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In 1949 Hodgkin & Katz showed that the amplitude and rate of rise of
the action potential of squid nerve vary with the extracellular sodium
concentration in a way which suggested that the rising phase of the nerve
impulse is produced by a large and specific increase in the permeability of
the membrane to sodium ions. Since the sodium equilibrium potential is
normally opposite in sign to that of potassium, this hypothesis readily
accounted for the reversal of the membrane potential which had already
been observed (Hodgkin & Huxley, 1939, 1945; Curtis & Cole, 1940, 1942).
Using the voltage-clamp technique, Hodgkin & Huxley (1952a, b, c, d)

separated the membrane current into sodium and potassium components
and formulated equations describing the way in which these currents vary
with membrane potential and time. They showed that, when combined
with the equations of cable theory, their equations could accurately
reproduce many of the electrical properties of squid nerve including the
shape and size of the action potential, impedance changes, velocity of
conduction and the ionic exchanges. The range of phenomena to which
they have been shown to apply has since been greatly extended. The original
hand computations were confirmed by Cole, Antosiewicz & Rabinowitz
(1955) who first set the equations up on an electronic computer. Huxley
(1959 a) has applied the equations to the influence of temperature on the
propagated response and to the repetitive firing observed in low calcium
concentrations, using the experimental information obtained by Franken-
haeuser & Hodgkin (1957). The prolonged action potentials produced by
treating squid nerve with tetraethylammonium ions (Tasaki & Hagiwara,
1957) may be largely accounted for by greatly slowing the rise in potassium
permeability (Fitzhugh, 1960; George & Johnson, 1961) and the hyper-
polarizing responses obtained at high extracellular potassium concentra-
tions (Segal, 1958; Tasaki, 1959) may be described, at least qualitatively,
by introducing the appropriate change in the potassium equilibrium
potential (Moore, 1959; George & Johnson, 1961).
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The aim of the computations described in this paper is to test whether,
with certain modifications, Hodgkin & Huxley's formulation of the
properties of excitable membranes may also be used to describe the long-
lasting action and pace-maker potentials of the Purkinje fibres ofthe heart.
These fibres differ from squid nerve in that depolarization decreases the
potassium permeability of the membrane (Hutter & Noble, 1960; Car-
meliet, 1961). During large depolarizations part of this decrease appears
to be only transient and the potassium permeability slowly increases
during the passage of the depolarizing current (Hutter & Noble, 1960).
The equations describing the dependence of the potassium current on
potential and time have been modified to take account of this behaviour.
The sodium current equations, however, are very similar to those of
Hodgkin & Huxley and are in part based on Weidman's (1955) voltage-
clamp experiments. The solution to these equations closely resembles the
Purkinje fibre action and pace-maker potentials and it will be shown that
its behaviour in response to 'applied currents' and to changes in 'ionic
permeability' corresponds fairly well with that observed experimentally.

Preliminary reports of some of this work have already been published
(Noble, 1960a, b). The defect in the potassium current equations then
used has now been corrected and this change accounts for the small
quantitative differences between the conductance changes described in
this paper and previously.

DESCRIPTION OF THE MEMBRANE CURRENT IN PURKINJE FIBRES

The basic feature of Hodgkin & Huxley's (1952d) formulation of the
properties of excitable membranes is that the current is carried by ions
moving down their respective electrochemical potential gradients. The
sodium current, for example, changes direction when the sodium electro-
chemical potential gradient is reversed, by changing either the membrane
potential or the extracellular sodium concentration (Hodgkin & Huxley,
1952a). In cardiac muscle this point has not been directly tested, since
it has not yet proved possible to apply the voltage-clamp technique in its
original form. The possibility that current is also produced by an electro-
genic pump cannot therefore be entirely excluded. However, there is no
conclusive experimental evidence for this view and in this paper it will be
assumed that none of the membrane current is of direct metabolic origin.
On this view the current carried by an ion species depends only on the
magnitude of its electrochemical potential gradient and on the ease with
which the ions may cross the cell membrane.
Hodgkin & Huxley (1952a) showed that for squid nerve in sea water

the permeability of the membrane to Na and K ions is best described in
terms of the contributions which these ions make to the membrane

318 D. NOBLE



COMPUTED CARDIAC ACTION POTENTIALS
conductance. The individual ionic conductances are defined by the
equations

9Na = INa/(Em ENa) (1)

9 = IK/(Em EK), (2)
where gNa and 9E are the sodium and potassium conductances respectively
in mmho/cm2,
INa and IK are the ionic currents in ,uA/cm2,
ENa and EK are the equilibrium potentials in mV
and Em is the membrane potential in mV expressed as the inside potential
minus the outside potential.
In addition, a leak conductance was assumed which may be attributed,

at least in part, to chloride ions. It will be convenient in this paper to refer
to this as the anion conductance, 7An

9An = IA/(EmEAn), (3)

where IAn is the anion current and EAn the anion equilibrium potential.
Various values for YAn will be inserted in order to reproduce the effects of
anions of different permeabilities.

In Hodgkin & Huxley's equations the membrane potential (V) is measured with respect
to a 'zero' at the resting potential and has a sign such that the action potential is a negative
variation in V. The convention adopted here is different and conforms to that usually
adopted in experimental work with intracellular electrodes. The potential (Em) is the potential
of the inside with respect to the outside, the resting potential is a negative quantity and the
action potential is a positive variation. Positive currents are therefore outward and not
inward as in Hodgkin & Huxley's equations. In comparing the equations in this paper with
those of Hodgkin & Huxley the substitution Em = Er- V should be made, where Er is the
resting potential of squid nerve (about -55 mV).

The total membrane current (Im) is given by the sum of the ionic
currents and the current flowing into the membrane capacity

Im = Cm dt +INa+IK + IAn' (4)

where Cm is the membrane capacity and t is time in msec. Cm will be taken
to be 12pF/cm2 (Weidmann, 1952; Coraboeuf & Weidmann, 1954) which
is 12 times larger than in squid nerve. If an action potential is initiated
at all points along a fibre simultaneously, the membrane potential at each
instant will be uniform. The axial current will therefore be zero, so that,
in the absence of applied currents, the total membrane current will also
be zero. This type of response was called a 'membrane' action potential
by Hodgkin & Huxley and is given by equation (4) with Im = 0. In these
circumstances all the net ionic current is used in changing the charge on the
local membrane capacity, so that the rate of change of potential, dEm/dt,

21-2
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is proportional to the net ionic current. Inthe presentpaper onlymembrane
action potentials will be described and in comparing the results with
experimental records of propagated action potentials it is assumed that
the axial current, which must be very small during the slow phases of the
action potential, may be neglected.
The equivalent electrical circuit assumed for the Purkinje fibre mem-

brane is shown in Fig. 1. The only qualitative difference between this and
the circuit for squid nerve (Hodgkin & Huxley, 1952d) is that the potassium
current is assumed to flow through two non-linear resistances. The reason
for making this assumption is explained below.

Outside

1gNa gKi 9K2 | l

C Em

IC INaT ENa 'KI EK IAn1 EAn -

Inside
Fig. 1. Equivalent electrical circuit for Purkinje fibre membrane.

Explanation in text.

