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ABSTRACT

We report a strategy for analysis of data quality in
cDNA microarrays based on the repeatability of
repeatedly spotted clones. We describe how repeat-
ability can be used to control data quality by devel-
oping adaptive ®ltering criteria for microarray data
containing clones spotted in multiple spots. We
have applied the method on ®ve publicly available
cDNA microarray data sets and one previously
unpublished data set from our own laboratory. The
results demonstrate the feasibility of the approach
as a foundation for data ®ltering, and indicate a high
degree of variation in data quality, both across the
data sets and between arrays within data sets.

INTRODUCTION

Robotically spotted cDNA microarrays are increasingly
applied in large-scale gene expression analyses. With this
technology, gene expression is typically estimated as ratios
between measured signal intensities from a target mRNA
sample under investigation and signal intensities from a
reference mRNA, represented as cDNA and labeled with
different ¯uorescent dyes and co-hybridized to a microarray
with spotted cDNA PCR product probes. The technology
relies on several critical steps, including mRNA sample
extraction, possibly ampli®cation and labeling, PCR probe
preparation, slide preparation, hybridization, laser scanning
and image processing (1). Many of the processes involved are
highly non-linear and dif®cult to calibrate (2). As a result,
cDNA microarray measurements are often quite noisy, in
particular measurements of low-abundance mRNA species.
Consequently, data from cDNA microarrays are commonly
pre-processed to identify and remove low quality measure-
ments in order to enhance and ensure reliability of the
estimated gene expression ratios. A common ®rst step is to

carry out a procedure in which individual array elements
(spots) are `technically' ¯agged. In this procedure, spots are
investigated in order to identify and ¯ag technically ¯awed
spots, most commonly by manual investigation of array
images but also by automated analysis of image ®les using
software. Such spots are normally removed prior to any
subsequent analyses.

The next pre-processing step is often to identify and remove
array elements where the measured intensities (from both
samples) are assumed to be indistinguishable from back-
ground noise (3,4). This step is commonly referred to as
®ltering. We denote by spot intensity the uncorrected
foreground intensity of the spot. In one often-used scheme,
the ratio of the measured spot intensity relative to the local
background intensity is calculated and those spots where this
ratio is smaller than some ®xed constant, for instance 1.4 (4,5),
are not considered well measured and subsequently removed.
In other words, it is required that the spot intensity is >40%
higher than the local background. A slight variation of this
scheme is based on comparing the spot and background
intensities by computing the difference of spot minus back-
ground. Then, spots where the background-corrected intensity
is smaller than some other constant, for instance 100 or 200,
are removed.

These and similar ®xed-threshold approaches have at least
two dif®culties. First, it is not clear what is an appropriate
value for the threshold, and a value of, for example, 1.4 times
the background may be quite arbitrarily chosen. Exactly which
value is appropriate as threshold depends on several factors
and is likely to vary from one experimental setup to another.
Secondly, the amount of random noise is likely to vary
signi®cantly from array to array, and a value of 1.4 times the
background may be appropriate for one array, but too high or
low for another, even if the same experimental setup is used.
Clearly, if the value is too low, too many poor quality
measurements will be used in the analyses, and if the value is
too high, many `valid' observations will be removed.
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Here we present a systematic analysis of data quality based
on measurements from repeatedly spotted probes leading
towards an adaptive method for ®ltering putatively noisy array
elements. We de®ned data quality as the repeatability of data
from spots presumably containing the identical probes, as
identi®ed by IMAGE clone ID or GenBank accession number.
We measured repeatability by calculating a statistical repeat-
ability coef®cient, the deviation between pairs of measure-
ments from spots with the same probe, and the linear
correlation coef®cient. The analysis and ®ltering method is
demonstrated on ®ve publicly available data sets and one
previously unpublished data set. In our analyses of logarithm
base 2 transformed estimates of expression ratios, the results
show a very high degree of variation in data quality, as
measured by these statistics, both between data sets and
between arrays within the data sets. The results also show that
with respect to accommodating a consistent level of data
quality, ®xed-threshold ®ltering, such as ®ltering spots with
intensity <1.4 times background intensity on all arrays,
performed poorly. We demonstrate how the clone repeat-
ability can be used to adapt thresholds for ®ltering criteria
while focusing on data quality and maximization of the
number of observations amenable for further analysis.

