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Sheila Stewart,2 Irvin S. Y. Chen,2 Steven Threlkeld,3 and Bruce D. Walker3

Division of Infectious Diseases1 and AIDS Institute,2 UCLA Medical Center, Los Angeles, California 90095; Partners AIDS
Research Center and Infectious Disease Unit, Massachusetts General Hospital-East, Charlestown,

Massachusetts 021293; and Dana Farber Cancer Institute, Boston, Massachusetts 021154

Received 30 August 2001/Accepted 13 November 2001

Although Nef has been proposed to effect the escape of human immunodeficiency virus type 1 (HIV-1) from
cytotoxic T lymphocytes (CTL) through downmodulation of major histocompatibility complex class I mole-
cules, little direct data have been presented previously to support this hypothesis. By comparing nef-competent
and nef-deleted HIV-1 strains in an in vitro coculture system, we demonstrate that the presence of this viral
accessory gene leads to impairment of the ability of HIV-1-specific CTL clones to suppress viral replication.
Furthermore, inhibition by genetically modified CTL that do not require major histocompatibility complex
class I-presented antigen (expressing the CD4 T-cell receptor [TCR] �-chain hybrid receptor) is similar for
both nef-competent and -deleted strains, indicating that Nef does not impair the effector functions of CTL but
acts at the level of TCR triggering. In contrast, we note that another accessory gene, vpr, does not induce
resistance of HIV-1 to suppression by CTL clones. We conclude that Nef (and not Vpr) contributes to
functional HIV-1 immune evasion and that this effect is mediated by diminished antigen presentation to CTL.

Major histocompatibility complex class I (MHC-I)-restricted
CD8� cytotoxic T lymphocytes (CTL) have emerged as an
important arm of immunity in human immunodeficiency virus
type 1 (HIV-1) infection (reviewed in reference 68). Increasing
evidence suggests that HIV-1-specific CTL are involved in the
control of viremia in acute (7, 33) and chronic (41) infections,
long-term nonprogressing infection (24, 47), and perhaps pre-
vention of infection in some highly exposed yet uninfected
individuals (34, 50). Other studies have documented the potent
antiviral effects of CTL in lysing infected cells (65) and sup-
pressing viral replication in vitro (66). Although these data
suggest that CTL play an important role in antiviral immunity,
it is not clear why they fail to clear HIV-1 in vivo and what
mechanisms HIV-1 may employ to escape from this immunity
(5).

The HIV-1 accessory gene nef was originally thought to be a
negative effector of viral transcription (36, 59). Subsequent
studies showed this to be a misnomer and identified multiple
roles that the Nef protein may play in infected cells. Down-
regulation of cell surface CD4 has been the most clearly doc-
umented function, and this occurs through direct bridging of
the cytoplasmic tail of CD4 to an adapter protein which targets
it for endocytosis and degradation in lysosomes (2, 3). Other
less clearly described effects of Nef are the enhancement of
virion infectivity (8, 38, 57) and modulation of cellular activa-
tion (4, 6, 15, 23, 51, 54, 56). Finally, downregulation of major
histocompatibility complex class I (MHC-I) molecules has
been reported as a potentially important function of Nef that
may allow for escape from cellular immunity (10, 55). Nef is

presumed to interact indirectly with the cytoplasmic tail of
MHC-I A and B (but not C) molecules, leading to endocytosis
(9). Although the roles of MHC downregulation and other
functions of Nef remain unclear, its importance in the devel-
opment of AIDS in simian immunodeficiency virus (SIV)-in-
fected monkeys (32) and clinically attenuated disease in a
patient cohort infected with nef-defective HIV-1 (40) demon-
strate its key importance in the immunopathogenesis of HIV-1
infection.