The potassium current
The equations which will be used to describe the potassium current are

based on Hutter & Noble's (1960) measurements of the current-voltage
relations of Purkinje fibres in sodium-deficient solutions. In contrast to
the situation in squid nerve, depolarization was found to decrease the
membrane conductance (Hutter & Noble, 1960; Carmeliet, 1961). A small
and slowly developed increase in conductance occurs when large de-
polarizing currents are used (Hutter & Noble, 1960) but this effect is not
large enough for the conductance of the depolarized membrane to exceed
the resting conductance.
The chloride conductance of normal resting cardiac muscle is very small

(Carmeliet, 1961; Hutter & Noble, 1961) so that the fall in conductance
on depolarization must be mainly, if not entirely, attributed to a fall in
g9. For the present purpose it will be assumed that all the current
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COMPUTED CARDIAC ACTION POTENTIALS

measured in sodium-deficient solutions is carried by potassium. So far as
the action potential mechanism is concerned this assumption wili not
matter greatly, since, over a large range of potentials, the potassium and
chloride currents flow in the same direction. It does, however, mean that
the potential dependent changes in gK given by the equations described
below are likely to be rather smaller than the true changes.
For the purpose of describing the potassium current mathematically, it

is convenient to suppose that K ions may move through two types of
channel in the membrane. In one the potassium conductance (gql) is
assumed to be an instantaneous function of the membrane potential and
falls when the membrane is depolarized. In the other type of channel the
conductance (gK,) slowly rises when the membrane is depolarized. These
channels are represented in the circuit diagram (Fig. 1) by two parallel
rectifiers, both of which are in series with the potassium battery. g], is
represented by a rectifier which passes inward current easily, while gg, is
represented by a rectifier which passes outward current easily. A purely
empirical equation will be used to describe gK,

yK, = 1-2 exp [(-Em-90)/50] + 0-015 exp [(Em + 90)/60]. (5)
Hutter & Noble's experiments do not provide any evidence for the assumption that gK is

an instantaneous function of Em, because the discharging of the membrane capacity took so
long (Cm is large and, when the membrane is depolarized, rm is also large) that it was not
possible to determine the changes occurring in g9 during the first 25-50 msec of the pulses,
but it seemed to be the simplest assumption to make in the absence of information obtained
under voltage-clamp conditions. It will be shown later, when the computed action potentials
are compared with experimental records, that this assumption may well be wrong and that
there may be a small delay in the changes in gjw1 following changes in Em.

The conductance of the other type of channel (g92) will be described by
Hodgkin & Huxley's potassium current equations (Hodgkin & Huxley,
1952d, equations (6), (7), (12) and (13)), with two main modifications. First,
the value of gK2 (the maximum value of gE,) will be made much smaller
than in nerve in order that the increase in qK, produced by depolarization
should not offset the decrease in gq. Secondly, the rate constants will be
divided by 100 in order to take account ofthe verymuch slower onset ofthis
effect in Purkinje fibres (Hutter & Noble, 1960). With these modifications
the equations become

gKE = 1-2n4, (6)

dn =Ocn(I_ n)- nn, (7)

0 0001(-Em-50)
n= exp [(-Em-50)/10]-1 (8)

n= 0-002exp[(-Em-90)/80]. (9)
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The absolute values of the conductances have been adjusted to give a
resting conductance (slope conductance at Em = -90 mV) of about
1 mmho/cm2 (Coraboeuf & Weidmann, 1954). The potassium equilibrium
potential will be set at - 100 mV so that the total potassium current is
given by

IK = (91+Y9K2)(EM+ 100). (10)

50 Instantaneous

pA/cm2
150 100 50 50 150

Out , - /

u ~~~~-504
IInI

-150-
Fig. 2. Current-voltage relations described by K equations. Ordinate, membrane
potential (mV); abscissa, K current in (uA/cm2). Interrupted curves show current-
voltage relations in the two types ofK channel, as described in text. The continuous
curve shows total steady-state current. The shape of this curve resembles that
recorded experimentally, and over the voltage range of the action potential fits the
curve obtained by Hutter & Noble (1960) reasonably closely when the experimental
curve is corrected for the cable properties of the fibre, as described by Cole &
Curtis (1941).

The current-voltage relations described by equations (5)-(10) are shown
in Fig. 2. The interrupted curve labelled 'instantaneous' shows the
current flowing in the first type of channel. The interrupted curve labelled
'delayed' shows the steady-state current flowing in the second type of
channel, given by g9, (Em + 100), where gE is the value of gE, at a given
potential after the potential has been held at this value for a long time.
dn/dt is then zero and equations (6) and (7) give

gE = 1V2[cx/(oct+n)]4. (11)
The continuous curve shows the sum of the currents in the two channels.
The constants in the equations have been chosen so that this curve should
reproduce that recorded experimentally. Over the range of potentials
covered by the action potential the shape of the curve is a reasonable fit
with that recorded by Hutter & Noble (1960) after correction for the cable
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COMPUTED CARDIAC ACTION POTENTIALS
properties of the fibre (the experimental curve was obtained by polarizing
the membrane at one point with a micro-electrode and the correction for
curves obtained in this way is given by Cole & Curtis (1941)). Outside
this range the agreement is poor, especially when the membrane is hyper-
polarized, when the potassium current is underestimated by the equations.
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Fig. 3. Computed conductance changes occurring during depolarization of the
'membrane' from -90 to -20 mV. Ordinates: A membrane potential (mV);
B ionic conductance (mmho/cm2) on a log. scale. Continuous curve, gsa; inter-
rupted curve, 9K. Abscissa: time (msec). Note change in time scale after
10 msec.

However, it did not seem worth while to try other values for the constants
in the hope of obtaining a better fit because, in the computations described
in this paper, the equations will not be used outside the voltage range of
the action potential.
The time course of the changes in gK given by these equations is shown in

Fig. 3 (interrupted curve) in which the effect of a sudden change in Em from

(I .
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-90 mV to -20 mV is shown. gE initially falls and then slowly rises during
the period of depolarization (note the change in time scale after 10 msec).
Whenthe potential is suddenlyreturnedto -90mV, 9E rises above its resting
value, towards which it then slowly falls. Some experimental evidence for
this slow fall in YE after depolarization has been obtained (Hutter & Noble,
unpublished; Noble, 1961).

The sodium current
In squid nerve changes in the membrane potential have a dual effect

on the sodium conductance (Hodgkin & Huxley, 1952c). When the mem-
brane is suddenly depolarized there is initially a very large increase in
9Na) but, even if the depolarization is maintained, gNa soon falls again to
a low value. Moreover, the magnitude of the initial increase in YNa depends
on the previous value of the membrane potential. Hodgkin & Huxley
described this behaviour by supposing that gNa is determined by two
variables, m and h, which vary with the membrane potential in opposite
directions and with different time constants

YNa = m3hgNa, (12)
where gNa is a constant and m and h obey the equations:

dt= cm(l-m)-Pmm, (13)
dh
dh= Ch(l-h)-Phh (14)

where xm' Pm' ah and Ph are functions of Em.
The dependence of h on Em describes the relation between the initial

membrane potential and the maximum sodium current which may be
produced by depolarization of the membrane. Using a modification of the
voltage-clamp technique and using the maximum rate of depolarization
as a measure of the sodium current, Weidmann (1955) showed that in
Purkinje fibres this relation is very similar to that in squid nerve, except
that the curve is shifted along the voltage axis by about 20 mV. His
method did not allow accurate measurements of ach and Ph but he did show
that these are of the same order of magnitude and vary with Em in the
same way as in squid nerve. Thus the only modifications required in the
equations for h is that the functions for cLh and Ph should be shifted along
the voltage axis so as to make the relation between Em and the steady-
state value of h,

ho> = (Xh/(CXh +Ph) (15)
coincide with Weidmann's experimental curve. This was done by ad-
justing the constants determining the position of the curve until the
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COMPUTED CARDIAC ACTION POTENTIALS
potential at which h. = 0*5 became about -71 mV (Weidmann, 1955).
The equations for Xh and h obtained in this way are:

°Ch = 0 17 exp [(-Em-90)/20], (16)

Ph = [expQ ljO )+1if* (17)

This procedure leaves the shape of the h,o4Em relation unaltered. In fact,
Weidmann's curve for Purkinje fibres is slightly steeper than that for squid
nerve, but, as he has pointed out, it is very likely that this is only due to
differences in experimental technique.

