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Abstract
The effects of aging on decision time were examined in a brightness discrimination experiment with
young and older subjects (ages, 60–75 years). Results showed that older subjects were slightly slower
than young subjects but just as accurate. Ratcliff’s (1978) diffusion model was fit to the data, and it
provided a good account of response times, their distributions, and response accuracy. There was a
50-msec slowing of the nondecision components of response time for older subjects relative to young
subjects, but response criteria settings and rates of accumulation of evidence from stimuli were
roughly equal for the two groups. These results are contrasted with those obtained from letter
discrimination and signal-detection-like tasks.

Overall slowing of response time (RT) is a hallmark characteristic of aging. Fisher and Glaser
(1996), Ratcliff, Spieler, and McKoon (2000), Ratcliff, Thapar, and McKoon (2001), and
Thapar, Ratcliff, and McKoon (in press) have recently argued that this slowing can be best
understood through models that allow the various components of cognitive processes to be
individually examined. Models can be useful not only in revealing which tasks suffer
decrements with age, but also in identifying the components of the cognitive processes that are
responsible for the observed decrements in performance.

Ratcliff et al. (2001) applied the diffusion model (Ratcliff, 1978, 1981, 1985, 1988, 2002;
Ratcliff & Rouder, 1998; Ratcliff & Rouder, 2000; Ratcliff, Van Zandt, & McKoon, 1999) for
simple two-choice decisions to data from a signal detection task for college-age subjects and
for older subjects (ages, 60–75 years). In the diffusion model, a decision is made when
information accumulated over time from a stimulus reaches one or the other of two response
criteria (representing the two-choices available to the subject). Increases in mean RT can come
about from changes in the response criteria, changes in the amount of information available
per unit time from the stimulus, and/or changes in components of responding outside the
decision process (nondecision components—e.g., stimulus encoding, response execution).
Which possibility is responsible for mean RT increases in any given set of data is determined
by fitting the model to correct and error RT distributions and accuracy rates. Fitting all of these
dependent variables simultaneously makes the model highly constrained (see Ratcliff, 2002).

For the signal detection task they investigated, Ratcliff et al. (2001) found the usual slowing
of RTs for older subjects relative to young subjects, coupled with approximately equal accuracy
rates for the two groups. The diffusion model explained the longer RTs of the older subjects
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as a combination of a 50-msec increase in nondecision components of processing and more
conservative response criteria. The rate of accumulation of information over time was the same
for the older subjects as for the young. Thapar et al. (in press) also found the usual slowing of
RTs for older subjects with a masked-presentation letter discrimination task, and their older
subjects were less accurate than the young. The diffusion model showed the same effects as
those with Ratcliff et al.’s (2001) signal detection task—a 50-msec slowing of nondecision
components of RT and more conservative response criteria—but older subjects had a rate of
accumulation of information that was half that of the young subjects.

In this article, we present data for young and older subjects from a two-choice, masked-
brightness discrimination task and show how age-related differences in performance in this
task contrast with the age-related differences in letter discrimination found by Thapar et al. (in
press). We also show how the diffusion model explains this contrast and discuss how the model
allows more insightful interpretations of aging effects than do earlier analyses—in particular,
Brinley plot analyses (Brinley, 1965). The appropriateness of Brinley analyses has been
challenged recently on a variety of fronts (see Fisher & Glaser, 1996; Ratcliff et al., 2000), and
for the data presented here, we argue that the best interpretation of the effects of aging on RT
comes not from Brinley plot analyses, but from the kind of comprehensive theoretical accounts
that can be provided by models like the diffusion model.

One significant property of the diffusion model is that it provides an explanation of the full set
of dependent variables in two-choice tasks—that is, both RT and accuracy data. In
accommodating accuracy data as well as RT data, the model allows theoretical linkage between
paradigms that use RT measures and those that use accuracy measures, such as threshold
detection tasks. For example, if older subjects show a decrement in threshold detection, relative
to young subjects, then in a two-choice version of the same task, they should show a decrement
in the rate of accumulation of information from the stimulus, with the size of the decrement
predictable from the threshold detection data.

Without a model that relates RT and accuracy data, the results from Ratcliff et al.’s (2001)
signal detection experiments and Thapar et al.’s (in press) letter discrimination experiments
would present a puzzle. For example, consider the generalized slowing hypothesis, a prominent
hypothesis that has been widely accepted and attributes age-related RT differences to a slowing
with age in the speed of all cognitive processes or in the speed of a general mechanism that
contributes to many cognitive processes (Cerella, 1985, 1990, 1991, 1994; Fisk & Warr,
1996; Myerson, Hale, Wagstaff, Poon, & Smith, 1990; Salthouse, 1985, 1996; Salthouse,
Kausler, & Saults, 1988). From the point of view of this hypothesis, the fact that the increase
in mean RT for old subjects relative to young subjects is about the same size in both Ratcliff
et al.’s (2001) and Thapar et al.’s experiments would indicate that cognitive processes are
affected similarly by age in the two tasks. But unlike the diffusion model, the hypothesis could
not explain why older and young subjects are about equally accurate in the signal detection
task, but not in the letter discrimination task.