MATERIALS AND METHODS

Data

We downloaded ®ve publicly available cDNA microarray data
sets (4±8). In the following, we will refer to these data sets as
`Mopo' (6), `Mopo-clin' (7), `Lymphoma' (4), `NCI60' (5)
and `Prostate' (8), respectively. Four of these ®ve data sets had
been analyzed by the authors using the ScanAlyze image
analysis software, and we extracted raw data, such as spot and
background intensities from both channels, and technical
¯ags, from ScanAlyze output ®les by the use of custom perl-
scripts. For the Prostate data set, spot and background
intensities were not available, only what the authors termed
`calibrated ratios' and corresponding quality scores (8).

The sixth data set analyzed was obtained from our own
laboratory at the Norwegian Radium Hospital and will be
referred to as the `DNR' data set. Image ®les were analyzed
with the GenePix software and data were extracted with perl-
scripts. Complete protocols for mRNA extraction, printing,
scanning and image analysis are provided on our website
(http://www.med.uio.no/dnr/microarray/english.html).

We focused the analyses on repeatability of logarithm base 2
transformations of the ratios of background-subtracted in-
tensities of the target and background-subtracted intensities of
the reference. In the ScanAlyze output ®les, the background-
subtracted intensities of the channel 2 (target) signals and
channel 1 (reference) signals are denoted CH2D and CH1D,
respectively. We analyzed logarithms, base 2, of the normal-
ized ratios (RAT2N) as exported from the ScanAlyze ®les, the
calibrated ratios from the Prostate data and the ratios denoted
`Ratio of Means' in the GenePix export ®les.

Pre-processing

Two initial ®ltering steps were always applied prior to any
analyses. First, all spots where the estimated spot intensity was
below or equal to the estimated background signal intensity, in

either channel, were removed. Spots that had been technically
¯agged were also removed.

Assessment of repeatability

For a given cDNA microarray data set, let d be the number of
arrays (raw data ®les) and let n be the number of spots (array
elements) on each array. Let nm be the number of repeatedly
spotted clones and let ns be the total number of spots
containing any repeatedly spotted clone. For each i = 1,¼, nm,
let ki be the number of spots where this clone has been spotted,
thus:

ns �
Xnm

i�1

ki:

When referring to a single array, the measured log ratio of a
repeatedly spotted clone is then denoted yij, with clone i, and
repeated spotting j (where j = 1, ¼, ki). In the context of
several arrays, we will use the notation y

�l�
ij to denote the

measurement in array l, with l = 1,¼, d.

Correlation. For each clone, we calculated the average
Pearson product-moment (linear) correlation between pairs
of spots across data from the d arrays. If clone i has been
spotted ki times, there will be [ki(ki ± 1)]/2 distinct pairs in its
spot set. For a given pair of spots (denoted ij and ij¢) we
constructed the vectors [y

�l�
ij , ¼, y

�d�
ij ] and [y

�l�
ij , ¼, y

�d�
ij0 ], and

computed the correlation coef®cient with respect to clone i as
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y
�l�
ij ÿ yij

� �
y
�l�
ij0 ÿ yij0

� �
��������������������������������������������������������������Xd

l�1

y
�l�
ij ÿ yij

� �2Xd

l�1

y
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where yij �
1

d

Xd

l�1

y
�l�
ij and yij0 �

1

d

Xd

l�1

y
�l�
ij0 :

For a given clone, the correlation coef®cient was calculated
for all distinct pairs in the spot set, and the average correlation
coef®cient was used as an indicator of repeatability for the
clone.

To assess the overall degree of repeatability in a whole data
set in terms of correlation, we averaged correlation coef®-
cients over all repeatedly spotted clones.

Mean absolute pairwise deviation. For each array we de®ne
the mean absolute pairwise deviation as the average absolute
differences between measurements from paired spots (both
containing the same clone). The average is taken over all
clones and all distinct pairs in the spot set of each clone, that is,

1

n0
Xnm

i�1

X
"� j; j0�

abs �yij ÿ yij0 �;

where n¢ is the number of terms in the sums.
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Repeatability coef®cient. As an indicator of the internal
quality of a single microarray experiment we calculated a
repeatability coef®cient for each array (9). We de®ned the
coef®cient of repeatability as the value below which the
difference between two measurements (log ratio) of a
repeatedly spotted clone on the same array may be expected
to lie with a probability of 95%. This coef®cient was
calculated for each array using analysis of variance
(ANOVA) based on the spots from repeatedly spotted clones.
As de®ned previously, let yij be the measured log ratio of
repeatedly spotted clone i, where j = 1, ¼, ki. For the ANOVA
analysis we assumed each yij to be an independent realization
of the variable Yi ~ N(mi, si