In the voltage-clamp technique used by Weidmann, when the sodium
conductance is greatly increased on depolarization of the membrane it is
not possible to retain control of the membrane potential owing to the
limitation on the amount of current which may be passed through a
micro-electrode. He was therefore unable to obtain information on which
to base equations for m. However, in view of the close similarity of the
processes determining h in Purkinje fibres and in squid nerve, it seems
reasonable to assume that the processes determining m are also similar.
The choice of constants in the m equations must at present be a somewhat
arbitrary procedure and the method used will be described in detail below
(see Methods). The equations obtained are:

= exp [(-Em-48)/15] - I (18)

gm = 0- 12(Em + 8) (19)
=exp[(Em+8)/5]-J (19

In arriving at these equations it was assumed that a small component
(0 14 mmho/cm2) of 9Na is independent of Em and t. gNa was set at
400 mmho/cm2 and ENa at 40 mV. When these values are inserted into
equation (1) INa is given by

INa = (400m3h+ 0 14)(Em-40). (20)
The behaviour of these equations is of course very similar to that of

Hodgkin & Huxley's (Hodgkin & Huxley, 1952d; Huxley, 1959 a). It is,
however, worth illustrating in order to note the changes which occur when
a long-lasting depolarization is applied. This is shown in Fig. 3 (continuous
curve). When Em is suddenly changed from -90 to -20 mV it can be seen
that, following the large transient increase in gNa, there is a small main-
tained increase which persists throughout the period of the depolarization.
The steady-state Na current therefore increases in spite of the decrease in
the Na electrochemical potential gradient. This property allows the
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equations to be extended to describe long-lasting action potentials without
any serious modification to the sodium current equations (cf. Fitzhugh,
1960).

METHODS

Method of obtaining equation8 for x. and Pn
In the absence of any direct experimental evidence on which to base equations for m in

cardiac muscle it is not possible to describe the sodium current fully without using the action
potential itself as a source of information. The problem then becomes: given the shape of
the action potential and equations for h and for IK, what equations are required to describe
m? A number of different equations for cxm and Pm were tried in order to see whether functions
of the same general form as Hodgkin & Huxley's could be used. This turned out to be the

1.0

0.6
E
0.5

-10 -20 -30Em4 -50

1-0

Fig. 4. Relations between m (ordinate) and membrane potential (abscissa). mll. is
given by equation (22); mii2 by equation (23); mm by equations (18), (19) and (21);
mn0 (H-H) by equations (21), (24) and (25). Explanation in text.

case and it proved relatively easy to obtain solutions which resemble the Purkinje fibre
action potential. However, it proved much more difficult to find equations for m which
would also allow pace-maker activity to occur. The method of obtaining the constants by
simple trial and error is excessively tedious and would have proved very costly in terms of
computer time, so that it became essential to find a more direct method.
The way in which equations (18) and (19) were obtained is illustrated by Fig. 4, in which

m is plotted against Em. It was convenient to take 9Na as 400 mmho/cm2 and to assume that
0-14 mmho/cm2 is independent ofEm and t. This does not necessarily mean that gNa in some
channels is in fact independent of Em and t in cardiac muscle, but it made a little easier the
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COMPUTED CARDIAC ACTION POTENTIALS
process of finding functions for °Cm and Pm which allow pace-maker activity to occur. The
continuous curve labelled mil in Fig. 4 shows the value which m.o, given by

mOO = axm/(cxm+Pm), (21)
must have at each potential in order that the steady-state sodium current should be equal
and opposite to the potassium current when n = 0. This is given by

ml=19K, (E + 100)/(40-Em)]-0-14 *
(22)(E+ 400ho o)'(22

and is applicable at the end of diastole and during the spike of the action potential when n is
small enough for gE2 to be neglected. The continuous curve labelled Wi2 shows the same
relation when n has the value which it would have if Em were held constant for a long time
at a potential corresponding to the termination of the plateau. Em -30 mV was chosen
and noo is then very nearly 0-72. W2 is given by

- (9Kg1 + 1-2nl4)(Em + 100)/(40-Em)]m2 = 400 hoo 0.14)k (23)

Now in order to obtain solutions describing both action and pace-maker potentials the
functions for a.m and Pm must satisfy two requirements:
(1) mm < i2 for al values of Em positive to the maximum diastolic potential (Em approx-
imately -90 mV), since for repolarization to occur the sodium current must be less than the
potassium current.
(2) mw > mfil for all values of Em negative to the potential at the beginning of the plateau.
If, for example, mo = mil at some potential around -90 mV then this potential would form
a resting potential and pace-maker activity would not occur.
The curve labelled moo in Fig. 4 satisfies these conditions and is given by equations (18),

(19) and (21). The individual functions for am and flm are plotted in Fig. 5 for comparison
with those of Hodgkin & Huxley, which after adjustment along the voltage axis by the
same amount as the h equations (see above) become

0- I(-Em 47)
am = exp [(-Em-47)/10]-1 (24)
Pm = 4 exp [(-Em-72)/18]. (25)

These equations are plotted as interrupted curves in Fig. 5 and the moo/Em relation is plotted
as an interrupted curve labelled moo (H-H) in Fig. 4. So far as the 8hape of the curves is
concerned, the main difference between my equations and those of Hodgkin & Huxley is
that moco and ftn vary less steeply with Em. Thus the values moo = 0 5 and m = 0-1 are
separated by about 35 mV in my equations and by only about 20 mV in Hodgkin & Huxley's
equations. These differences will be discussed in greater detail later (see Discussion).
When it was desired to obtain solutions not showing pace-maker activity gK was increased

by 0.1 mmho/cm2, when condition (2) above is no longer satisfied.

Numerical computation
The integration of the four simultaneous differential equations (4), (7), (13) and (14) was

done on the London University digital computer 'Mercury', using a numerical approxima-
tion (the Runge-Kutta rule). Solutions for the rapid changes occurring during the spike of
the action potential were obtained by using a step length of integration, At, of 0A1 msec. It
was found that integration at shorter step lengths did not produce an appreciably different
result.
By comparison with the initial spike, the plateau and pace-maker potential are very long-

lasting indeed and to obtain solutions for these parts of the action potential with At = 0-1 msec
more than 60 min of computer time was required. This could not be reduced simply by in-
creasing At, because computations involving differential equations with very small time
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constants become unstable when At > 2-8 Tmi.., where Tmin. is the smallest time constant inL
the system (Carr, 1958; N.P.L., 1961). This difficulty was overcome by making m an explicit
function of only Em during the plateau and pace-maker potential. This is justified, since the,
time constants for m are small enough compared to the duration of these phases of the action
potential to allow the assumption that, at each value of Em, m has its steady-state value,
moo . Equation (21) may then be used to compute m. The problem now reduces to the integra-
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Fig. 5. Comparison of modified functions for am and Pm with those of Hodgkin &
Huxley. Continuous curves: modified functions given by equations (18) and (19).
Interrupted curves: Hodgkin & Huxley's m functions after adjustment along
voltage axis by same amount as for h equations. These curves are given by
equations (24) and (25). Note that Pm changes less rapidly with Em in modified
function than in original Hodgkin-Huxley function.

tion of three simultaneous equations and, since the time constants for h are about 10 times
larger than those for m, At can be increased to 1 msec without introducing appreciable error.
This was checked by comparing results obtained at At = 0-1 msec with equation (13)
to compute m with those obtained at At = 1 msec with equation (21). The computer pro-
gramme was arranged so that equation (21) was used when dEm/dt < 0-5 V/sec.

In order to start the computation, the initial values of Ems, m, h and n have to be given.
These were obtained by choosing an initial potential at about the middle of the pace-maker
potential, when dEm/dt is very small. m and h could therefore be given their steady-state
values (mo and hc0) without introducing appreciable error. A guess was then made for the
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COMPUTED CARDIAC ACTION POTENTIALS 329

initial value of n. A small error here is not critical, however, and after one cycle the initial
value chosen for n has no influence on the solution, apart from determining its position on

the time scale.
Results were printed out by the machine usually after every 10 integration steps. In

addition to Em and t, the following were printed out when required: m, h, n, 9N.' 9K,
Na efflux, Na influx, K efflux, K influx, net Na gain, net K loss. Where appropriate these are
plotted in the illustrations in addition to the potential changes. Curves relating to Na are

continuous, whereas curves relating to K are interrupted.