The diffusion model’s ability to integrate RT and accuracy data into a single theoretical account
is highlighted in the experiment presented in this article. From Thapar et al.’s (in press) results,
we know that older subjects are slowed in two-choice, masked-letter discrimination. This
finding is consistent with findings in letter threshold identification tasks that show that letter
identification accuracy decreases with age (Coyne, 1981; Fozard, 1990; Spear, 1993).
Decreasing accuracy in letter identification can be attributed to the declining contrast sensitivity
for high spatial frequencies that has been found for older subjects in experiments using sine-
wave gratings (Owsley, Sekuler, & Siemsen, 1983). The diffusion model ties all of these
findings to a decrease, for older subjects, in the rate of accumulation of information from high
spatial frequency stimuli.
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For low spatial frequency stimuli, it appears that there is little effect of age on the accuracy of
threshold identification performance (Elliott, Whitaker, & MacVeigh, 1990; Owsley et al.,
1983).

If this is true, the diffusion model’s account of performance with high spatial frequency stimuli
can be tested. The prediction is that with low spatial frequency stimuli, the rates of accumulation
of information in a two-choice task should be the same for older and young subjects. Older
subjects should differ from young subjects only in other components of performance, such as
nondecisional processes or response criterion settings. To implement this test of the diffusion
model, we used two-choice masked-brightness discrimination.

The stimuli in the experiment were patches of black and white pixels. The subjects were asked
to decide, for each patch, whether it was dark or bright (see Ratcliff, 2002). Brightness was
implemented as the proportion of black to white pixels in the patch. The brightness and duration
of the stimuli were manipulated to vary response accuracy from near floor to near ceiling.
Although the patches have high spatial frequency information in them, the dark versus
bright decision must be made on the basis of global brightness (the information that would be
obtained by defocusing the eyes and judging a blurred patch). We expected that older subjects’
RTs would be longer than young subjects’ and that the increase would come from the
nondecisional components of processing and, perhaps, response criteria settings. But because
the required discrimination is based on low spatial frequency information, there should be no
decrement in the rate of accumulation of information for the older subjects. Furthermore, if
there is no decrement in the rate of accumulation of information, then (as will be explained
below) there should be a difference in performance between older and young subjects in RTs,
but not in accuracy.

THE DIFFUSION MODEL
The diffusion model is designed to apply only to two-choice decisions that are relatively fast
and composed of a single-stage decision process (as opposed to the multiple-stage decision
processes that might be involved in, e.g., reasoning or problem-solving tasks). As a rule of
thumb, the model would not be applied to experiments in which mean RTs are much longer
than about 1–1.5 sec. Other models in the same class as the diffusion model have been applied
to decision making (Busemeyer & Townsend, 1993; Roe, Busemeyer, & Townsend, 2001) and
simple RT (Smith, 1995).

The diffusion model assumes that decisions are made by a noisy process that accumulates
information over time from a starting point toward one of two response criteria or boundaries,
as in Figure 1, where the starting point is labeled z and the boundaries are labeled a and 0.
When one of the boundaries is reached, a response is initiated. The rate of accumulation of
information is called the drift rate (v), and it is determined by the quality of the information
extracted from the stimulus. For example, if a “bright” stimulus was displayed for a long time
prior to masking, information quality would be good, and the mean value of the drift rate toward
the bright boundary would be large. Within each trial, there is noise (variability) in the process
of accumulating information, so that processes with the same mean drift rate do not always
terminate at the same time (producing RT distributions) and do not always terminate at the
same boundary (producing errors). This source of variability is called within-trial variability.
Panel A in Figure 1 shows three processes, all with the same mean drift rate toward the top
boundary (shown by the arrow labeled Drift Rate). One terminates quickly at the correct
boundary, another terminates more slowly, and the third terminates at the incorrect boundary.

In the experiment presented in this article, the subjects were instructed to respond as quickly
as possible in some blocks of trials and to respond as accurately as possible in other blocks.
Speed–accuracy tradeoffs are modeled by altering the boundaries of the decision process:
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Wider boundaries require more information before a decision can be made, and this leads to
more accurate and slower responses. The dashed lines in panel A of Figure 1 show narrow
boundaries. With these boundaries, the processes terminate at the points labeled T, one with a
correct response and the other two with error responses.

Empirical RT distributions are positively skewed. The diffusion model naturally predicts this
shape by simple geometry, as is shown in panel B of Figure 1. Moving from left to right in the
figure, equal size decreases in the rate of approach to the boundary (the X values, shown by
the arrows) for the fastest processes lead to increases in response time smaller than those for
the slowest processes (shown by the Y and Z values, respectively).

Accounting for differences in RT between correct and error responses has long been a problem
(see Luce, 1986), but in the diffusion model, the relative speeds of correct and error responses
can be explained by assuming variability in components of processing across trials. Variability
in drift rate across trials leads to slow error responses, and variability in starting point leads to
fast error responses (see Ratcliff & Rouder, 1998; Ratcliff et al., 1999).

Besides the decision process, there are nondecision components of processing, such as
encoding and response execution. These are combined in the diffusion model into one
parameter, Ter (which is not shown in Figure 1). Like drift rate and starting point, Ter has
variability across trials (see Ratcliff, Gomez, & McKoon, in press;Ratcliff & Tuerlinckx,
2002). Because the standard deviation in the distribution of Ter is typically less than one quarter
the standard deviation in the decision process, the combination of the two (their convolution)
alters neither the shape of the RT distribution (see Ratcliff & Tuerlinckx, 2002, Figure 11) nor
the standard deviation for the distribution that is predicted from the decision process. For
example, if the standard deviation in Ter is 25 msec and the standard deviation in the decision
process is 100 msec, the combination (square root of the sum of squares) is 103 msec.
Variability in Ter stretches out the leading edge of the RT distribution, stretching the difference
between the .1 and the .3 quantiles (by typically less than 10% of the range, st, of the uniform
distribution assumed for variability in Ter).