2). Furthermore, for each Yi, i = 1,
¼, nm, we assumed the si to be identical and equal to (a
common) s. The repeatability coef®cient was then de®ned as
2.83 3 Ãs, where Ãs is as estimated from the sum of squared
residuals through

Ãs �
�����������������������������
SSE=�ns ÿ nm�

p
;with SSE �

Xnm

i�1

Xki

j�1

�yij ÿ Ã�i�2; and

Ã�i �
1

ki

Xki

j�1

yij:

Similarly, we calculated repeatability coef®cients for clones
across arrays. In this calculation, the arrays are viewed as
effects and Ãs is, for a ®xed i, estimated by

Ãs �
�������������������������������������������������������������

1

d�ki ÿ 1�
Xd

l�1

Xki

j�1

y
�l�
ij ÿ Ã��l�

� �2

vuut ; with Ã��l� � 1

ki

Xki

j�1

y
�l�
ij :

Note that in the data sets analyzed, ki is ®xed for each clone
across all arrays in a set. This is not a limitation of the method
and the computations can be adapted to allow for variable
numbers of spots for a given clone across the arrays analyzed.

Adaptive ®ltering of weak spots

Under the assumptions that the variation in log ratio between
spots containing the same probe at different levels of signal
intensities is (i) indicative of quality of the data and (ii)
representative for all measurements on the array with similar
signal intensities, we de®ned a method to adapt the ®ltering
thresholds to accommodate a ®xed level of data quality.

We describe the method as applied to ®ltering based on the
ratio of spot intensity over background intensity (SB ratio), but
we emphasize that the method can be applied to any `measure
of quality' one would de®ne as a ®ltering criterion. Possible
choices of ®ltering criteria could be other versions of signal-
to-noise criteria, e.g. the (spot intensity ± background
intensity)/(spot intensity), or more complex criteria such as
the composite quality score presented by Wang et al. (10). We
also tested the method with the difference of spot intensity
minus background intensity (SB difference).

For each spot containing any probe that had been repeated,
we calculated the selected ®ltering criterion (SB ratio) for both
channels. The two channels were analyzed separately. For
each channel, the values for the ®ltering criterion were then

sorted and evaluated as possible candidates for the ®ltering
threshold. For each possible ®ltering threshold, we calculated
the estimated repeatability standard deviation Ã� based on the
®ltered data. We then compared the estimated repeatability
standard deviation with a chosen target value s0. We de®ned
the threshold for ®ltering as the smallest value at which the
estimated repeatability standard deviation was below s0.

We chose the threshold for the estimated repeatability
standard deviation to be s0 = 0.43 based on the following
reasoning. A log 2 difference of 1 corresponds to a 2-fold
change, and we believed this is a reasonable criterion for
repeatability of spots containing the same clone. For data of
good quality we would thus like the difference between the log
ratio of a pair of spots from the same clone to be inside the
interval [±1,1]. In our setting, this amounts to choosing s0 =
0.43, since the interval [±1,1] equals a 90% con®dence interval
of the difference between two realizations of an N(mi, s2

0)
random variable.

As the two channels would normally de®ne differing cut-off
values for ®ltering, we chose to handle this conservatively, i.e.
to discard ratio data for all observations where the measure-
ment from at least one channel was below the threshold value
for this channel. As a visual aid for interpreting the ®ltering
procedure based on the repeatability statistics, we plotted
differences of log ratios from pairs containing the same clone
versus the minimum (over the two spots in a pair) ratio of spot
intensity over background intensity. From these plots we
identi®ed the threshold where 90% of the differences were
smaller than 1 (in absolute value).

RESULTS

The ®rst ®ve data sets selected for analysis were chosen
because they represented large publicly available data sets of
human origin with a general clinical relevance. These ®ve data
sets originate from high-pro®le publications and are thus
likely to represent state-of-the-art cDNA microarray technol-
ogy. The data sets represented different laboratories, thus
re¯ecting varying laboratory and analysis procedures. The
procedural variation was considered bene®cial, as it was
expected to re¯ect general methodological variation inherent
in the technological platform of spotted cDNA microarrays.
The last data set was taken from our own laboratory at the
Norwegian Radium Hospital (DNR) and was selected for
comparison as part of developing a quality control effort in our
own microarray production and analysis facilities.