RESUILTS

Computed potentials and conductances
The solution to the equations was computed over two cycles and is

shown in Fig. 6. It can be seen that the shape of the potential wave

(curve A) closely resembles that recorded experimentally in Purkinje
fibres and shows the characteristic spike, followed by a plateau lasting

50
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0 05 1-0 1-5 20
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Fig. 6. A, computed action and pace-maker potentials. B, time course of con-
ductance changes on a log. scale. Continuous curve, gNa: interrupted curve, 9K.

about 300 msec which is terminated by a faster phase of repolarization.
The membrane then slowly depolarizes again-the pace-maker potential-
until the threshold is reached and another action potential is initiated.
Only in one major respect does the computed action potential fail to

(
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reproduce that recorded experimentally. The maximum rate of depolariza-
tion, dEm/dtmax., during the spike of the computed action potential is about
100 V/sec. This is very much less than that recorded experimentally: action
potentials initiated from about -70 mV (as in the computed action
potential in Fig. 6) show a maximum rate of depolarization of about
300 V/sec (Weidmann, 1955). The relation between Em and dEm/dtmax,. is
very steep at about - 70 mV (Weidmann, 1955) and a better comparison
may be obtained by initiating the action potentials from a potential at

E

200

100 g

0
I

msec

Fig. 7. a, Early part of computed action potential initiated by suddenly dis-
placing Em from -90 to -50 mV. b, Rate of change of membrane potential,
dEm/dt, (V/sec).

which h is very nearly 1, so that all the sodium carriers (or sites) are readily
available for sodium transport. In these circumstances the value for
dEm/dtmax. obtained experimentally is about 800 V/sec (Draper & Weid-
mann, 1951; Weidmann, 1956b). WThen the computed action potential is
initiated from -90 mV, dEm/dtmax. is only 180 V/sec (Fig. 7). The possible
reasons for this discrepancy will be discussed later.
The time course of the computed conductance changes is shown in

Fig. 6B. A logarithmic scale was chosen in order to accommodate the large
changes which occur in 9Na. During the spike of the action potential Na
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COMPUTED CARDIAC ACTION POTENTIALS
rises to a very high value because m rises much faster than h falls. Within
a few milliseconds the fall in h reduces 9Na again; the inactivation is not
complete, however, and, after an 'undershoot', 9Na settles down to a fairly
constant plateau value which is about 8 times larger than the lowest value
reached in diastole. The relative constancy Of 9Na in spite of changes in
Em during the plateau is due to the fact that, over this range of potentials,
m and h change in opposite directions in such a way that m3h remains
almost constant. At the end of the plateau, during the final rapid phase of
repolarization, the rise in h no longer fully counteracts the fall in m, and
9Na then falls to its diastolic value.
By contrast, 9E falls at the beginning of the action potential as a result

of the fall in gK1. During the plateau gK, slowly rises, but the total qK
remains below the end-diastolic value throughout the duration of the
plateau. A further increase in 9E occurs at the end of the action potential
when gKE increases as a result of the repolarization of the membrane.
9UK takes some time to fall again, so that g9 exceeds its end-diastolic value
for several hundred milliseconds during the pace-maker potential.
The total membrane conductance, UNa+9K, increases about 50 times

during the spike of the action potential in Fig. 6A and almost 100 times
during the faster spike shown in Fig. 7. This is in good agreement with the
experimental observation of Weidmann (1951), who found the ratio of
resting membrane conductance to maximum active conductance to be
about 1:100. During the plateau the total conductance is much smaller
and, at the beginning of the plateau, is about the same as the end-diastolic
conductance. Since gN. remains fairly constant while 9E increases, the
total conductance rises during the plateau. However, this does not conflict
with Weidmann's observation that the membrane impedance increases
during the plateau (see Impedance changes, p. 337).

Computed currents and fluxes
The changes in gNa and gK which occur during the action potential to

some extent resemble those produced by an applied 'square-wave' voltage
change of similar magnitude to the plateau (Fig. 3) although, in the case
of the action potential, the voltage changes themselves are in turn pro-
duced by the conductance changes. During an applied 'square-wave'
voltage change current would have to be supplied to the membrane to
keep the potential constant, and this is the current which would be
recorded by a 'voltage-clamp' technique. The action potential, on the
other hand, requires no externally applied current, all the current being
supplied by the fibre itself, and in the case ofa 'membrane' action potential
the relation between ionic current and the potential changes is a fairly
simple one, dEm/dt being proportional to the net ionic current.
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COMPUTED CARDIAC ACTION POTENTIALS

The computed Na and K currents flowing during the action potential
are shown in Fig. 8B. Although the ionic currents flow in opposite directions
(Na inwards, K outwards) they are plotted here in the same direction. This
makes it easier to observe changes in the net ionic current (INa+IK), which
is then simply the difference between the two curves.
During the rising phase of the action potential spike INa (continuous

curve) greatly exceeds I' (interrupted curve). The peak Na current is not
shown in the diagram, as it rose to just over 1200,A/cm2. It is this intense
inward Na current which produces the rapid depolarization. During the
falling phase of the spike INa falls to its lowest value (- 10 ,uA/cm2), partly
as a result of the decrease in the Na electrochemical potential gradient and
partly as a result of the low value to which 9Na falls at this stage (Fig. 6B).
Since I' is continuously rising (in spite of the fall in 9K), it now exceeds
INa by almost 20 4A/cm2, so that the potential falls fairly rapidly towards
its value at the beginning of the plateau. Throughout the plateau I' is only
slightly greater than INa, so that the membrane repolarizes very slowly.
This difference increases towards the end of the plateau and the membrane
then repolarizes more rapidly. Both currents now decrease: INa falls
because the decrease in gNa (Fig. 6B) offsets the increase in the Na electro-
chemical potential gradient, while I' falls because the decrease in the K
electrochemical potential gradient offsets the increase in gE (Fig. 6B).
INa now slightly exceeds IK and the membrane slowly depolarizes again.
The average magnitudes of the Na and K currents during the pace-

maker potential are just over 20 ,uA/cm2, whereas during the action
potential the average currents are about 40 vA/cm2. Thus the action
potential involves a twofold increase in the rate at which the fibre gains
Na and loses K. This increase is, however, much less than it would be if
gKwere not to fall on depolarization of the membrane. In terms of
chemical quantities, the K loss or Na gain during one action potential
amounts to 161 pmole/cm2. Since the resting loss or gain during a similar
period is 83 pmole/cm2, the extra K loss or Na gain during one action
potential is 77 pmole/cm2. Of this, only about 13-5 pmole is used in
changing the charge on the membrane capacity, the remaining 63-5 pmole
being 'wasted' as the result of the increased Na and K currents over-
lapping each other over a considerable period of time (Fig. 8B). This
'wastage' forms a larger fraction of the ionic movements than in squid
nerve (Hodgkin & Huxley, 1952 d) and represents the 'cost' to the fibre of
maintaining the plateau of the action potential.
The efflux and influx components of the ionic currents were computed

on the assumption that the independence principle applies to Purkinje
fibres. This principle states that the influx and efflux of a given ion species
are independent of one another, i.e. the influx is independent of the intra-

22 Physiol. 160

333



cellular concentration, while the efflux is independent of the extracellular
concentration. This assumption leads to the following equations for the
effluxes (Hodgkin & Huxley, 1952d):

Na efflux = INa/[exp ((ENa- Em)FlRT) - 1], (26)
K efflux = IK/[exp ((EK- Em)FIRT) - 1]. (27)

The influxes are then given by the differences between the currents and
the effluxes. Hodgkin & Huxley showed that the independence principle
holds very well in the case of Na movement in squid nerve, but no experi-
mental confirmation of the principle yet exists in the case of cardiac
muscle. The application of these equations to Purkinje fibres therefore
requires caution and the presence of any appreciable degree of interaction
during the movement of ions through the membrane would invalidate
them.
In Fig. 8C the effluxes are plotted above the abscissa (continuous curve,

Na; interrupted curve, K) while the influxes are plotted below the abscissa.
The most surprising feature is the very small increase in K efflux which
occurs during the action potential. When averaged out over the duration
of one cycle, this increase amounts to only about 10% of the diastolic
efflux. This is in striking contrast to the large increase in K efflux during
the squid-nerve action potential observed by Keynes (1951) and computed
by Hodgkin & Huxley (1952d). In Purkinje fibres most of the increase
in the computed K current results from a very large fall in K influx. In
the case of sodium both influx and efflux increase during the action
potential. The peak Na fluxes are not shown in the illustration. The peak
influx was nearly 1500 pA/cm2 and the peak efflux was nearly 300 ,uA/cm2.
The correlation of these computed fluxes with the experimental in-

formation at present available in cardiac muscle will be discussed later
(see Discussion).