In sum, the parameters of the diffusion model correspond to the components of the decision
process as follows: z is the starting point of the accumulation of evidence, a is the upper
boundary, and the lower boundary is set to 0. For the fits of the model to the data described in
this article, the boundaries were assumed to be symmetric about the starting point, so that z =
a/2. The amount of variability in the mean drift rate across trials is assumed to be normally
distributed with a standard deviation of η, and the variability in starting point is assumed to
have a uniform distribution with a range of sz. For each stimulus condition in an experiment,
it is assumed that the rate of accumulation of evidence is different, and so each has a different
value of drift, v. Within-trial variability in drift rate (s) is a scaling parameter for the diffusion
process (i.e., if it were doubled, other parameters could be multiplied or divided by two to
produce exactly the same fits of the model to data). Ter represents the nondecisional components
of RT, and the amount of variability in Ter across trials is assumed to have a uniform distribution
with a range of st.1

1A uniform distribution was chosen because it is a simple two-parameter distribution and because it has a fixed minimum. If a normal
distribution were used instead, there would be some minute probability of obtaining a negative time. If two distributions are added
(convolved)-for example, a diffusion model decision time distribution and a uniform distribution of Ter-and one of the distributions has
a much larger standard deviation than the other, the shape of the combination is determined by the distribution with the larger standard
deviation (e.g., Ratcliff & Tuerlinckx, 2002, Figure 11). Thus, other assumptions about the shape of the distribution of Ter would not
result in any difference in the quality of the fits or the estimates of the other parameters.
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EXPERIMENT
On each trial of the experiment, a patch of pixels was displayed on the screen and then masked.
The duration and brightness of the pixels was varied. A subject’s task was to indicate whether
the stimulus was dark or bright. Speed blocks, for which the subjects were asked to respond
as quickly as possible, alternated with accuracy blocks, for which the subjects were instructed
to respond as accurately as possible. The aim was to determine how fast older subjects can
respond when they are encouraged to go fast and how they compare under speed instructions
to young subjects asked to be accurate. Not only does the speed–accuracy manipulation provide
data for stringent tests of the diffusion model, it also emphasizes that mean RT is not a fixed
characteristic of a subject; rather, it is adjustable in the same way as, for example, hit and false
alarm rates in signal detection.

Method
Subjects—Thirty-six young adults (12 men and 24 women) and 35 older adults (15 men and
20 women) participated in the experiment. The young adults were college students from Bryn
Mawr, recruited from fliers posted on campus, and were paid for their participation. The older
adults were healthy, active, community-dwelling individuals, 60–75 years of age, living in the
suburbs of Philadelphia. The older adults were recruited from advertisements placed in local
newspapers and were paid for their participation. The subjects had to meet the following
inclusion criteria to participate in the study: a score of 26 or above on the Mini-Mental State
Examination (Folstein, Folstein, & McHugh, 1975); a score of 15 or less on the Center for
Epidemologogical Studies–Depression Scale (CES–D; Radloff, 1977); and no evidence of
disturbances in consciousness, medical or neurological disease causing cognitive impairment,
head injury with loss of consciousness, or current psychiatric disorder. The means and standard
deviations for standard background characteristics are presented in Table 1. The subjects’ static
visual acuity was screened to ensure that all the subjects had a minimum corrected visual acuity
of 20/30, using a Snellen “E” chart.

The subjects were tested individually for two, three, or four sessions; the number of sessions
was the number required to produce two sessions of stable data (i.e., data such that responses
were not becoming significantly faster from session to session). The young subjects usually
had stable performance in the first session, but the older subjects took one or two sessions for
performance to stabilize. Either two or three sessions of data per subject were used in the data
analysis and model fitting.

Stimuli—The stimuli were 64 × 64 arrays of black and white pixels on a gray background
(the whole display was 320 × 200 pixels). Brightness of the square was manipulated by varying
the probability that a pixel was white. Four checkerboard patterns, each 64 × 64 pixels, were
used to mask each stimulus; presented sequentially, they were a checkerboard with 2 × 2 black
and white squares, a checkerboard the same as the first but with the black and white squares
reversed, a checkerboard with 3 × 3 black and white squares, and its reverse. The checkerboards
were designed by trial and error to mask both smaller and larger random features of a stimulus
that might have remained visible through only one or two of the masks. The smaller
checkerboard seemed to eliminate the smaller random patterns in a stimulus, and the larger
checkerboard seemed to eliminate the larger random patterns. The stimulus and mask arrays
measured 0.9 in. on each side on a display measuring about 10 × 8 in. The subjects sat between
18 and 24 in. from the display.

Apparatus—The stimuli were presented on a Pentium II class machine, and the responses
were collected from buttonpresses on the computer’s keyboard—the/key for a bright response
and the z key for a dark response.
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Procedure—There were six levels of brightness, achieved with six values for the probability
of a pixel’s being white: .350, .425, .475, .525, .575, and .650. These were crossed with three
stimulus durations—50, 100, and 150 msec.