The functional significance of MHC-I downregulation by
Nef leading to escape from cellular immunity has been some-
what controversial. To our knowledge, only one published
study has evaluated the effects of Nef on the interaction of
HIV-1-infected cells with CTL (10). Using HIV-1 reporter
viruses and flow cytometric analysis, Collins et al. showed that
CD4� cells acutely infected with nef-deleted virus disappear
after exposure to CTL in vitro, in contrast to nef-competent
HIV-1-infected cells, which are cleared less efficiently. A ca-
veat to this finding, however, was the late time at which sus-
ceptibility to cytolysis of the acutely infected cells was assessed
(approximately 2 to 5 days after infection). Given the estima-
tion that the entire replicative cycle of HIV-1 requires only
about 2 days in vivo (27, 62), measurement of cytolysis of cells
exposed to CTL late after infection (more than 2 days) might
not be relevant to the interaction between CTL and infected
cells. Depending on the kinetics of Nef-mediated resistance to
CTL (presumably through MHC downregulation), CTL could
clear infected cells before the effects observed by Collins et al.
at the late time points of their assay.

Vpr is another accessory protein whose immunopathogenic
impact and functions have become increasingly clear. The abil-
ity of Vpr to mediate nuclear import of the preintegration
complex in growth-arrested cells (26) and induce cell cycle
arrest (25, 31, 46, 49) have been well documented. Like Nef,
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Vpr is not required for viral replication in most culture systems
in vitro. Conservation of Vpr in vivo, however, suggests impor-
tant function(s) of this gene in the pathogenesis of HIV-1
infection (58). A candidate for an important in vivo role would
be evasion of cellular immune responses, particularly antiviral
CTL.

In previous studies, we have developed assays to measure
the antiviral activities of CTL, as opposed to standard methods
measuring lysis or cytokine release in response to target cells
infected with recombinant vaccinia or labeled with synthetic
peptides (68). We found that HIV-1-specific CTL clones exert
potent antiviral effects on T cells acutely infected with HIV-1
(66, 67). Notably, however, these studies almost exclusively
utilized the polyclonal HIV-1 strain IIIB, a long-term passaged
laboratory isolate of virus containing multiple clones noted to
be defective in accessory gene reading frames, including nef
(39). Our earlier work therefore examined the function of CTL
in the absence of Nef and other accessory proteins.

In this study, we examine the roles of Nef and Vpr in the
functional antiviral activity of HIV-1-specific CTL clones. Us-
ing the in vitro coculture assay we previously developed (66),
we show that the antiviral effect of CTL is markedly diminished
by the presence of nef in the infecting virus. Furthermore, this
phenomenon is not explained by impaired susceptibility of
HIV-1-infected cells to the effector functions of CTL, suggest-
ing that escape is due to diminished recognition by CTL. In
contrast to nef, vpr does not interfere with the antiviral func-
tion of CTL.

MATERIALS AND METHODS

Virus. The experiments with Nef utilized HIV-1 strains NL4-3 (1) and NL4-
3�Nef (21), which were kindly provided by R. Desrosiers. Experiments with Vpr
utilized NL4-3 constructs from I. S. Y. Chen (NL4-3 Thy and NL4-3 Thy-X [31])
and HXB2 constructs from H. G. Gottlinger (HXBH10 [22] and HXBH10/R�
[14]) which are all additionally nef defective. HIV-1 IIIB was originally obtained
from the laboratory of Robert Gallo. Low-passage virus stocks were produced by
expansion in H9 cells, harvested, and frozen in aliquots at �80°C until use. Viral
titer was determined by endpoint dilution with C8166 indicator cells as previously
described (30).

Target cells. (i) Immortalized HIV-1 permissive cell lines. T1 (53), T2 (52), H9
(43), and H9-B14 (H9 cells stably transfected with class I HLA B14 cDNA [65])
cells were maintained in RPMI 1640 (Sigma, St. Louis, Mo.) supplemented with
20% heat-inactivated fetal calf serum (Sigma), 10 mM HEPES, 2 mM glutamine,
100 U of penicillin/ml, and 10 �g of streptomycin (R20)/ml.