Current-voltage relations
A simpler, though more approximate, description of the mechanism of

the action and pace-maker potentials may be obtained by plotting Na and
K current-voltage relations at different times during the cycle (cf. Hodgkin,
Huxley & Katz, 1949). This has been done in Fig. 9. The ordinate is the
membrane potential (mV) and the abscissa is the ionic current (ILA/cm2).
Although the Na and K currents flow in opposite directions, they have
been plotted here in the same direction so that intersections between the
curves represent points at which the currents are equal and opposite. The
interrupted curves show the instantaneous K current-voltage relations
given by equations (5), (6) and (10) with n having values appropriate to
the beginning of the action potential (0 msec, n = 0*32), two stages during
the plateau (100 msec, n = 0-58; 200 msec, n = 0.68) and at the end of
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COMPUTED CARDIAC ACTION POTENTIALS
the plateau (280 msec, n = 0.72). These curves also apply at points during
the pace-maker potential, but the temporal order is then reversed as n is
then falling instead of rising. The continuous curves are Na current-voltage
relations. The line intersecting the 0 msec K curve at the point A is the
instantaneous Na current-voltage relation at the peak ofthe action potential

.0 msec /100 msec

30 \/
10 I> < <1$8 / 200 ms

10 10 20 30 50 1 60

| \ I ,) ~~~~~~~~//280msec

C/D

E~~~~~~~~~~~~~~

Fig. 9. Ionic current-voltage relations. Ordinate, membrane potential (mY);
abscissa, ionic current (,uA/cm2). Interrupted curves are instantaneous K current-
voltage relations at various stages during the action potential. The continuous
curves are Na current-voltage relations. Points A-F correspond to the stages
indicated on the computed action potential shown in inset. Explanation in text.

spike. This is given by equations (12) and (20) with mn = 0S9996 and
ht = 0.010. The other continuous curve shows the steady-state Na current-
voltage relation given by equations (12), (15), (20) and (21). Since changes
in m and ht follow changes in Em fairly closely during the slower phases of
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the action potential, this curve gives an approximate estimate of the
Na current at different voltages during the plateau and pace-maker
potential.
When dEm/dt is small the net ionic current must be small, so that the

Na and K currents are nearly equal and opposite (see Fig. 8). Some of the
intersections in Fig. 9 therefore closely correspond to the values of the
potentials and currents occurring at various instants during the action
potential. The points labelled A-F correspond to the stages during the
cycle indicated in the inset. Point A corresponds to the peak of the action
potential spike, when gNa iS very large. As the Na-carrying system becomes
inactivated gNa approaches its steady-state value at the beginning of the
plateau, and the potential falls to point B. 'K then increases, so that the
potential slowly falls, passing through point C, until the K curve no longer
intersects the Na steady-state curve in the region of the plateau (point D).
The K current now exceeds the steady-state Na current at all potentials
above the point E, so that the plateau can no longer be maintained and
the rapid phase of repolarization commences. During this phase the
steady-state Na curve does not give a good approximation to the sodium
current, because the potential changes too rapidly for h to approximate
closely enough to its steady-state value at each potential. Thus, at a
membrane potential of -50 mV the Na current during repolarization is
27 ,tA/cm2 (Fig. 8B), whereas the steady-state current is about 38 /A/cm2
(Fig. 9). When the point of maximum repolarization, E, is reached the
Na and K curves once again intersect. The K current-voltage curve now
'swings' back again towards the 0 msec curve and the potential slowly
rises until the point F is reached at the end of the pace-maker potential.
The Na and K curves now no longer intersect in the pace-maker region,
the membrane depolarizes more rapidly and another action potential is
initiated. During this phase the Na current is very much greater than the
steady-state current, and the potential rapidly changes to point A. The
cycle then repeats itself.
The mechanism of the pace-maker potential is thus very similar to that

of the plateau. Both can be approximately represented as a point of
intersection moving along the steady-state Na current-voltage curve.

In these equations there is one potential at which the steady-state Na curve intersects the
8teady-8tate K curve. The latter is the continuous curve in Fig. 2, but is not shown in Fig. 9.
Its point of intersection with the Na curve occurs at about -32 mV and a constant potential
at this point therefore corresponds to a second solution to the equations. However, this
solution is unstable because it occurs at a potential at which the total membrane slope
conductance is negative. A deflexion, however small, in the repolarizing direction would
reduce INa more than IK, so that the repolarization would become regenerative. Similarly,
a deflexion in the depolarizing direction would increase I'Na more than IK, which would lead
to a regenerative depolarization.
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Only small modifications to the equations are required to make such a point occur outside

the region of negative slope conductance. If gK were increased by about 0.1 mmho/cm2, a
point of intersection would occur in the region of the pace-maker potential. The potential
would then fail to reach the point F spontaneously and the system would correspond to a
normal quiescent fibre. On the other hand, if 9K2 were reduced by about 35% a 'stable state'
would occur in the region of the plateau at about -20 mV. This would correspond to a fibre
which becomes temporarily or permanently arrested on the plateau, as is in fact observed
when Purkinje fibres are cooled sufficiently (Trautwein, Gottstein & Federschmidt, 1953;
Coraboeuf & Weidmann, 1954; Chang & Schmidt, 1960).

Impedance changes
It has been shown above that the increase in membrane conductance

during the spike of the computed action potential agrees well with that
observed experimentally by Weidmann (1951). Weidmann also recorded
the changes in impedance occurring during the slower phases of the
Purkinje fibre action potential. Although he used square-wave current
pulses and has expressed his results in terms of membrane 'resistance'
(Weidmann, 1956b, Fig. 16) it is clear from his record that, at least during
the plateau, the electrotonic potentials did not reach completion, so that
his experiment measured a quantity which depended on the membrane
reactance as well as the membrane resistance. An equation for sinusoidal
current was therefore employed in order to reproduce Weidmann's result
on the computed response. The currents used in obtaining the curves
shown in Fig. 10 are

I 7sin [2 (t+b)] A/cm2 (29)

with b = 0, 15, 30. This gives three currents of the same period (50 msec)
but with different phase shifts (b). The integrations were started at the
peak of an unmodulated action potential and the resulting potential curves
have been superimposed in Fig. 10. So far as the main features are con-
cerned the agreement between this and Weidmann's experimental record
is very good. The impedance rises during the plateau, falls again at the
end ofrepolarization andthen rises slightly during the pace-maker potential.
The rise in impedance during the plateau may appear surprising in view of
the fact that the total membrane conductance (9Na + 9K) increases during
this time (Fig. 6B). The reason for this is that m, h, n and gK1 vary periodic-
ally as a result of the periodic changes in Em, so that g9 and more par-
ticularly gNa have values which depend on the phase of the applied current.
The factors determining the amplitude of the voltage wave are not there-
fore the ionic chord conductances (9K, YNa) but the ionic slope conductances
(dIK/dEm, dINa/dEm). If the period of the alternating current is long
compared with the Na time constants, but short compared with the K time
constants, the slope conductances will be approximately equal to the
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reciprocal slopes of the curves shown in Fig. 9; from which it can be seen
that the Na slope conductance falls during the plateau and eventually
becomes negative at about -20 mV. Although the K slope conductance
rises, it does not do so sufficiently to prevent the total slope conductance
from falling. The membrane impedance therefore rises during the plateau.
This is a rather striking illustration of the fact that changes in membrane
impedance do not necessarily closely reflect changes in ionic conductance
and, as in this case, may even appear to indicate changes in the opposite
direction to those which are actually occurring.
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Fig. 10. Variation in membrane impedance duringactionandpace-makerpotentials.
Three superimposed potential curves obtained by setting Im equal to sinusoidal
currents given by equation (29). The impedance rises during the plateau, falls at the
end of repolarization and then rises slightly during the pace-maker potential.