Each trial began with a + sign fixation point presented on a gray background for 250 msec.
Then the stimulus was displayed, followed by the four checkerboard masks displayed for 17
msec each. Then a gray background was presented until a response was made. In accuracy
blocks, if a response was correct, there was a 500-msec pause and then the next trial; if a
response was incorrect, the word ERROR was displayed for 300 msec and then erased, and then
there was a 500-msec pause before the next trial. In speed blocks, there was no accuracy
feedback. If a response was shorter than 250 msec, the message TOO FAST was displayed for 1,500
msec (to discourage the subjects from simply making rapid random responses to finish the
experiment quickly); if a response was longer than 700 msec, TOO SLOW was displayed for 300
msec. Then there was a 500-msec pause before the next trial.

In each session, there were five blocks of accuracy trials alternating with five blocks of speed
trials, with 144 trials per block presented in random order. There were a total of 40 trials for
each brightness, duration, and speed versus accuracy condition in each session.

In accuracy blocks, the subjects were instructed to respond accurately. In the speed blocks, the
subjects were instructed to respond quickly, using the TOO SLOW message as a guide to when they
were responding too slowly.

Results
In the data analyses, RTs shorter than 250 msec and longer than 3,000 msec were eliminated
for the young subjects (less than 0.6% of the data), and RTs shorter than 280 msec and longer
than 3,500 msec were eliminated for the older subjects (less than 0.3% of the data). Further
discussion of outliers and contaminants is given below in the section on fitting the diffusion
model to the data. At a minimum, there were 2,600 observations per subject.

Brinley plots—As was mentioned in the introduction, a standard procedure in aging research
is to construct Brinley plots of the data. Older subjects’ mean RTs for each experimental
condition are plotted against young subjects’ mean RTs for the same conditions. Although
Brinley plots can be produced from changes in any of several components in the diffusion
model, we present the plots here for the data from our experiment to show that our results are
consistent with the approximately linear functions obtained in other studies. Figure 2 shows
three fitted straight lines, one for the data from speed blocks, one for the data from accuracy
blocks, and one for the speed and accuracy blocks combined. The points on each function are
the points for the 18 experimental conditions (with bright responses to bright stimuli grouped
with dark responses to dark stimuli). For the speed blocks, the slope was 1.24 (intercept, 84
msec); for the accuracy blocks, the slope was 0.82 (intercept, 107 msec); and for the combined
data, the slope was 0.72 (intercept, 179 msec). The fact that the slope varies according to
whether all or part of the data are plotted illustrates one of the problems with interpretations
based on Brinley plots: It would not be expected that the amount of cognitive slowing for older
subjects, relative to young ones, would depend on whether experimental data for speed and
accuracy blocks of trials are plotted separately or combined. However, what is most surprising
is that the slope is less than one for both the accuracy condition and the combined data; usually,
the slope is greater than one.

The data points have 2 standard error bars plotted around them. For the speed plot and the
accuracy plot, the straight lines fall within the error bars (or ellipses that could be drawn around
them) for all but 3 or 4 out of 36 data points. In other words, the straight lines provide reasonably
good descriptions of the data. However, when the speed and accuracy data are combined, the
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straight line misses the confidence ellipses for about 10 data points, indicating that the straight
line does not provide an adequate description of the data. Although standard error bars are
usually not presented for Brinley plots, the data in Figure 2 illustrate why they should be: In
many cases in which data from different experiments or conditions are combined, a straight
line may not provide a good fit to the data (see Ratcliff, Spieler, & McKoon, 2003).

Accuracy—Figure 3 shows plots of the probability of a bright response as a function of six
levels of brightness and three stimulus presentation times for older and young subjects for the
speed and the accuracy conditions. At the short stimulus duration, there is a bias toward
responding bright, and at the long stimulus duration, there is a bias toward responding dark
(see Ratcliff, 2002). If there were no bias, the three functions would pass through the cross
hairs in the middle of the figure. The bias probably occurred because the neutral gray
background was perceived as dark, as compared with the white in the stimulus, at the shortest
stimulus duration. As will be seen below, this bias is treated exactly the same way in the
diffusion model as bias is treated in signal detection theory, with a criterion on drift rate
(Ratcliff, 1985;Ratcliff et al., 1999). For each stimulus presentation duration, response
probability for the two brightest stimuli is about the same, and the effect of stimulus duration
shows up for the darker stimuli.

Quantile probability functions—Quantitative models are needed to provide a complete
explanation of processing in this task—that is, to account for all aspects of the experimental
data. A model that deals only with correct mean RT is incomplete, since it cannot account for
accuracy rates, error RTs, or the shapes of RT distributions. If a model for mean RTs only were
extended, it would almost certainly make incorrect predictions. In contrast, the diffusion model
provides an account of all the dependent variables in the decision process—correct and error
RTs, their distributions, and accuracy rates. To fully test the diffusion model, it is fit
simultaneously to all these aspects of the data, which are plotted as quantile probability
functions (Figures 4 and 5).

In quantile probability functions, response probabilities are shown on the x-axis, and quantile
RTs are plotted vertically on the y-axis. For each condition of the experiment reported here,
the .1, .3, .5 (median), .7, and .9 RT quantiles are plotted for both error responses and correct
responses in Figures 4 and 5. The × s and ο s are data points (the × s for the .1, .5, .9 quantiles
and the ο s for the .3 and .7 quantiles), and the lines are the best-fitting functions from the
diffusion model, discussed below.

