
LRA

Since COMET is a new method, we would like to compare its
performance with earlier methods. Here, we investigated
COMET's ability to discriminate known regulatory regions
from a background sequence set, and compare with two earlier
studies using Cister (11) and LRA (9). Table 3 shows, for the
three matrix sets, the prediction rate in 2005 randomly chosen

Table 2. The ®ve most signi®cant LSF associated motif clusters and the ®ve most signi®cant clusters of muscle derived motifs in the promoter sequence
set

Gene product Motifs

A Platelet glycoprotein IIb 5 LSF, 2 Sp1, 7 Ets
Cytohesin-2 1 LSF, 6 Sp1
b-1,6-N-acetylglucosaminyltransferase 2 LSF, 3 Sp1, 2 Ets
Proteasome inhibitor hPI31 subunit 2 LSF, 2 Sp1, 2 Ets
a-1-antichymotrypsin 4 LSF, 1 Sp1, 1 Ets

B p53-associated gene (Mdm2) 3 mef2, 1 myf
YWHAH gene for tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (14-3-3) 2 mef2
a-cardiac actin 3 srf
Carnitine palmitoyltransferase I, nuclear gene encoding mitochondrial protein 1 mef2, 1 myf
Cytosolic adenylate kinase (AK1) 1 mef2

To construct this table, the sequences were scanned with COMET using count matrices for LSF, Sp1 and Ets, but not the TATA box. Clusters without an
LSF motif are omitted. The gene product descriptions were obtained from GenBank (http://www.ncbi.nlm.nih.gov) (71).

Figure 4. Cumulative frequency plots of motif cluster E-values found by
COMET in promoter sequences. COMET was used to ®nd clusters of LSF
associated motifs (solid line without circles) or muscle derived motifs
(dashed line) in a set of promoter sequences. The y-axis indicates the
number of clusters with E-value lower than that indicated on the x-axis. The
theoretically expected line is marked with circles.
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human genomic sequences at E-value thresholds that ensure
close to 60% sensitivity (percentage of known regulatory
regions detected). This table also lists comparable results for
Cister (11) and LRA (9). It should be noted that for
Cister the sequences were masked using RepeatMasker
(A.F.A.Smit and P.Green, http://ftp.genome.washington.edu/
RM/RepeatMasker.html), and for LRA an unspeci®ed mask-
ing procedure was used. Thus, prediction rates per unmasked
base pair should be compared. The results for muscle derived
matrices are available for all three methods. COMET and
Cister perform comparably. It is unclear if the reported
prediction rate for LRA was for unmasked base pairs. If so,
LRA performed similarly on this test set. For LSF associated
and non-muscle derived motif sets, Cister's prediction rates
are three times lower than those of COMET. One possible
advantage of Cister is that it uses the forward±backward
algorithm rather than the Viterbi algorithm and, thus,
considers all possible arrangements of cis-elements rather
than just the optimal arrangement. However, Cister requires
more parameters to be set than COMET does, and Cister's
output consists of posterior probability curves which can be
harder to interpret than COMET's predicted sequence seg-
ments.

Finally, we consider another background sequence set to
further compare the performance of COMET, Cister and LRA.
We use the same background set as in the LRA study (9),
which consists of eukaryotic promoters from the EPD (55).
We obtained sequences in the range ±249 to +50 for all 1390
entries in release 66_1 of EPD. The known regulatory regions
and the background sequence set were analyzed exactly as in

the previous section except that, for consistency with the
earlier studies, no sequences were masked.

Table 4 lists the percentage of EPD sequences predicted to
have a cis-element cluster at an E-value threshold that
produces ~60% sensitivity for the known regulatory regions.
Comparable data for the Cister and LRA methods are also
given. These results suggest that Cister performs slightly
better than the other two methods. COMET is not far behind,
while the LRA approach performs signi®cantly worse using
non-muscle derived PSSMs.

The overall conclusion is that the three methods exhibit
similar performance. Therefore, COMET has much to
recommend it, as it is the simplest method, with the smallest
number of adjustable parameters and it incorporates an
analytic calculation of statistical signi®cance. In truth, none
of these methods is yet suf®cient for accurate detection of
transcription regulatory sequences on a large scale. We
believe that the main limitation is not algorithmic, but
insuf®cient knowledge of the signals that constitute these
types of regulatory region.

DISCUSSION

We have introduced the ®rst method to detect clusters of cis-
elements based on matrix representations that incorporates a
calculation of statistical signi®cance. Our method is extremely
general, in that it makes minimal assumptions about the
clusters, has minimal parameters and avoids arbitrary cut-offs.
It considers both the strengths of individual motifs and the
tightness of their clustering, combining these features into a

Figure 5. Plots of trade-off between sensitivity and background prediction rate for ®nding motif clusters, as the E-value threshold is varied. The line marked
with circles indicates the proportion of true regulatory regions identi®ed by COMET at different E-value thresholds. The unmarked line describes the back-
ground prediction rate, in terms of the average number of base pairs between predictions, on a control sequence set over the same range of E-values.
(A) Sensitivity for muscle regulatory regions versus prediction rate for genomic sequences, using muscle derived motifs. (B) Sensitivity for LSF regulatory
regions versus prediction rate for genomic sequences, using LSF associated motifs. (C) Sensitivity for muscle regulatory regions versus prediction rate for
promoter sequences, using muscle derived motifs. (D) Sensitivity for LSF regulatory regions versus prediction rate for promoter sequences, using LSF
associated motifs.
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single score. With careful choice of the null model, the
E-values are extremely accurate for human genomic
sequences as well as synthetic sequences.