The data sets represented a wide range in the total number
of data points and printing patterns (Table 1). We calculated
the number of spots that would be removed according to often-
used ®lter criteria (Table 2). These numbers do not directly
relate to the data quality, but nevertheless indicate that there is
considerable variation in the relative levels of signal-to-
background between the data sets.

Global assessment of repeatedly spotted clones

Using the spots of clones that had been spotted in several
positions on an array, we investigated the repeatability of the
data sets. We calculated correlations for paired spot observa-
tions (as described in Materials and Methods) for each pair of
each clone across all arrays, and averaged the correlations
across the pairs to obtain a correlation for each clone. For each
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data set, the clone correlations were subsequently averaged to
obtain an indicator of repeatability (Table 3). The Lymphoma
data set appeared to have considerably higher repeatability in
terms of average correlation than the other data sets.

Although correlation coef®cients have a straightforward
interpretation, they may sometimes be misleading (9). We
therefore also calculated the average absolute deviations

(absolute value of the difference between spot 1 and spot 2)
between measurements from paired spots (both containing the
same clone), as well as a repeatability coef®cient. Both of
these indicators agreed well with the correlation coef®cients
when investigating clone by clone, i.e. that clones with high
correlation across arrays also had smaller average deviations
and smaller repeatability coef®cients (data not shown). Except

Table 1. Summary descriptive statistics for the selected data sets

Number of
arrays

Number of
array
elements (n)

Number of
unique clones

Number repeatedly
spotted (nm)

Number of spots,
repeatedly spotted
clones (ns)

Mopo 83 9216 8830 189 387
Mopo-clin 29 9216 8733 99 198
Lymphoma 67 18 432 14 181 2832 6759
NCI60 63 10 000 9703 3 6
Prostate 25 6500 6500 116 233
DNR 4 11 552 9377 1496 2992

From three publications (4,5,7) we extracted data from subsets of the arrays publicly available. This was
because differing array print formats had been used, and we chose to use only the largest subset of identically
printed arrays in order to ensure data integrity. The columns `Number of array elements', `Number repeatedly
spotted' and `Number of spots, repeatedly spotted clones', correspond to the numbers n, nm and ns, as de®ned
in the Materials and Methods.

Table 2. Filtering statistics as given with common ®ltering rules

Total number of spots % ¯ags % spot < background % spot <1.4 3 background % spot <100 + background

Mopo 774 144 8.00 3.12 (2.53) 18.02 (15.26) 10.43 (8.84)
Mopo-clin 267 264 10.91 15.95 (12.10) 58.62 (48.80) 50.74 (41.67)
Lymphoma 1 234 944 1.20 2.45 (2.28) 33.42 (32.81) 47.66 (47.06)
NCI60 630 000 0.25 5.68 (5.66) 43.41 (43.28) 17.92 (17.88)
Prostate 162 500 NA NA NA NA
DNR 46 208 31.91 3.41 (0.72) 7.15 (0.06) 45.36 (16.25)

The column `Total number of spots' shows the total number of spots summed over all arrays from each data set. The `% ¯ags' column shows the percentage
of spots that had been ¯agged, manually or by image analysis software, for each data set. The remaining columns show the total percentage of spots that
would be removed according to common ®ltering criteria. For each of these columns, the main number shows the percentage when ¯agged spots are
disregarded in the total number of spots, while the corresponding numbers in parentheses show the percentage of the number of spots also including the spots
that were ¯agged. NA, data not available. The very high number of ¯agged spots in the DNR data set was due to a ¯agging procedure included in the
GenePix image analysis software.