There were 36 conditions in the experiment: 3 stimulus duration conditions, 6 brightness
conditions, and 2 speed and accuracy conditions. Responses for the bright and the dark stimuli
were combined because their quantiles fell on the same function. For each of the 36 conditions,
there are two probabilities: the probability of a correct response and the probability of an error
(which equals 1 − the probability of a correct response). The subjects were generally above .
5 in accuracy, and so the responses plotted on the right hand side of the quantile probability
function are correct responses; the responses plotted on the left are errors. The function traces
out the difficulty of the conditions: The easiest conditions are those with the most extreme left
and right hand quantiles—that is, the quantiles with the highest probability of a correct response
and the lowest probability of an error. As an example, the condition with high brightness,
medium duration, and accuracy instructions has a probability correct of .875 and an error
probability of .125.

For each of the conditions, there are about 3,600 observations for correct and error responses
combined. For example, for a condition in which accuracy was .8, there were about 2,880
observations for correct responses and 720 for error responses, about 80 correct and 20 error
responses per subject on average. However, the subjects varied considerably in their accuracy,
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and for the easiest conditions, some subjects’ accuracy was above .95, so that they had fewer
than five errors, which means that they did not have the five RTs needed to plot the error
quantile probability function. For this reason, quantile RTs are not plotted for errors for the
easiest conditions (between three and seven quantiles are not plotted for the four plots in Figures
4 and 5).

The quantile probability function gives a summary picture of the data, including the shapes of
the RT distributions. For both older and young subjects, RT increases and accuracy decreases
as difficulty increases (i.e., as stimulus duration and brightness decrease), although the changes
are smaller with speed than with accuracy instructions. The overall shapes of the RT
distributions are about the same across all the conditions. The error RTs in each condition are
longer than the correct response RTs for the same condition (as can be seen by comparing the
correct RTs for a condition on the right side of the function against the error RTs for the same
condition on the left side).

Responses are considerably faster with speed than with accuracy instructions, as is shown in
Figures 4 and 5 for all quantile RTs. Responses are also more accurate with accuracy
instructions, but the effect is small, between 0 and .05.

With accuracy instructions, for correct responses, the RT distribution skews out as stimulus
difficulty increases. Across the conditions, the .1 quantile RTs increase a little, but the .9
quantiles increase much more, by as much as 300 msec. With speed instructions, the skewing
is less apparent, with only about 100 msec of slowing in the .9 quantile for older subjects and
a little less for young subjects.

Older subjects are slower than young subjects with speed instructions, by about 50 msec, but
with accuracy instructions, they are about equally fast. If anything, the .1 quantile RTs are
shorter for the young than for the older subjects, whereas the .9 quantile RTs are longer for the
young. The older and young subjects were about equally accurate in both the speed and the
accuracy conditions.

To summarize, in order to fit the data, the diffusion model has to produce moderately large
changes in RT with small changes in accuracy going from speed to accuracy instructions.
Accuracy decreases as brightness becomes less extreme and stimulus duration becomes
smaller, and RT distributions have to be right skewed, with the spread in the tail greater for
longer RTs, but with little change in the .1 quantile RT. The small changes in accuracy suggest
that there may be little effect of aging on drift rates because accuracy values determine drift
rates to a large degree. Because RTs are longer for older subjects in the speed condition, but
not in the accuracy condition, the model fits may show that older subjects use more conservative
criteria settings with speed instructions, but not with accuracy instructions.

DIFFUSION MODEL FITS
The diffusion model was fit to the data by minimizing a chi-square value with a general
SIMPLEX minimization routine that adjusts the parameters of the model to find the parameters
that give the minimum chi-square value. The data entered into the minimization routine for
each experimental condition were the RTs for each of the five quantiles for correct and error
responses and the accuracy values. The quantile RTs were fed into the diffusion model, and
for each quantile, the cumulative probability of a response by that point in time was generated
from the model. Subtracting the cumulative probabilities for each successive quantile from the
next higher quantile gives the proportion of responses between each quantile. For the chisquare
computation, these are the expected values, to be compared with the observed proportions of
responses between the quantiles (multiplied by the number of observations). The observed
proportions of responses for each quantile are the proportions of the distribution between
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successive quantiles (i.e., the proportions between 0, .1, .3, .5, .7, .9, and 1.0 are .1, .2, .2, .2, .
2, and .1) multiplied by the probability correct for correct response distributions or the
probability of error for error response distributions (in both cases, multiplied by the number of
observations). Summing over (observed − expected)2/expected for all conditions gives a single
chi-square value to be minimized (see Ratcliff & Tuerlinckx, 2002, for a detailed description).

Short outliers were trimmed out by choosing a time (250 msec for young subjects and 280msec
for older subjects) at which accuracy began to rise above chance (e.g., Swensson, 1972) and
long outliers (RTs longer than 3,000 msec for young subjects and 3,500 msec for older subjects)
were also eliminated from the analyses. Ratcliff and Tuerlinckx (2002) modeled remaining
contaminant RTs by assuming that they arose from a random delay added to the normal decision
process. The delay was assumed to vary uniformly between the minimum and the maximum
RTs in the condition, and there was a common probability of a contaminant across all
conditions. This adds one additional parameter to the diffusion model (po) to represent the
probability of a contaminant in each condition of the experiment. In the fits presented next,
po was typically .01 or less, and so contaminants played little role.