(ii) CD4-positive cell line from HIV-1-seronegative individual. Polyclonal
CD4� cells (greater than 98% CD3- and CD4-expressing by fluorescence-acti-
vated cell sorting; data not shown) were generated from Ficoll gradient-purified
peripheral blood mononuclear cells (PBMC) using a CD3- and CD8-bispecific
monoclonal antibody as previously described (66). These cells were grown in
RPMI 1640 containing 10% heat-inactivated fetal calf serum, 10 mM HEPES,
2 mM glutamine, 100 U of penicillin/ml, 10 �g of streptomycin/ml, and 50 U of
interleukin-2 (IL-2) (R10-50)/ml and infected 5 to 7 days after stimulation with
the bispecific antibody. MHC haplotyping of the donor was performed by the
tissue typing laboratory at Massachusetts General Hospital, Boston, Mass.

Effector cells. (i) CTL clones from HIV-1 infected individuals. HIV-1-specific
CTL clones were obtained by the cloning of stimulated PBMC at limiting dilu-
tion and characterized for specificity and MHC restriction as previously de-
scribed (61). The MHC A2-restricted CTL clones were 18030D23 specific for a
Gag p17 epitope (amino acids [aa] 77 to 85 [SLYNTVATL]) and 68A62 specific
for a reverse transcriptase epitope (aa 476 to 484 [ILKEPVHGV]). The MHC
B14-restricted clone 15160D75 recognized an envelope gp41 epitope (aa 584 to
592 [ERYLKDQQL]). The MHC B60-restricted clone 161JD27 recognized a
Gag epitope (aa 92 to 101 [IEIKDTKEAL]). Amino acids are numbered accord-
ing to the HXB2 sequence. All CTL clones were maintained in R10-50 and
restimulated at least 10 days prior to usage with irradiated allogeneic PBMC and
the anti-CD3 monoclonal antibody 12F6 (64) or phytohemagglutinin.

(ii) Universal receptor CD8� T cells. A clonal cell line of T3F3, a CD8� cell
line from an HIV-1-seronegative donor which bears a hybrid receptor consisting
of the external domain of human CD4 and the transmembrane and signaling
domains of the T-cell receptor (TCR) �-chain (48, 67), was maintained in the
same manner as the HIV-1-specific CTL clones above. A control cell line not
transduced with the CD4-� hybrid receptor, T3 (48, 67), was also used.

Inhibition assays. Inhibition of viral replication was assessed in a previously
established assay system (66). Target cells were infected with the indicated strain
of HIV-1 at a multiplicity of infection of 0.01 (0.01 50% tissue culture infective
doses [TCID50s] per cell) for 4 h at 37°C, washed twice, and plated at 5 � 105

cells per well in a 24-well plate. To assess inhibition by CTL, effector cells then
were added at a ratio of 0.25:1 (unless otherwise indicated) in R10-50. At 2- to
4-day intervals, the cocultures were fed by removing and replacing one-half of the
culture supernatant with fresh medium. The removed supernatant was cryopre-
served for later p24 antigen quantitation by a standard quantitative enzyme-
linked immunosorbent assay (ELISA) (commercial kit; Dupont, Boston, Mass.).

RESULTS

Inhibition of HIV-1 replication by cytotoxic T lymphocytes is
antigen dependent. We have previously demonstrated the po-
tent antiviral activity of HIV-1-specific, MHC-I-restricted CTL
clones (66). We showed that this activity is MHC restricted,
consistent with TCR-mediated triggering of CTL to recognize
infected cells. To define further the role of antigen presenta-
tion in viral suppression by CTL, we tested the antiviral activity
of CTL clones against HIV-1 replicating in T1 versus T2 cells
in our coculture system (Fig. 1A and B). T1 cells (53) are a
lymphoblastoid cell line that is permissive for T-tropic HIV-1
replication, and T2 cells are a derivative of T1 cells deficient in
transporter associated with processing complex (TAP) and
therefore are unable to transport antigens through the class I
pathway (52) for presentation and recognition by CTL. MHC-
matched clones inhibited viral replication in T1 cells, as pre-
viously reported (66). In T2 cells, however, viral suppression
was ablated. In three experiments with five different CTL
clones (restricted by HLA A2 and B60 found on T1 cells),
inhibition (at approximately day 7; mean � standard deviation
[SD]) was 2.8 � 1.5 log10 units for T1 and 0.1 � 0.2 for T2 cells
(P � 0.0014). Although properties of T2 cells other than TAP
deletion could account for these differences, these results
strongly suggested a pivotal requirement for MHC-I/antigen
presentation in triggering the antiviral activity of CTL in this in
vitro culture system.