Table 3. Correlation coef®cient, mean absolute pairwise deviation, and repeatability statistics, Ãs, for clones across arrays

Correlation coef®cient Mean absolute pairwise deviation Repeatability statistic, Ãs
All Filtered All Filtered All Filtered

Mopo 0.646 (0.334) 0.676 (0.347) 0.598 (0.425) 0.510 (0.389) 0.588 (0.355) 0.470 (0.310)
Mopo-clin 0.527 (0.398) 0.634 (0.469) 0.929 (0.629) 0.565 (0.343) 0.855 (0.507) 0.539 (0.359)
Lymphoma 0.714 (0.269) 0.777 (0.397) 0.519 (0.317) 0.366 (0.222) 0.518 (0.294) 0.335 (0.200)
NCI60 0.429 (0.285) 0.515 (0.686) 1.159 (0.277) 0.558 (0.635) 1.101 (0.223) 0.463 (0.538)
Prostate 0.293 (0.342) NA 0.615 (0.313) NA 0.580 (0.313) NA
DNR 0.592 (0.628) 0.593 (0.627) 0.900 (1.038) 0.899 (1.038) 0.901 (0.746) 0.889 (0.758)

The numbers are average values with standard errors in parentheses. For correlation coef®cients, a clone average, across correlation coef®cients from all pairs
for the clone, was ®rst calculated before a non-weighted average and standard error across clones was calculated for each data set. The mean absolute
pairwise deviation was calculated as the average across all combinations of same-clone spot-pair and array within each data set. The `Repeatability statistic,
Ãs' column shows the average for each data set of estimates of the standard deviations in the ANOVA model calculated for each repeatedly spotted clone
(high quality corresponds with a small value for the repeatability coef®cient). For each statistic, the value as calculated from all available data points
(excluding spots that were below background or manually ¯agged) as well as the value calculated from the `standard' ®lter-criterion of SB ratio >1.4, are
given in columns `All' and `Filtered', respectively. The repeatability coef®cient (as de®ned in the Materials and Methods) can be obtained from the estimated
standard deviations by multiplying the repeatability statistics Ãs by 2.83. The corresponding standard error can also be found by scaling with the same factor.
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for the Prostate data set, the deviations and repeatability
coef®cients were also in agreement with the correlation
coef®cients when viewed globally for each data set (Table 3).
The Prostate data set illustrated one of the points made by
Altman and Bland (9), namely that a low correlation does not
necessarily mean that the agreement between two data series is
bad; the correlation tends to give a low estimate of agreement
if there is little overall variation in the data. Although all data
sets contained intra-clone spot pairs where the difference in
log ratio between the two spots was as high as 8 or more, the
distributions of spot-pair deviations were different (Fig. 1).
For instance, in the Lymphoma data set, 87.5% of all pairwise
absolute deviations were <1 (in absolute value), whereas for
the Mopo-clin and DNR data sets the corresponding percent-
ages were ~73%.

Previous studies have indicated that reliable measurements
are more dif®cult to obtain for low-abundance than for high-
abundance transcripts (11). In terms of signal intensities, this
suggests that lower intensity measurements may be suspected
to be less reliable than higher measurements. In terms of
repeatability, a similar pattern was also observed in the data
sets in the present study (Fig. 2). We consistently found that
repeatedly printed spots with high signal intensities gave good
repeatability, while the quality deteriorated as spot intensities
approached the background signal levels. Plots of deviations
between pairs of repeatedly spotted clones, pooled across
arrays in each data set, versus both the ratios and differences
between spot intensities and background intensities (minimum
over the two spots in a pair) showed that the highest absolute
deviations were found when the ratios or differences were low
(Fig. 2).

Local assessment of repeatedly spotted clones

When investigating data quality locally on each array, we
found considerable variation in repeatability across arrays
within each data set (Table 4). This was also evident when
investigating deviations of intra-clone spot pairs on each
array. From Table 4, it is clear that the often-used ®ltering
criterion of removing spots where the SB ratio was <1.4
provided a considerable improvement in repeatability com-
pared with no ®ltering. However, the variation in repeatability
between different data sets indicates that this common
criterion was not equally appropriate for all experimental
setups. In particular, the results suggested that the 1.4 criterion
was far too low for the DNR data set, where only 0.06% of the
spots not ¯agged would be ®ltered. The variation within data
sets further indicates that there were varying levels of noise in
different arrays from the same data setÐmotivating slide-
individual adaptation of the ®ltering criterion.

Adaptive ®ltering with control of data quality

Visual inspection of plots of the intra-clone spot-pair
deviations versus the (minimum over the two spots in the
pair) spot intensities may suggest sensible thresholds for the
minimum spot intensity required for the repeatability to be
acceptable (Fig. 2). However, we preferred to use the
repeatability statistics to computationally determine the
threshold (see Materials and Methods). By this method we
found ®ltering thresholds for the spot intensity relative to the
background intensity, both when comparing by ratios and by
differences.