For the fits presented here, five parameters were held constant across the 18 stimulus duration
and brightness conditions and the speed versus accuracy instructions: po, Ter, st, sz, and η
(probability of a contaminant, nondecision component of RT, and across-trial variabilities in
Ter, z, and drift rate, respectively). Holding these five parameters constant reflects the
assumption that neither speed versus accuracy instructions nor the quality of the information
from the stimulus affects any of these components of the decision process. The separation of
the boundaries was assumed to be affected by the speed/accuracy manipulation, but not by
brightness or stimulus duration (because it was assumed that subjects could not identify the
stimulus duration or brightness in time to adjust criteria before making their decision). The
drift rate was assumed to be affected by duration and brightness, but not by speed/accuracy
instructions. Changes in drift rate move points along the quantile probability function but do
not alter the shape of the function.

To reduce the number of parameters, we set the drift rates for complementary bright and dark
stimuli to be complements of each other (e.g., bright drift rate equals minus dark drift rate).
However, individual subjects were often biased on the brightness dimension (see Figure 3),
and so we added a drift criterion for each stimulus duration (see Ratcliff, 1985,2002;Ratcliff
et al., 1999). The criterion value was added to the drift rate for all brightness values.

With these restrictions on parameters, the model must account for accuracy rates, the relative
speeds of correct and error responses, and the shapes of the RT distributions. Specifically, with
only boundary separation varying, the model must account for the small changes in accuracy
and the large changes in RT between the speed and the accuracy conditions. With only drift
rate varying, the model must account for the changes in accuracy and RT distribution shape
for both errors and correct responses as a function of brightness and stimulus duration.

We fit the diffusion model to the data in two ways. First, each subject’s data were fit
individually, and the parameter values were averaged across subjects. The means and standard
deviations for each of the parameters are shown in Tables 2 and 3. Standard errors in the
parameter values (for significance tests) can be found by dividing the standard deviations by
the square root of the number of subjects. Second, we fit the model to the data averaged over
all the subjects in a group (older vs. young subjects). These fits were used as the basis for the
predictions displayed in Figures 4 and 5 (the solid lines). Group data have often been used in
the fitting of models, and the assumption (usually implicit) is that the fits and parameter values
for the group data will turn out to be the same as the averages from the fits for the individual
subjects. We provide both for comparison. The parameter values obtained from the group data
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and the average parameter values across individuals are within two standard errors of each
other for all parameters (see Tables 2 and 3). Also, the parameter

The fits (Figures 4 and 5) show that the model captures the changes in RT and accuracy as a
function of stimulus duration, brightness, and speed versus accuracy instructions for both
correct and error responses, as well as the overall differences between the older and the young
subjects. The only noticeable misses are for the .9 quantile RTs with accuracy instructions (but
these are not severe misses, given the high variability in longer RTs; see Ratcliff & Tuerlinckx,
2002). If subjects were to truncate their responses after 1.5–2 sec of processing on some
proportion of the trials, the discrepancy in the .9 quantile in the accuracy condition would be
reduced or eliminated. This might happen if the decision boundaries were reduced as processing
time increased (cf. Luce, 1986, p. 375) or if the subjects simply truncated processing after some
long variable time.

Analysis of the parameter estimates showed that the older subjects differed from the young
subjects in only one way. The value of Ter was larger for older subjects than for young subjects
by about 40–50 msec [t (69) = 4.93; this was computed from the values of Ter for the fits to
the individual subjects]. This increase in Ter for older subjects relative to young subjects is
about the same size increase in Ter as that found by Ratcliff et al. (2003) and Thapar et al. (in
press). Drift rates and boundary separations for both the speed and the accuracy conditions
were not significantly different between older and young subjects. Thus, the older subjects
were obtaining stimulus information from the display at the same rate as the young subjects,
and they were setting the same decision criteria as the young subjects.

We computed chi-square values for each subject in the process of fitting the model to data, and
the mean values and SDs were χ2 = 951, SD = 408, for young subjects (average number of
observations = 4,735 per subject) and χ2 = 680, SD = 320, for older subjects (average number
of observations = 3,275 per subject). But as was noted in Ratcliff (2002), the diffusion model
is much more constrained than might be expected from the number of parameters used in fitting.
First, the nine drift rates and the three drift criterion parameters determine position along the
x-axis of the quantile probability function. They do not influence the shapes of the quantile
probability functions. Second, the value of Ter locates only the vertical positions of the quantile
probability functions; it does not also influence their shape. Third, the estimate of the proportion
of contaminant responses (po) is usually less than or near to .01 and has no effect on the
predicted quantile probability functions relative to the case in which it is zero. Fourth, although
variability in Ter (st) allows the .1 quantile response times to be more variable and more in line
with the observed variability, its only effect on quantile RTs is a less than 7-msec increase in
the difference between the .1 and the .3 quantile RTs. Fifth, the shape of the quantile probability
functions is determined only by the parameters η (standard deviation in drift across trials), Sz
(range of starting point across trials), and the values of boundary separation (a), one value for
the speed conditions and one for the accuracy conditions. All the parameters except a were
held constant across the speed and the accuracy data. Thus, the shape and location of the
quantile probability functions are determined by only three parameters, with only one of them
different for speed versus accuracy instructions.

Correlations between data and parameters across subjects—Figure 6 and Table 4
show scatterplots and correlations across subjects for mean values of accuracy, correct RTs, .
1 quantile RTs for correct responses, error RTs, and the parameters of the diffusion model—
the mean values of boundary separations, the nondecisional components of RT, and drift rates.
The means for the data were averaged across all brightness, stimulus duration, and speed and
accuracy conditions. The means for boundary separation and drift rate were computed by
averaging across all conditions (after first checking that the two boundary separations for speed
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and accuracy instructions behaved in the same ways across subjects and that the nine drift rates
behaved in the same ways across subjects).