Nef reduces the susceptibility of HIV-1 to inhibition by CTL.
Nef has been reported to downregulate the expression of
MHC-I molecules (9, 10, 55), and cells infected with HIV-1
containing competent nef have been shown to be relatively
resistant to cytolysis by CTL in comparison to those without
(10). To correlate these observations to the antiviral function
of CTL, we compared the susceptibility of HIV-1 with or with-
out intact nef to suppression by CTL clones. Viral replication
in target cells infected with HIV-1 containing intact nef
(NL4-3) was markedly less suppressed than in cells infected
with deleted nef (NL4-3�Nef) (Fig. 1C and D). Both MHC A2-
and B14-restricted clones exhibited this effect, in MHC-
matched T1 and H9-B14 target cells, respectively (B14 data
not shown). In eight experiments using five different CTL
clones, inhibition (at approximately day 7; mean � SD) was
0.6 � 0.7 log10 units for NL4-3 and 2.7 � 0.8 log10 units for
NL4-3�Nef (P 	 0.00001). This phenomenon was also seen
using primary CD4� T lymphocytes as target cells (Fig. 1E and
F). In three experiments using three different CTL clones,
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mean inhibition was 0.2 � 0.2 log10 units for NL4-3 and 2.1 �
0.8 log10 units for NL4-3�Nef (P � 0.0040). The differential
susceptibility of these viruses was furthermore observed over
multiple effector-to-target cell ratios (Fig. 2A). Nef therefore
appeared to confer relative resistance against the antiviral ac-
tivity of HIV-1-specific CTL.

Nef does not diminish susceptibility of infected cells to post-
TCR signaling effector functions of CTL. The protective effect
of Nef demonstrated by the above studies might occur either
through altered triggering of CTL or a change in the suscep-
tibility of infected cells to the effector functions of CTL. To
distinguish between these two possibilities, we utilized an
HIV-1 gp120-specific, antigen-processing-independent cell line
(T3F3). This CD8� T cell line has been transduced with a

CD4-TCR �-chain hybrid molecule, which renders it virus spe-
cific through the direct interaction of the hybrid receptor with
gp120 on the surface of infected cells, bypassing the need for
antigen processing (48). We previously demonstrated that this
cell line has antiviral activity similar to that of HIV-1-specific
CTL clones from infected individuals, but acts without MHC
restriction (67). These cells were efficient inhibitors of both
wild-type and nef-deleted virus, in contrast to processed-anti-
gen-dependent CTL clones (Fig. 2B and C). Although viral
suppression by MHC-I-restricted CTL was blunted in Nef-
expressing compared with nef-deleted virus, T3F3 was a potent
suppressor of viral replication of both, suggesting Nef does not
render cells resistant to CTL effects once the TCR is triggered.
T3F3 also inhibited HIV-1 efficiently in T2 cells, in contrast to
naturally derived CTL clones (data not shown). Because we
have previously demonstrated that CTL act through cytolytic
and noncytolytic mechanisms of viral inhibition (66), we also
tested these viruses for suppression by supernatant from an
activated CTL clone, and we found that nef-expressing CTL
remained sensitive to soluble factors released by CTL (data not
shown). Thus, Nef did not appear to act by antagonizing the
effector functions of CTL.

Viral protein R (Vpr) does not interfere with antiviral func-
tion of CTL. Another HIV-1 accessory gene which has been
suggested to contribute to the pathogenesis of infection is viral
protein R (vpr), whose functions include cellular changes that
could hypothetically impair CTL lysis of infected cells. We
therefore tested whether Vpr might affect CTL antiviral infec-
tion in the same coculture system using nef-deleted viruses (to
allow adequate and consistent measurement of inhibition) dis-
cordant for vpr. In contrast to Nef, Vpr did not impair the
ability of CTL to suppress viral replication (Fig. 3). In five
separate experiments comparing vpr-competent and -deleted
viruses (two utilizing NL4-3 Thy and NL4-3 Thy-X [31] and
three utilizing HXBH10 [22] and HXBH10/R� [14]), inhibi-
tion (mean � SD) was 2.6 � 0.6 log10 units for vpr� HIV-1 and
2.3 � 0.5 log10 units for vpr� HIV-1. Thus, there was no de-
tectable effect of Vpr on the antiviral activity of CTL, in con-
trast to what was observed for Nef.