Enforcing a common level of data quality resulted in a
highly varying level of ®ltering between the different arrays
and data sets (Table 5). This was seen most directly in the
number of data points ®ltered as not meeting the array-speci®c
criterion. Given the repeatability statistics calculated from the
1.4 times background criterion, it was expected that the
®ltering thresholds for the SB ratio would generally be >1.4,
except in the case of the Lymphoma data set. The array-
speci®c thresholds found varied highly but are not as
straightforward to compare across data sets. Illustrations of
the variation in repeatability coef®cient for different possible
®ltering values are shown in Figure 3.

DISCUSSION

Information from repeatedly spotted clones is a valuable
resource for data quality evaluation and control. An under-
lying line of thought is that several observations of the same
quantity, under similar conditions, should be similar, and are
more reliable than a single observation. Otherwise the
observations contain pertinent information about the quality
of the data. This is one of the rationales behind experiment
replication (12,13). Replication goes some way in improving
microarray data quality, but it may be objected that it is a not
very cost-effective procedure and that the distribution of noise
is far from random, frequently rendering the same observa-
tions problematic across replications. In comparison to
experiment (array) replication, the experimental conditions
relating to sample preparation, hybridization and scanning are
much more similar for two spots on the same array. We

Figure 1. Plot showing the proportion of observations inside ®xed-width
intervals of intra-clone spot-pair deviations for the data sets mopo (circles),
mopo-clin (diamonds), lymphoma (triangles), nci60 (squares), prostate
(asterisks) and dnr (plus symbols). The deviations are based on log base 2
ratios and are calculated from all spots that had not been ¯agged and con-
tained positive background-corrected spot intensities in both channels. The
plot summarizes the information from separate histograms for each data set.
The values on the vertical axis give the proportion of the data sets (range
0±1) present in the interval, and the values on the horizontal axis are the
midpoints of the intervals. The intervals are 0±0.5, 0.5±1, ¼, 9.5±10.
Values equal to the lower limit of each interval are included. Values equal
to the upper limit of each interval are not included.
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consider experiment replication as a necessary strategy for
assessing reproducibility that is complementary to internal
duplication of spots. Moreover, we argue that reproducibility
across identical arrays can be evaluated within our framework
of repeatability of repeatedly spotted clones.

Internal duplication of spots has been applied in order to
obtain more reliable estimates of expression ratios. Tseng et al.
(14) used repeatedly spotted genes to remove all observations
of each poor quality gene from the data. For each repeatedly
spotted gene, they calculated the mean and standard deviation
of the observed ratios of the gene (in their presentation each
gene was spotted four times). A quality index for each gene
was de®ned as the calculated standard deviation divided by the
calculated mean of the ratios. Genes with a large value of the
quality index were removed from the data. A cut-off value was
de®ned dependent on the mean average signal in both
channels. For each gene they found the 50 genes whose
mean intensity (average of signal in both channels) were
closest to the mean intensity of the selected gene. For all 50
genes the quality index was calculated and the cut-off value
was de®ned as the 90th percentile of these quality indices (i.e.
10% of the quality indices are larger than the cut-off value).
This strategy bears resemblance to ours in that both consider
the variability of repeatedly spotted clones, but they differ in
the following aspects. Tseng et al. (14) calculate the variabil-
ity for each repeatedly spotted gene, requiring a larger number
of multiple spots than our strategy, where the variability is
calculated from all repeatedly spotted genes together. Further,
their strategy for removal of spots requires removal of all spots
from selected bad quality genes, and cannot be applied to
genes that are not repeatedly spotted.

A necessary prerequisite to apply our method is that the
number of repeated spots present on the arrays is suf®cient for
robust data analysis to be performed. As illustrated by the data
sets used in this study, repeatedly spotted clones are common
in array designs. In this case, elimination of multiples is less
cost effective than retaining copies. Figure 1 shows that there
is a clear relationship between intraclone spot-pair deviation
and signal intensities, permitting our analytical approach.
However, these values are based on probes naturally spotted in
repeats when plates with PCR products from different cDNA
libraries are printed on the same array. Indeed, there are
signi®cant contributions to variation, notably PCR product
and pin variation, that are not accounted for in this analysis;
this information was not available with the data sets analyzed.
Thus, the variance of repeatedly spotted clones with the data
sets used most likely represents an overestimation, and
®ltering criteria may need to be relaxed to counter this effect.
To eliminate this problem, slides should be deliberately
designed to include a subset of clones with repeatedly spotted