For the empirical measures, correct and error RTs are highly correlated, and both are slightly
less correlated with .1 quantile RTs for correct responses. The correlation between accuracy
and the RT measures is close to zero, indicating that a subject’s accuracy level does not predict
his/her RTs.

There is only one correlation of note among the model parameters, a moderate negative
correlation between drift rate and boundary separation, but inspection of the scatterplot in
Figure 6 suggests that it is not particularly strong. All the other correlations are small.

There are a number of strong correlations between model parameters and empirical measures.
First, there are strong correlations between boundary separation and the RT measures. This
means that conservative boundary settings are reflected in long RTs. However, the correlation
between boundary separation and accuracy is close to zero. Second, there is a moderately high
correlation between drift rate and accuracy, which means that low accuracy reflects a low drift
rate—that is, a slow rate of evidence accumulation. Third, there is a moderately high negative
correlation between drift rate and correct RTs, which means that slower subjects tend to have
lower drift rates. Fourth, there is a strong correlation between the nondecisional component of
RT and the .1 quantile RT and a lower correlation between the nondecisional component of
RT and RTs.

The only correlation of any note that is not displayed in Table 4 or Figure 6 is the one between
standard deviation in drift across trials (η) and accuracy, a value of −.57. This indicates that
accurate subjects tend to have small standard deviations in drift across trials.

The most concise summary of these results is that, across subjects, accuracy tends to be
associated with drift rate and RTs tend to be associated with boundary separation and the
nondecisional component of RT, although the latter two are not associated. This suggests that
accuracy and RT values are determined by different factors in the diffusion model. If a subject
is accurate relative to other subjects, the subject’s drift rates are higher than those for the other
subjects, whereas if a subject is faster than other subjects, the subject’s boundary separations
are smaller than those for the other subjects.

GENERAL DISCUSSION
The results from this study are remarkable. Older subjects perform just as well as young
subjects in all aspects of performance in brightness discrimination, except that processes other
than those directly involved in the decision take 40–50 msec longer. There was no deficit in
the rate of extraction of information from the stimuli (drift rates) for the older subjects, and
they were not more conservative in their criteria settings.

These results have some similarity to those obtained by Ratcliff et al. (2001) in a signal
detection-like task. Ratcliff et al. (2001) found a 40- to 50-msec difference in the nondecision
component of RT between older and young subjects and no deficit in drift rate. However, in
contrast to the present study, they also found that older subjects adopted more conservative
decision criteria than did young subjects in both speed and accuracy conditions.

The present study contrasts in two ways to Thapar et al.’s (in press) study, in which masked
letter discrimination was examined. Although Thapar et al. found about the same difference
in nondecision components of RT, they found both more conservative decision criteria for
older subjects than for young subjects and a deficit in the rate of accumulation of evidence for
older subjects, as compared with young subjects. The difference in results is surprising at a
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cursory level because masked-letter discrimination and masked brightness discrimination are
similar perceptual tasks. However, as was discussed in the introduction, the perceptual
literature (e.g., Spear, 1993) provides evidence that with stimuli with high spatial frequencies,
such as letters, older adults have deficits in identification, relative to young subjects, whereas
with low spatial frequency stimuli, such as the stimuli in this experiment, there are no deficits
as a function of aging for our age range (deficits appear in 75- to 90-year-olds). Thus,
application of the diffusion model to the data from this experiment and Thapar et al.’s
experiment provides an account of the effects of aging on two different perceptual tasks that
is highly consistent with the perceptual literature. In particular, the drift rate in the diffusion
model, which represents the accumulation of evidence from the stimulus, shows the same effect
of aging as that obtained from other paradigms that use only accuracy, not RT, measures. The
diffusion model is a model of the decision process, and so it is able to identify a deficit in the
quality of evidence presented by the visual-processing system to the decision process, but it is
not able to identify where in visual processing the deficit occurs.