The rise in impedance during the pace-maker potential is due to three
factors: the slow fall in UK, the fall in g9E consequent upon depolarization
and the increasing negativity of the Na slope conductance (see Fig. 9).

Vector analysis of the impedance changes in Fig. 10 into parallel
resistive and reactive components gave a rather complicated result. In
particular, the parallel reactance does not remain constant, as it depends
not only on the constant membrane capacity assumed in the equations but
also on a variable 'anomalous' reactance attributable to the periodic
c,hanges in 9Na and gK described above.
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Regenerative repolarizatioon
When a large enough repolarizing current is passed through the mem-

brane during the plateau of the action potential, an all-or-nothing re-
polarization is initiated (Weidmann, 1951, 1956b). That this type of
behaviour may be reproduced by the Hodgkin-Huxley equations, and
modifications of them, is now well known (Huxley, 1959 a, b; Fitzhugh,
1960; George & Johnson, 1961). The behaviour of the equations used here
is illustrated in Fig. 11, which shows the potential changes produced by
adding square-wave current pulses at two different times during the
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Fig. 11. Effect of current pulses on the computed membrane potential during the
plateau. Current strengths are indicated by current plot at bottom of illustration
and by the figures (in 4A/cm2) on the potential curves. Description in text.

plateau. When currents above a certain threshold strength are added, the
potential does not return to the plateau when the current pulse is termi-
nated. Instead, the potential returns to the resting potential. The threshold
for this phenomenon is larger at the beginning of the plateau than at the
end (cf. Fitzhugh, 1960) and, during the early part of the plateau, is about
40-50 mV negative to the plateau potential. This is less negative than the
threshold observed by Weidmann when recording the potential changes
very close to a polarizing electrode (Weidmann, 1956b, Fig. 25B) but is
greater than that observed when the electrodes are inserted one or two
space constants apart (Weidmann, 1956b, Fig. 25C). A difference of this
kind is to be expected, since, in the first case when the applied current is
switched off local circuit currents will flow in such a direction as to bring
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the potential back to the plateau, so that the threshold voltage displace-
ment will be greater than in the case where the membrane is polarized
uniformly, as it is in the case of the computed action potentials. When the
potential is recorded at some distance away from the polarizing electrode,
the converse will apply and the local circuit current will flow through the
membrane in the opposite direction. A further complication arises here
because the regenerative repolarization response is probably propagated
(Weidmann, 1951). This effect is not of course reproduced in computed
'membrane' action potentials.
A current which just fails to initiate repolarization (e.g. 10 ,uA in the

middle ofthe plateau) prolongs the action potential. This effect results from
the dependence of the rate constants of the 'delayed' potassium channels,
acn and fn, on Em so that gK, rises more slowly when the potential is
altered by the repolarizing current than it does during the normal action
potential. When the current is terminated, and the potential returns to the
plateau, more time is required for gE2 to reach the value required to bring
about repolarization. Such a prolongation has been observed in Purkinje
fibres (Weidmann, 1956b, Fig. 26) but the effect is not as large as in the
computed action potential. Again, this difference may be due to the
difference in the way in which the current is applied. In the experi-
mentally recorded action potentials the current was not applied uniformly,
so that local circuit currents occurred which are absent in the computed
response.

These differences between the computed and experimentally recorded
action potentials in their responses to applied currents are minor ones but
are difficult to deal with satisfactorily in qualitative terms. It is clearly
desirable that solutions for propagated action potentials with locally
applied currents should be computed to test these points.

Repetitive stimulation
Another property of cardiac muscle which may be accounted for by

these equations is the shortening ofthe duration of the action potential pro-
duced by an increase in the frequency of stimulation (Carmeliet, 1955 a, b;
Hoffmann & Suckling, 1954; Trautwein & Dudel, 1954). This results
from the slow time course of the decay of g., after the end of the action
potential. If two action potentials are initiated in rapid succession, the
second is shorter than the first because gKS starts at a higher value and so
takes less time to rise to the value required to initiate repolarization of the-
membrane. A potassium current system with long time constants is also,
a feature of Fitzhugh's (1960) modification of the Hodgkin-Huxley equa-
tions and he has already shown how this accounts for the frequency-
duration relation.
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An interesting consequence of this relation is that an alternation in the
duration of successive action potentials is observed when a resting fibre
is suddenly stimulated at a high enough frequency. This effect is shown on
the computed action potential in Fig. 12. The interrupted curve shows the
changes which occur in n (the variable determining Yg2). In the 'resting
fibre' n is small, qK2 is virtually zero, so that during thefirst action potential
n takes a long time to rise to the value required to initiate repolarization.
The second action potential follows very soon after the first, while n is still
fairly large. Much less time is therefore required for n to rise again, so that
the second action potential is very much shorter than the first. This degree
of shortening represents nearly the maximum obtainable from an increase
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Fig. 12. Effect of repetitive stimulation on the computed action potential (con-
tinuous curve). Interrupted curve shows the changes which occur in n. 'Fibre'
made 'quiescent' by adding 0 1 mmho/cm2 to gK and then suddenly stimulated
at a frequency of 3/sec. Note alternation in duration of action potentials.

in frequency and is similar to that observed by Trautwein & Dudel (1954),
who recorded action potentials down to durations of about 20% of the
low-frequency duration. The third action potential follows after a longer
'diastole' than that which preceded the second, so that it is longer than the
second although shorter than the first. An alternation of this kind persists
for several action potentials before the duration finally reaches a stable
value. This type of behaviour is often observed in cardiac muscle during
sudden increases in frequency or on stimulation of a previously quiescent
fibre (e.g. Hoffmann & Suckling, 1954; Schuitz, 1936).

There is, however, one feature of the effect of frequency on duration
which is not accounted for by these equations. After a period of high-
frequency stimulation the action potential duration may take some time
to return completely to normal, even though the fibre is stimulated at a
constant low frequency (e.g. Carmeliet, 1955 a, b; H:offmann & Cranefield,
1960, Fig. 7-2). It seems therefore that some other factor must be involved
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in addition to the one described here. This may be the time required for
the restoration of ionic concentration gradients after a period of activity,
as suggested by Carmeliet (1955b).

The influence of permeability changes
The changes in duration produced by alterations in the frequency of

stimulation mainly involve changes in the duration of the plateau, the
other phases of the action potential being relatively unaffected. The same
also applies when the action potential duration is altered by changes in the
ionic permeabilities or in the ionic environment. In spontaneously beating
fibres the frequency is also very sensitive to permeability changes.
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Fig. 13. Effect of additional ionic conductances on the duration of the computed
action potential. a, No additional conductance. b, Additional conductance of
0-2 mmho/cm2 with equilibrium potential at the resting potential. c, Effect of
increasing gK by 1F0 mmho/cm2.