clones from identical PCR products and with identical pins.
We think that slides including such repeated spots would
provide a very useful tool for many aspects of quality control
and comparison. With respect to serving as a foundation for
intensity-based ®ltering strategies, the set of repeatedly
spotted probe sequences should include probes whose target
mRNAs have a wide range of abundance. The approach can be
generalized to encompass other sets of repeatedly spotted
probes that can be safely assumed to give identical measure-
ments. For instance, if one makes the (perhaps rather strong)
assumption that distinct probes from the same gene should
give the same measurement, it would be possible to use all
spots representing the same gene. The optimal spot design
remains to be decided, such as the optimal number of repeats
per probe, the positioning of repeated spots, and the distribu-
tion of expected abundances across a wide range of mRNA
samples. There is clearly a trade-off between increasing the
number of copies per clone and the desire to measure as many
genes as possible. However, we argue that internal duplication
of spots is a viable approach to microarray data quality control
that represents little added cost compared with other strat-
egies.

Analysis of repeatability using repeatedly spotted probes
gives a very direct estimate of data quality. In our study, we
observed what appeared to be systematic differences in quality
between different experimental setups. This may be a
re¯ection of a number of technical issues inherent to the
technology, such as de®ning optimal RNA extraction proced-
ures, labeling and hybridization techniques, as well as
printing, scanning and data handling variations. In order for

Figure 2. (Opposite) Spot-pair differences versus quality index. For each distinct pair of spots containing the same clone, the difference of log base 2
transformed gene expression ratio in the two spots was calculated. A quality index was calculated for each spot and the minimum over two spots in a pair
was used to represent the pair. The plots show all pair differences versus (minimum) quality pooled over all arrays from each data set. For the ScanAlyze
data sets mopo (A), mopo-clin (B), lymphoma (C) and NCI60 (D) we show the differences plotted versus the SB ratio calculated from channel 1 for each
spot. For the prostate (E) data set, the spot quality index was provided by the authors. For the DNR (F) data set we show the differences plotted versus the
SB difference calculated from channel 1 for each spot. Data for channel 2 are not shown, as the data are comparable with the respective channel 1 plots. Note
that the x-axes are not on the same scale. The horizontal dashed lines are at ±1 and 1, showing the limits for 2-fold difference in expression ratios between
two spots in the same pair. The vertical lines are placed at the x-value which would result in 95% of the differences lying between ±1 and 1 if used as a
®ltering criterion (by removing all data points to the left). Note that the NCI60 dataset had very few repeatedly spotted clones and that the quality index
provided with the Prostate dataset only had discrete values with steps of 0.1 in the range 0±1.

Table 4. Repeatability statistics, Ãs, as calculated for arrays over repeatedly
spotted clones

All applicable Standard ®ltering

Mopo 0.674 (0.145) 0.548 (0.087)
Mopo-clin 0.885 (0.133) 0.504 (0.127)
Lymphoma 0.569 (0.120) 0.320 (0.058)
NCI60 0.974 (0.642) 0.632 (0.496)
Prostate 0.621 (0.217) NA
DNR 1.131 (0.335) 0.917 (0.113)

The numbers are average values of the estimated standard deviations in the
ANOVA model, as averaged within each data set across all array slides in
that data set. The corresponding number in parentheses shows the standard
error, as calculated from all array slides in the corresponding data set. The
`All applicable' column shows data as calculated from all data points with
spot above background and not technically ¯agged. In the `Standard
®ltering' column, data shown are as calculated from all data points where
SB ratio >1.4. As in Table 3, the repeatability coef®cient can be found by
multiplying by 2.83. NA, data not available.
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microarrays to be widely accepted in clinical and diagnostic
use, having high requirements to the precision and reliability
of measurements, it appears that time is well spent optimizing
technical parameters to maximize the amount of biologically
relevant information.