As the diffusion model is applied to a variety of tasks, patterns of results are becoming apparent
that allow rates of extraction of information from stimuli (as represented by drift rates in the
model) to be decoupled from nondecision components of RT and from criterion effects (just
as signal strength is decoupled from criterion in signal detection theory). Instead of a monolithic
account of processing speed solely in terms of mean correct RT, as has been popular in the
general slowing approach to aging, we have a componential account in terms of information
extracted from the stimulus and subject-adjustable decision criteria, an account that
encompasses correct and error RTs, their distributions, and accuracy. The three studies
conducted so far—this one, Ratcliff et al. (2001), and Thapar et al. (in press)—also indicate
that the measure of information extraction (drift rate) matches well with results obtained using
other measures, such as accuracy or threshold values. Finally, the good fits of the model add
to a growing body of results that support the diffusion model as an explanation of two-choice
decision processes and provide evidence of the generality of the model across experimental
paradigms.
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Figure 1.
An illustration of the diffusion model. Panel A shows three sample paths and two boundary
separations (the solid and the dotted lines). The points marked T represent the terminating
points when the boundary positions are at the dotted lines. Panel B represents how distribution
shape changes when drift rate changes by an amount X. The fastest responses slow by Y, and
the slowest responses slow by Z, leading to a small shift in the leading edge of the distribution
and a larger change in the tail, leading to increased skew.
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Figure 2.
Brinley plots for correct response times (RTs) for the experiment. The points on the graph
represent the same conditions for older and young subjects. Straight lines are fitted for speed
and accuracy conditions separately and for the conditions combined. Error bars are two
standard errors in mean RT.
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Figure 3.
Probability of a bright response as a function of brightness of the stimulus for three stimulus
durations and speed and accuracy conditions. The data are averaged over subjects.
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Figure 4.
Quantile probability plots for older subjects. The lines represent the theoretical fits of the
diffusion model, and the × s and ο s represent the data (vertically adjacent quantiles alternate
with × and ο symbols). The lines in order from the bottom to the top are for the .1, .3, .5, .7,
and .9 quantile response times (RTs). Correct responses are to the right of the .5 response
probability point, and the corresponding error responses are to the left; if the correct response
probability is p, the error response probability is 1 − p. Extreme errors (with a probability of
less than about .2) are not represented because a sizable proportion of the subjects had fewer
than five responses in these extreme conditions (five RTs are needed to compute five quantile
RTs).
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Figure 5.
Quantile probability plots for young subjects. The lines represent the theoretical fits of the
diffusion model, and the × s and ο s represent the data (vertically adjacent quantiles alternate
with × and ο symbols). The lines in order from the bottom to the top are for the .1, .3, .5, .7,
and .9 quantile response times (RTs). Correct responses are to the right of the .5 response
probability point, and the corresponding error responses are to the left; if the correct response
probability is p, the error response probability is 1 − p. Extreme errors (with a probability of
less than about .2) are not represented because a sizable proportion of the subjects had fewer
than five responses in these extreme conditions (five RTs are needed to compute five quantile
RTs).
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Figure 6.
Scatterplots of accuracy, mean correct response time (RT), .1 quantile RT for correct responses,
mean error RT, and, from fits of the diffusion model to the data, mean boundary separation
(average of speed and accuracy settings), mean value of the nondecisional component of RT,
and mean value of drift across conditions for all subjects (young and old) in the experiment.
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Table 1
Subject Characteristics

Older adults Young adults

Test M SD M SD

Age 67.95 4.80 19.63 1.11
Years of education 15.13 2.22 12.67 1.03
MMSE 28.89 1.39 29.11 0.94
Vocabulary 13.41 2.38 14.49 2.26
Picture completion 11.74 2.06 11.24 2.79
IQ estimate 114.90 11.28 116.76 12.11
Mood 8.09 5.20 9.84 3.87

Note—MMSE, Mini-Mental State Examination.
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Table 2
Parameters for Fits of the Diffusion Model

as aa Ter η sz po st

Young fit to average data 0.072 0.128 0.406 0.124 0.030 .011 0.170
Young average parameters 0.073 0.135 0.405 0.151 0.037 .010 0.172
Young SDs in parameters 0.013 0.030 0.025 0.061 0.022 .006 0.046
Old fit to average data 0.071 0.116 0.459 0.155 0.033 .007 0.156
Old average parameters 0.074 0.122 0.448 0.156 0.030 .009 0.167
Old SDs in parameters 0.015 0.025 0.027 0.045 0.017 .004 0.037

Note—as, boundary separation for speed condition; aa, boundary separation for accuracy condition; Ter, nondecision component of response time; η,
standard deviation in drift across trials; sz, range of the distribution of starting point (z); po, proportion of contaminants; and st, range of the distribution
of nondecision times.
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Table 3
Drift Rates for Fits of the Diffusion Model

Brightness Flash Time (msec) Young Fit to
Average Data

Young Means
Over Subjects

Old Fit to
Average Data

Old Means
Over Subjects

.350 & .650 50 0.339 0.358 0.379 0.348

.425 & .575 50 0.192 0.212 0.234 0.217

.475 & .525 50 0.126 0.097 0.085 0.101

.350 & .650 100 0.356 0.410 0.428 0.433

.425 & .575 100 0.270 0.283 0.270 0.288

.475 & .525 100 0.117 0.104 0.102 0.100

.350 & .650 150 0.348 0.416 0.438 0.451

.425 & .575 150 0.267 0.309 0.263 0.329

.475 & .525 150 0.179 0.183 0.140 0.184
Bias (add to drift rates
above)

50 0.066 0.059 0.046 0.048

100 0.003 0.003 −0.026 −0.025
150 −0.037 −0.027 −0.095 −0.045

Note—Standard deviations are .10 when drift rate is .35, .07 when drift rate is .25, and .05 when drift rate is .10. Drift rates are within 4% of each other
for old and young for means over subjects (old are 4% higher than young) and within 1% for fits to average data. A single correlation of plus or minus .
33 would be significant at a .05 level.
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Table 4
Correlations Between Accuracy and Response Time (RT) Measures and Diffusion Model Parameters

Accuracy Mean Correct RT Correct .1
Quantile

RT

Mean Error RT a Ter v

Accuracy 1.00 −.12 .13 .21 −0.07 05 .53
Mean Correct RT −.12 1.00 .72 .88 .82 .56 −.52
Correct .1
Quantile RT

.13 .72 1.00 .75 .38 .83 −.16

Mean error RT .21 .88 .75 1.00 .74 .57 −.21
a −.07 0.82 .38 74 1.00 .09 −.39
Ter .05 0.56 .83 .57 .08 1.00 −.12
V .53 −.52 −.16 −.21 −.39 −.12 1.00

Note—a, boundary separation averaged over speed and accuracy conditions; Ter nondecision component of response time; and v, drift rate. A single
correlation of .24 would be significant at a .05 level.
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