Figure 13 shows the effect of additional conductances on the shape of the
computed action potential. The addition of a conductance of02 mmho/cm2
with an equilibrium potential at the resting potential approximately halves
the duration of the plateau (curve b), which is similar to the effect pro-
duced by substituting Cl by NO3 ions on the action potentials of Purkinje
and ventricular fibres (Carmeliet, 1961; Hutter & Noble, 1961). An addi-
tional gK of 1P0 mmho/cm2 has a very striking effect which is shown in
curve c. The plateau is now completely absent and the action potential
becomes very short indeed. This resembles the effect produced on the sinus
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venosus action potential when g9 is increased by stimulation of the vagus
nerve (Hutter & Trautwein, 1956). The conductance increase assumed here
is of the right order of magnitude. Harris & Hutter (1956) found that the
rate of movement of potassium ions in the sinus venosus may be increased
two to three times by acetylcholine; the conductance increase assumed in
Fig. 13 is approximately twofold at the resting potential.

Like the plateau, the pace-maker potential is very sensitive to changes
in ionic permeability. Thus, an increase in yK by only 01 mmho/cm2 is
sufficient to stop pace-maker activity completely in these equations. In
this respect the equations mimic the behaviour of the natural pace-maker
when gE is increased by vagal stimulation (Hutter & Trautwein, 1956).
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Fig. 14. Effect ofvarious anion conductalnces on the computed pacemaker potential.
A, g",1 = 0; B, g, = 0.075 mxnho/cm2; C, gA. = 0.18 mmho/cm2; D, g,A =
0 4 mmho/cm2. EA, = -60 mV in all case. Description in text.

Rather striking alterations in pace-maker activity are observed when
different anions are present in the extracellular fluid (Hutter & Noble,
1961) and these may also be reproduced by the equations. It seems likely
that in continuously active fibres the anion equilibrium potential is low
(Hutter & Noble, 1961) and EAn was therefore set at -60 mV. The results
of inserting this value for EA. and various values for gn are shown in
Fig. 14. Curve A shows the solution obtained when qAn = 0 and is the
same as that in Fig. 6A. When gA. is increased to 0 075 mmho/cm2
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(curve B) the frequency increases by about 50% while the shape and
duration of the action potential are only slightly affected. This resembles
the effect of Cl ions on Purkinje fibres.
When 9An is increased to 0 18 mmho/cm2 (curve C) the frequency greatly

increases, the maximum diastolic potential falls, the action potential is
markedly shortened and the overshoot is almost completely abolished.
This closely resembles the effect of prolonged exposure to N03 ions on
spontaneously beating Purkinje fibres. The value Of q,An assumed in Fig. 14
is almost equal to that assumed in order to reproduce the effect of NO3
ions on a driven fibre (Fig. 13). Thus, in so far as the relative sensitivity of
the plateau and pace-maker potential to changes in anion conductance is
concerned the behaviour of the equations is consistent.
A further increase in gAn to 0 4 mmho/cm2 (curve D) does not produce

an increase in frequency but has the effect of arresting the 'fibre'. This effect
is obtained in Purkinje fibres when Cl ions are replaced by I ions (Hutter &
Noble, 1961).
The dual effect which a progressive increase in gAn has on the computed

pace-maker may appear surprising, since only one factor in the equations
is being varied. The explanation lies in the fact that EAn is assumed to be
considerably less negative than ER. A moderate increase in gA. accelerates
the depolarization towards EA. during diastole and so increases the
frequency. A large enough increase in YAn' however, stabilizes the potential
at or near EAs,So that pace-maker activity is completely abolished.

DISCUSSION

Discrepancies between computed and recorded action potentials
So far as the potential changes are concerned the main discrepancy is

that the maximum rate of depolarization, dEm/dtma., during the spike is
much smaller in the computed action potentials than in those recorded
experimentally. This difference cannot be attributed to progressive errors
in the computation, as the same result was obtained when the integration
was repeated at shorter step lengths. Nor can it be attributed to the fact
that the recorded action potentials were propagating, since initially, when
d2Em/dt2 is positive, current would be drawn away from the membrane and
so reduce the current discharging the membrane capacity. This would slow
the rate of depolarization and allow more time for h to fall, so that when
dEm/dtmax. is reached, gNa would be smaller in the propagating action
potential than in the membrane action potential. Thus, in squid nerve the
computed values for dEm/dtmax. are 431 V/sec for a propagated action
potential and 564 V/sec for a membrane action potential (Hodgkin &
Huxley, 1952d).
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There remain two other possibilities. First, the computed maximum
depolarizing current may be too small. This would appear to be a very
likely error in view of the somewhat arbitrary way in which the equations
for m were obtained (see Methods). It is difficult, however, to see how such
an error might be rectified without radically affecting the other phases of
the action potential. In order for 'Na to be increased at a given Em, either
9Na or m or both must be increased, but this would have the effect of
greatly prolonging the plateau or of preventing repolarization altogether
(see Fig. 4). Furthermore, the computed increase in membrane con-
ductance during the spike is in good agreement with that observed by
Weidmann. It seems unlikely, therefore, that the peak sodium current is
seriously underestimated by the equations.
The other possibility is that only a small part of the membrane capacity

is discharged during the spike of the action potential. This would happen
if the major part of the capacity were to be in series with a resistance which
is small compared to the resting membrane resistance but fairly large com-
pared to the membrane resistance during the spike. This part ofthe capacity
would then be discharged mainly during the beginning of the plateau. If
10 uF/cm2 were to be discharged slowly in this way, this would leave only
2 pF/cm2 to be discharged by the sodium current during the spike and
dEml/dtmax. would be increased by about the required factor. In physical
terms this might mean that a large fraction of the membrane capacity is
distributed along invaginated folds or tubules of membrane, the series
resistance being the resistance of the 'extracellular' fluid in the folds or
tubules. In the case of skeletal muscle the existence of intracellular
tubules of membrane has been clearly demonstrated in observations made
with the electron microscope (Bennett & Porter, 1953; Edwards & Ruska,
1955; Robertson, 1956; Porter & Palade, 1957) and Huxley & Taylor (1958)
have shown that it is very likely that some process like spread of de-
polarization occurs along these tubules. At present, however, there is no
direct evidence to support the idea that the tubules open out on the fibre
surface (Huxley, 1959b), though this is not essential, provided that there
is electrical continuity via a low resistance between the tubular fluid and
the extracellular fluid, as suggested by Hodgkin & Horowicz (1960).
Fatt (1961) has shown that the high-frequency membrane capacity
of frog skeletal muscle is about 2 pF/cm2, which may be compared with
the value of 6-8 ImF/cm2 obtained with 'square-wave' current analysis
using intracellular micro-electrodes (Fatt & Katz, 1951). The situation
in Purkinje fibres has not yet been investigated and another possibility
which cannot be ruled out is that part of the capacitative behaviour
observed in the resting fibre may be anomalous, in that it may result
from delayed voltage-dependent changes in permeability. This would



be analogous, though opposite, to the anomalous inductive behaviour
resulting from delayed K rectification in squid nerve.
Another difference between the computed and experimentally recorded

curves is that the rate of fall ofEm from the peak of the spike to the plateau
is smaller in the computed action potential. This might also be explained
by assuming a smaller capacity during the spike. On the other hand,
dEm/dt here greatly depends on gE and would be appreciably larger if

gK, were not to fall instantaneously on depolarization of the membrane,
but rather with a small delay. Such a delay might also account for the
'notch' often observed between the spike and plateau of the Purkinje fibre
action potential (Draper & Weidmann, 1951, Fig. 4b).