DISCUSSION

Despite its relatively small genome, HIV-1 contains numer-
ous accessory genes (11, 19, 60). Although most retroviruses
require only the three structural proteins Gag, Pol, and Env,
HIV-1 contains genes for at least six additional proteins which
are usually conserved in vivo. Of these, two are clearly required
for viral replication: the LTR transactivator Tat (12) and the
viral RNA nuclear export factor Rev (42). The others, how-
ever, are nonessential for viral growth in many in vitro culture
systems, suggesting that their functions are specialized for viral
persistence in vivo (11). The effects and roles of these proteins
remain to be fully elucidated, but evasion of host immune
responses is one intriguing possibility.

CD8� CTL require processed antigen presented on MHC-I
(reviewed in reference 18). Recognition of the antigen/MHC
complex by the CTL TCR then triggers the antiviral activities
of CTL through cytolytic and noncytolytic pathways (66).
Any interference with antigen presentation on MHC-I might
therefore impede the activity of CTL against infected cells.

FIG. 1. Interference with antiviral activity of HIV-1-specific CTL
by TAP deletion and HIV-1 Nef. The ability of HIV-1-specific CTL
clones to suppress HIV-1 replication in acutely infected cells was
compared for normal versus TAP-deleted cells (A versus B), Nef-
deleted versus wild-type Nef HIV-1 in immortalized CD4� lympho-
cytes (C versus D), and Nef-deleted versus wild-type Nef HIV-1 in
primary CD4� lymphocytes (E versus F). After acute infection of the
cells, CTL were added in coculture and viral replication was assessed
at the indicated time points by quantitative p24 antigen ELISA. The
CTL clones utilized were 68A62 (RT CTL [A, B, E, and F]), 161JD27
(Gag CTL [A and B]), and 18030D23 (Gag CTL [C, D, E, and F]).
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Prompted by the hypothesis that Nef might thus interfere with
CTL function, one study has examined the effect of Nef on the
ability of CTL to lyse acutely HIV-1-infected cells. Collins et
al. devised an assay using HIV-1 with a reporter green fluo-
rescent protein where MHC-matched CTL clones were added
to PBMC acutely infected with nef-competent or -deleted vi-
rus, and clearance of infected cells was then assessed by flow
cytometry for green fluorescent protein-expressing cells (10).
Cells infected with nef mutant virus were found to express
normal levels of MHC-I and to be cleared by CTL, whereas
cells infected with nef� virus were found to have decreased
MHC-I and persistence in the presence of CTL. A potential
caveat to this finding, however, was the fact that clearance was
measured by adding CTL at 2 to 5 days after infection. Because
the viral life cycle is approximately 2 days in vivo (27, 62), and
CTL can recognize infected cells early in this cycle (65), Nef
might have little effect on CTL function in vivo if its action on
MHC-I were late.

The present study examines the influence of viral accessory
proteins on the ability of CTL to inhibit viral replication, a
more functional assay. Although we have previously found that
HIV-1 is well suppressed (66) by CTL, these studies utilized
the polyclonal strain IIIB, which contains multiple clones with
defective nef reading frames (39). Controlling for functional
nef, here we find that whereas nef-deleted virus is potently
suppressed by CTL, wild-type virus is clearly less subject to
suppression. This confirms and expands the findings of Collins
et al. (10) by providing a functional correlate to their results,
demonstrating that CTL suppress viral production by acutely
infected cells. Furthermore, we show that this phenomenon is

not mediated by resistance to the effector functions of CTL
post-triggering; CTL triggered independently of processed an-
tigen (T3F3 CD4-� universal receptor cells) retain the capacity
to suppress viral replication efficiently. This is indicative that
Nef interferes with the action of CTL by preventing triggering
via recognition of antigen on infected cells.