Although COMET performs comparably with two alterna-
tive methods (that are more complex and lack E-value
calculations), all current methods perform poorly overall in
detecting regulatory regions. Our investigations make the
fundamental problem very clear: many of the known regula-
tory regions that we studied simply do not contain very
signi®cant clusters of the cis-elements that we searched for.
Increasingly sophisticated algorithms will not alleviate this
situation, but rather the priority should be improved under-
standing of the signals contained in these regulatory regions.
We can see four possible ways in which our current
knowledge may fall short: (i) inadequate representations of
the cis-elements that we know about, (ii) ignorance of other
cis-elements contained in these types of regulatory region,
(iii) `diffuse' signals such as nucleosome binding properties
may constitute important parts of these regulatory regions, and
(iv) each regulatory region may contain a unique combination
of signals so that there are no `types'. The ®rst two problems
relate to the principal dif®culties facing a user of COMET:
how to obtain matrix representations of the cis-elements and,
especially, how to choose a set of cis-elements to search with.

We do not think our matrix representations of cis-elements
are so inaccurate as to fully explain the shortfall in prediction
accuracy. Methods to account for correlations between
positions, such as maximal dependence decomposition (56)
or Markov models, may improve accuracy, but require more
training data than is usually available. More signi®cant
problems are the limited availability of matrices, and the
variable length and half-site organization of some cis-
elements. The TRANSFAC database contains over 300
matrices. While this may sound like a small fraction of the
1850 transcription factors preliminarily predicted in the
human genome (57), many transcription factors belong to
families that share very similar DNA binding preferences. For
example, the roughly 20 members of the Sp/KLF family all
bind to similar cis-elements, having maximum af®nity for
either the GC-box or the GT-box (58). Therefore, a few
hundred matrices may cover a much larger range of
transcription factors, neglecting small variations in DNA
binding preference within families. Some matrices in data-
bases like TRANSFAC may be of poor quality (59). In part,
the problem is that traditional matrix representations cannot
account for the ¯exible DNA binding properties of some

transcription factors. For example, nuclear hormone receptors
bind to pairs of half sites that can be arranged as direct or
inverted repeats, separated by various distances (60). Such
¯exibility can be accounted for by generalizing PSSMs into
very simple hidden Markov model representations of
cis-elements (61,62), or even by constructing a number of
alternative PSSMs for one type of cis-element.

We chose the cis-elements for LSF and muscle speci®c
regulatory regions based largely on anecdotal evidence, and
there is no reason to think we have saturated the types of cis-
element commonly found in these regions. To get a handle on
additional elements that may be present, we could screen
against all known motifs from TRANSFAC, or apply various
algorithms to discover novel motifs common to these
sequences (63±65). Phylogenetic footprinting, by indicating
evolutionarily conserved regions of the sequences, may help
to identify additional cis-elements (66±70). However, our
investigations of estrogen response elements indicate that
these cis-elements are often not conserved between human and
mouse (R.O'Lone, M.C.Frith and U.Hansen, manuscript in
preparation).

Analysis of nucleosome binding properties would require
new computational tools. If regulatory regions are to some
extent piecemeal and contain unique combinations of cis-
elements, it may be possible to ®nd them by searching for
signi®cant clusters using a universal collection of motifs.
However, we believe that evolution is more likely to have
duplicated and reused regulatory modules rather than
reinventing them from scratch.

Table 4. Percentages of EPD sequences with a predicted motif cluster, at
thresholds that ensure ~60% sensitivity, for three methods

Method Motif set Sensitivity Percentage of
EPD sequences
with a predicted
cluster

COMET Muscle derived 16/27 4.7
Non-muscle derived 16/27 7.4

Cister Muscle derived 16/27 2.9
Non-muscle derived 16/27 5.2

LRA Muscle derived 60% 4.0
Non-muscle derived 60% 13.0

The EPD sequences are of length 200 bp for the LRA method, and 300 bp
for the other two methods.

Table 3. Prediction rates for three methods in human genomic sequence, at thresholds that give sensitivities
close to 60%

Method Motif set Sensitivity Prediction rate
Per total base pairs Per unmasked base pairs

COMET LSF associated 5/9 1 per 12 kb 1 per 11 kb
Muscle derived 16/27 1 per 30 kb 1 per 29 kb
Non-muscle derived 16/27 1 per 5.7 kb 1 per 5.5 kb

Cister LSF associated 6/9 1 per 63 kb 1 per 33 kb
Muscle derived 16/27 1 per 68 kb 1 per 35 kb
Non-muscle derived 16/27 1 per 32 kb 1 per 17 kb

LRA Muscle derived 60% 1 per 32 kb
Non-muscle derived Not reported
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Even with current performance, COMET is able to make
useful biological predictions. Application of COMET to the
2005 human promoter sequences led to ®ve promising
predictions of muscle speci®c cis-element clusters. Among
them, a-cardiac actin and carnitine palmitoyltransferase have
been experimentally shown to be regulated by muscle speci®c
transcription factors; 14-3-3 and cytosolic adenylate kinase
have clear experimental evidence to be muscle speci®c.
Currently, no study indicates the regulation of Mdm2 by
muscle speci®c transcription factors. Thus, the latter three
genes represent predictions by COMET, which can be tested
experimentally. So, application of COMET with a stringent
E-value threshold, while achieving only a low sensitivity, can
generate promising predictions of functional cis-element
clusters.
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