Ionic fluxes in cardiac muscle
At present there is very little information available on the effect of

activity on the Na fluxes in cardiac muscle, so that it is not yet possible to
say how far the computed fluxes correspond to those actually occurring.
In the case of potassium, experiments on different specie shave given
different results. Brady (unpublished, quoted by Brady & Woodbury,
1960) found no increase in K efflux during activity in the frog ventricle.
This result is consistent with the theory given here, as it is also with that
given by Brady & Woodbury (1960). Wilde & O'Brien (1953) found an
increase in K efflux in the turtle ventricle which they considered to be
synchronous with the action potential. Weidmann (1956) has calculated
that the potential changes during the action potential are themselves
sufficient to account for Wilde & O'Brien's results, so that there is no need
to suppose that gE increases during the action potential. One possibility,
therefore, is that potassium rectification does not occur at all in this
preparation. It is difficult, however, to reconcile this suggestion with the
fact that the resistance during the plateau of the turtle ventricle action
potential is greater than the resting resistance (Eyster & Gilson, 1947;
Cranefield, Eyster & Gilson, 1951). This observation is readily explained
by supposing that gE is reduced during the action potential (see Fig. 10).
A dependence of g9 on the K electrochemical potential gradient will also
explain the shortening of the turtle heart action potential produced by
increasing the extracellular potassium concentration (Weidmann, 1956a;
cf. Hoffmann & Cranefield, 1960). It does not therefore seem possible at
present to reconcile Wilde & O'Brien's results with those of electrical
experiments.

Comparison of theories concerning long-lasting action potentials
Various modifications of Hodgkin & Huxley's original equations have

been suggested recently in order to account for long-lasting action
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potentials, and it seems desirable briefly to summarize and compare their
main features.
The modification proposed by Fitzhugh (1960) and the closely similar

one of George & Johnson (1961) primarily involve a large decrease in the
rate constants of the potassium current system (oa and Pa). gE increases
on depolarization of the membrane but does so very much more slowly
than in normal squid nerve. For the purpose of describing the properties
of cardiac muscle this modification is not sufficient, as it does not account
for the high resistance during the plateau of the action potential which has
been observed in kid Purkinje fibres (Weidmann, 1951), turtle ventricle
fibres (Eyster & Gilson, 1947; Cranefield et at. 1951) and rabbit ventricular
fibres (Johnson & Tille, 1960). Thus in Fitzhugh's computations the
resistance during the plateau is only about one-quarter of the resting
resistance, while in cardiac muscle the plateau resistance is as great or
even greater than the resting resistance. On the basis of this difference it
has been suggested (e.g. Chang & Schmidt, 1960) that the Hodgkin-
Huxley formulation is inadequate to account for the electrical properties
of cardiac muscle and that other models such as the two-stable state hypo-
thesis (Tasaki & Hagiwara, 1957) might be more applicable. So far as its
essential features are concerned the differences between this hypothesis
and that of Hodgkin & Huxley are not very great. As Fitzhugh (1960) has
pointed out, Tasaki & Hagiwara's description of the transition from one
stable to the other at the termination of the plateau is a good qualitative
description of the way in which the modified Hodgkin-Huxley equations
actually behave, and the objection based on the discrepancies between
observed and computed resistance changes does not apply to the equations
used in this paper (see Fig. 10).
Brady & Woodbury (1960) have recently formulated equations to describe

the action potential in frog ventricle. They postulated that the principal
differences between cardiac muscle and squid nerve are: (1) that gK falls
on depolarization of the cardiac fibre membrane, and (2) that the Na in-
activation and activation processes in heart muscle have two components,
a slow one (time constant of the order of seconds) and a fast one (time
constant of the order of milliseconds, as in squid nerve). Although their
equations adequately describe the frog ventricle action potential and its
main properties, including Brady's failure to observe any increase of
K effiux associated with activity, they had no direct experimental evidence
for the modifications which they proposed. So far as Purkinje fibres are
concerned, the presence of a slow component in the Na inactivation pro-
cess would seem unlikely in view of Weidmann's (1955) experiments.
In the equations used in this paper the main modification involves the

K current which is assumed to flow through two types of channel in the
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membrane, one in which gE falls on depolarization of the membrane and
another in which gE slowly rises (Noble 1960a, b). This hypothesis was
suggested by Hutter & Noble's (1960) experiments on Purkinje fibres in
Na-deficient solutions. The modification made to the Na equations is
a minor one, in that it does not involve any qualitative change in the
behaviour of the sodium current system, but it is necessary in order that
the equations should describe the action potential shape accurately.
The h equations have been unaltered, apart from the shift along the voltage
axis required to make the equations fit Weidmann's (1955) experimental
curve, but the m equations have been reformulated in order to make
the mc,/Em relation less steep than that of Hodgkin & Huxley (see Figs. 4
and 5).
The result of using the Hodgkin-Huxley m equations would be greatly

to lower the position of the plateau and to decrease the magnitude of the
maximum diastolic potential. This is illustrated in Fig. 15. The interrupted
curves are the instantaneous K current-voltage relations shown in Fig. 9,
and the thin continuous curve is the steady-state Na current-voltage
relation given by the Na equations used in this paper. The thick continuous
curve is a steady-state Na relation obtained by substituting Hodgkin &
Huxley's m equations (equations (24) and (25)) and by setting 9Na at
30 mmho/cm2, and the fraction of 9Na which is assumed to be independent
of Em and t at 0*25 mmho/cm2. The peak value of the steady-state Na
current now occurs at a more negative potential and the value Of 9Na has
been reduced in order that the steady-state Na current should not exceed
the steady-state K current at this potential. Without integrating the
equations it is clear from Fig. 15 that normal Purkinje fibre-like action and
pace-maker potentials would not be obtained. The low value required for
9Na, and the fact that the action potential would start at a potential (about
-65 mV) at which h is small, mean that the rate of rise would be greatly
reduced and there would be no initial spike or overshoot. The plateau
would start at about -25 mV and terminate at about -45 mV. The point
of maximum repolarization would be at about -75 mV.
The ability of the equations used in this paper to describe the shape of

the action and pace-maker potentials fairly accurately is to a great extent
due to the fact that the action potential itself was used as a source of
information in obtaining the equations for m (see Methods). However, the
equations also account for most of the other electrical properties of
Purkinje fibres, including the impedance changes, the responses to applied
current pulses, the effect of repetitive stimulation and the influence of
changes in ionic permeability, which were not used in formulating the
equations. Nevertheless, they are not yet based on sufficient direct experi-
mental evidence and will probably require further detailed modification
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when the results of voltage-clamp analysis similar to that done in squid
nerve are known.

Fig. 15. Ionic current-voltage relations. Interrupted curves, instantaneous
K current-voltage relations at various stages during computed action potential-
same curves as in Fig. 9. Thin continuous curve, steady-state Na current-voltage
relation given by Na equations used in this paper (as in Fig. 9). Thick continuous
curve, Na current-voltage relation obtained by substituting Hodgkin & Huxley's
m equations. Explanation in text.

SUMMARY

1. The equations formulated by Hodgkin & Huxley (1952a, b, c, d) to
describe the electrical activity of squid nerve have been modified to
describe the action and pace-maker potentials of the Purkinje fibres of the
heart.
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2. The potassium-current equations differ from those of Hodgkin &
Huxley in that K ions are assumed to flow through two types of channel in
the membrane: one in which g9 falls when the membrane is depolarized
and another in which gK very slowly rises.

3. The sodium-current equations are very similar to those of Hodgkin
& Huxley and are in part based on Weidmann's (1955) measurements of
the properties of the h system in cardiac muscle. A method for obtaining
equations for m by using some features of the action potential as an addi-
tional source of information is described.

4. The solution to these equations closely resembles the potential
changes in Purkinje fibres, the only major discrepancy being that the
maximum rate of depolarization is smaller in the computed action potentials
than in those recorded experimentally. Possible reasons for this dis-
crepancy are discussed.

5. The predicted changes in ionic conductances, ionic currents and
fluxes are described.

6. The variation in the computed membrane impedance during the
action and pace-maker potentials is very similar to that observed experi-
mentally in Purkinje fibres.

7. Some of the effects of applied currents, repetitive stimulation and
changes in ionic permeabilities have been reproduced. In general, the
behaviour of the equations corresponds quite well with the observed
behaviour of Purkinje fibres.
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