In contrast, another accessory gene, vpr, has no apparent
impact on the antiviral activity of CTL. Similarly to Nef, Vpr is
not required for HIV-1 replication in most in vitro culture
systems, although its conservation in vivo suggests an impor-
tant role(s) in the pathogenesis of infection (58). It has been

FIG. 3. Lack of effect of Vpr on antiviral activity of CTL. T1 cells
were infected with nef-deleted HIV-1 containing or lacking vpr and
cocultured with the CTL clone 68A62 (RT CTL) as described above.

FIG. 2. Maintenance of Nef effect over various concentrations of CTL but loss of Nef effect with use of genetically engineered class I
antigen-independent CTL. T1 cells were acutely infected with NL4-3�Nef or NL4-3 and cocultured with various ratios of a CTL clone (A) or either
CTL clones or chimeric receptor T cells that directly bind cell surface gp120 (B). Viral replication was assessed at the indicated time points by
quantitative p24 antigen ELISA (day 7 data are shown in panel A). The CTL clones utilized were 18030D23 (Gag CTL [all panels]) and 68A62
(RT CTL [B and C]). The chimeric immune receptor-transduced cells (CD4-� receptor transduced) were T3F3, with the nontransduced control
T3 (B and C).
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hypothesized to improve the efficiency of viral replication in
the host through cell cycle arrest (25, 31, 46, 49). We find that
it does not directly alter the susceptibility of infected cells to
the action of CTL in our coculture system, suggesting that in
vivo selection for vpr function is due to other factors besides
CTL pressure.

The action of Nef may contribute to explaining the paradox-
ical ineffectiveness of CTL at clearing HIV-1 infection in vivo
(5). Despite the high levels of activated virus-specific CTL in
many infected individuals, the virus persists and ultimately
causes progressive disease in the vast majority of persons.
Furthermore, studies evaluating for CTL epitope escape mu-
tation have often yielded no evidence for selective pressure by
CTL in vivo. Nef-mediated impaired recognition of infected
cells could contribute to persistence of infection in the face of
a vigorous CTL response, as well as partial shielding of HIV-1
from immune pressure.

Deletion of nef has been shown to attenuate infection of
macaques by SIV, suggesting a key role in the immunopatho-
genesis of infection (13). Macaques immunized with nef-de-
leted SIV exhibit low level but persistent infection, with im-
munity to subsequent challenge by wild-type SIV, suggesting
enhanced immunogenicity. Further indirect evidence is a co-
hort of patients all infected by blood transfusion from a single
donor who was infected with a nef-defective HIV-1. These
patients, including the donor, have exhibited a significantly
attenuated disease course, with detectable cellular prolifera-
tive responses to viral proteins (16) and vigorous HIV-1-spe-
cific CTL responses (17).

The influence of nef on the immunogenicity and pathoge-
nicity of HIV-1 infection suggests that this gene could be a
target for enhancing cellular immunity in chronically infected
individuals or the design of preventative vaccines. Antagoniz-
ing the function of Nef pharmacologically could be a means of
increasing the efficiency of protective CTL responses. Because
the Nef protein is expressed early in the viral life cycle (45), it
is unclear whether Nef-specific CTL could be more effective
than other CTL, by recognizing infected cells earlier and be-
fore the onset of Nef-mediated effects. Another strategy could
be to produce or enhance MHC-I C-restricted CTL responses.
Such CTL specificity is uncommon but has been reported (20,
28, 29, 35, 37, 44, 63). Nef selectively downregulates MHC A
and B, but not C molecules, by virtue of specific binding to the
intracytoplasmic domains of A and B but not C (9). Alterna-
tively, strategies to develop CTL responses independent of
antigen presentation, such as T-cell transduction with the
CD4-� TCR construct (48), could bypass its effect (as shown in
Fig. 2). Further studies of the effects of Nef on CTL function
may yield insight into future immunotherapeutic options.
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