When interpreting the results from this study, it is important
to keep in mind that the different data sets had highly differing
numbers of spots with at least one other copy; ranging from
6759 in the Lymphoma data set to 198 in the Mopo-clin data
set, disregarding the NCI data set. Although the 99 clones
spotted twice in the Mopo-clin data are likely to be suf®cient
to obtain a description of data quality, it could be argued that
this may not be a suf®ciently high number to serve as a
foundation for ®ltering. For instance, in the Mopo-clin data set
we identi®ed a handful of repeatedly spotted clones that
consistently had poor repeatability (data not shown); a similar
and partly overlapping set of consistently poorly repeatable
clones was identi®ed in the Mopo data set. Clearly, such clones
will systematically bias the ®ltering procedure and result in
overestimated values for the ®ltering thresholds. When clones
that consistently are poorly measured can be identi®ed, the
®ltering procedure should be carried out after an initial step of
removing the corresponding spots from the data set.

Several issues remain to be resolved with respect to
microarray data ®ltering. One of the most central questions
is how to determine the best discriminating `quality-criterion'
to use. This subject has not been resolved in this report.
Several criteria other than the ones investigated in this report
can be de®ned (10,15). Wang et al. (10) de®ned a composite
quality score for each spot by multiplying quality scores of
spot size, spot signal-to-noise ratio, local background vari-
ability and spot saturation. To use the composite quality score
for ®ltering, a cut-off value must be set. Wang et al. (10)
instruct the reader to set a cut-off value (values of 0.3, 0.5 and
0.85 are mentioned in the text). Our repeatability coef®cient
can be used to set array-dependent cut-offs for this composite
quality score.

However, based on a statistically sound method for
measuring data quality, ®ltering criteria can be evaluated by
their ability to separate high quality measurements from poor
quality measurements. In this respect, repeatability of meas-
urements from repeatedly spotted clones should provide a
sound framework for evaluating ®ltering criteria.

With any ®ltering procedure there is a trade-off between
optimizing measurement reliability and avoiding loss of

information. This should also be kept in mind when adapting
a ®ltering criterion to ensure a given level of repeatability. For
some studies, for instance if it is known that the mRNA
sample(s) are of uncertain quality and when the duplicate
observations of the same clone are based on different PCR
products (and are thus not identical replicates), the cut-off
value of s0 = 0.43 used in this study may be too strict and it
may be more reasonable to relax these parameters and accept
the risk of including more noisy data. We have chosen a cut-
off value of s0 = 0.43 to be used for all microarrays, assuming
that repeated clones differing more than 2-fold in ratio are
undesirable regardless of the dynamic range of the log ratios
on the microarray. We are investigating a repeatability
measure that, in addition to the variability within clones
(intraclone variability), also includes the variability between
clones.

A possible further use of our method is to evaluate the
relative merits of various normalization and calibration
methods. Assuming that higher repeatability will be observed
with better estimates of log ratios, or any other estimate of
gene expression of interest, this approach can be used to
compare and optimize various normalization and calibration
methods, as better repeatability would be expected with an
improved normalization procedure. Under similar assump-
tions, the framework can also be used to evaluate and optimize
other parts of the cDNA microarray pipeline, ranging from
methods for RNA extraction to various strategies for de®ning
the background intensity estimates.

The optimal validation of our method would be to
demonstrate biological signi®cance when using our ®ltering
procedure. Due to the absence of objective criteria, and the
required detailed biological knowledge of a given data set, this
falls outside the scope of the present paper. In any case, our
method provides a general strategy to obtain objective quality
measurements across slides and experiments, and to ensure
homogenous data quality by adjusting ®ltering criteria
adaptively.
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Table 5. Adaptive determination of threshold for spot intensity relative to background intensity

Number of spots applicable % remaining Threshold
ch1 ch2

Mopo 684 331 19.9 15.62 (13.60) 10.53 (12.98)
Mopo-clin 171 285 14.5 3.98 (3.07) 4.13 (3.52)
Lymphoma 1 119 833 70.2 1.83 (1.36) 1.30 (0.15)
DNR 29 836 66.4 113 (35.4) 335 (117.8)

The `Number of spots applicable' column shows the total number of spots applicable to ®ltering in each data
set. The `% remaining' column shows the percentage of applicable spots that met the array speci®c quality-
®ltering criteria. For the DNR data set we found the spot minus background difference to be more useful than
the SB ratio as a `quality-index' to use for ®ltering. For the other data sets, data shown are for ®ltering based
on the SB ratio. The `Threshold' columns show the averages and the standard errors, in parentheses, of the
array-speci®c ®ltering thresholds found for each data set and each channel.
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