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Abstract

The effects of aging on response time (RT) are examined in 2 lexical-decision experiments with
young and older subjects (age 60-75). The results show that the older subjects were slower than the
young subjects, but more accurate. R. diffusion model provided a good account of RTs, their
distributions, and response accuracy. The fits show an 80-100-ms slowing of the nondecision
components of RT for older subjects relative to young subjects and more conservative decision
criterion settings for older subjects than for young subjects. The rates of accumulation of evidence
were not significantly different for older compared with young subjects (less than 2% and 5% higher
for older subjects relative to young subjects in the 2 experiments).

Across a wide variety of cognitive tasks, research has shown that processing slows with age.
For some tasks, especially those like letter discrimination that depend heavily on peripheral
processes, this is not surprising (e.g., Thapar, Ratcliff, & McKoon, 2003). However, for other
tasks it might be expected that performance would improve with age. One such task is lexical
decision, the task of interest in this article. Over a lifetime of 60 to 70 years, the number of
encounters with many words must greatly exceed the number of encounters in the first 20 years.
Yet despite so many years of practice, lexical-decision response times (RTs) increase with age.
For example, Allen, Madden, and Crozier (1991) found average RTs of 800 ms for older adults
compared with 500 ms for young adults. Word frequency effects, longer RTs with lower
frequency words, are also larger for older adults (see Allen et al., 1991; Allen, Madden, Weber,
& Groth, 1993; Allen, Sliwinski, & Bowie, 2002; Lima, Hale, & Myerson, 1991).

Recently, Ratcliff, Gomez, and McKoon (2004) have applied the diffusion model for two-
choice decisions (Ratcliff, 1978, 1981, 1985, 1988, 2002; Ratcliff & Rouder, 1998, 2000;
Ratcliff & Smith, 2004; Ratcliff, Van Zandt, & McKoon, 1999) to lexical-decision data. The
model allows processing to be separated into several components: the rate at which information
about the stimulus string of letters accumulates in the decision system (which reflects the
goodness of match between the test string and lexical memaory), the criteria that determine the
amounts of information that must be accumulated before a decision can be made, nondecision
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components of processing such as encoding and response execution, and variabilities in the
various components. Ratcliff, Gomez, and McKoon applied the model to nine experiments in
which word frequency, type of nonword, number of repetitions, and proportions of different
types of stimuli were manipulated. The model fit the data well, accounting for the effects of
the experimental variables on RTs for correct and error responses, shapes of the RT
distributions, and accuracy values. All of the variables affected only the rate of accumulation
of evidence and none of the other components of processing.

Our aim for this article is to use the diffusion model to compare lexical-decision performance
for older subjects, 60-75 years, and young, college-age, subjects. Two experiments
manipulated word frequency and type of nonword. If, following Ratcliff, Gomez, and
McKoon’s (2004) results, these variables affect only the rates of accumulation of evidence,
then it might be expected that the older subjects, given their many years of experience with
words, would have larger rates of accumulation of evidence than the young subjects. Longer
RTs for the older subjects relative to the young subjects might come from slower nondecision
components of processing and from more conservative decision criteria, as has been found in
earlier studies (Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, & McKoon,
2001, 2003; Thapar et al., 2003).

Across several tasks, including a brightness discrimination task, signal detection-like tasks, a
recognition memory task, and a letter discrimination task (following Ratcliff, Thapar, et al.,
2004; Ratcliff et al., 2001, 2003; Thapar et al., 2003), older subjects have consistently adopted
more conservative decision criteria than did young subjects and they have been 40 to 100 ms
slower in the nondecision components of processing. In brightness discrimination, signal
detection using arrays of asterisks with a large/small numerosity judgment, and recognition
memory, their rates of accumulation of evidence have not been significantly different than
young subjects’. However, when visual acuity was critical, in masked letter discrimination,
their rates show a significant deficit. This deficit for a task for which high spatial frequency
visual information is necessary, but not for tasks requiring only low spatial frequencies, is
consistent with findings in the psychophysical literature on aging (Coyne, 1981; Fozard,
1990; Owsley, Sekuler, & Siemsen, 1983; Spear, 1993).

In another study comparing lexical-decision performance across populations of subjects,
Ratcliff, Perea, Coleangelo, and Buchanan (in press) reanalyzed lexical-decision data collected
by Moreno, Buchanan, and Van Orden (2002) from aphasic patients and normal control
subjects. There were large RT differences between the two groups, but when the diffusion
model was fit to the data, it was found that the rates of accumulation of evidence did not differ
significantly between the aphasic patients and the normal subjects (except for two severely
impaired aphasic patients). The large differences in RTs between the groups were accounted
for by the aphasic patients” much slower nondecision components of RT and their more
conservative decision criteria. This pattern of results is consistent with the view that aphasic
patients suffer from a failure of inhibition that leads to difficulties with lexical selection rather
than damage to the lexical representations themselves (Buchanan, McEwen, Westbury, &
Libben, 2003).

In all of the studies just reviewed, the diffusion model fits the data well, giving a complete
account of correct and error RTs, RT distributions, and accuracy values. In giving an account
that includes both RTs and accuracy, the model provides an interpretation of RT effects of
whether accuracy is the same for older and young subjects or different. It also allows differences
in criteria settings between older and young subjects to be factored out of interpretations of
differences in performance. In contrast, under the more common approach to the effects of
aging on processing, exemplified by Myerson, Ferraro, Hale, and Lima’s (1992) meta-analysis
of a number of lexical-decision experiments with priming manipulations, experimental results
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are interpreted only in terms of correct mean RTs. Averaging over a large number of lexical-
decision experiments (22), Myerson et al. found that error rates were about the same for older
and young subjects. However, there were large RT differences—older subjects’ lexical-
decision RTs were 250 to 300 ms longer than those of young subjects’. By applying the
diffusion model to these data, it should be possible to determine whether the similar accuracy
values indicate similar rates of accumulation of lexical evidence or slower rates of
accumulation offset by more conservative response criteria.

The Diffusion Model

The diffusion model is a model of the processes involved in making simple two-choice
decisions. It separates the rate of evidence accumulation in the decision process from the
decision criteria and from nondecision components of processing. The model is designed to
apply only to relatively fast two-choice decisions and to decisions that are composed of a single-
stage decision process (as opposed to the multiple-stage decision processes that might be
involved in, for example, reasoning tasks or card-sorting tasks). As a rule of thumb, the model
would not be applied to experiments in which mean RTs are much longer than about 1 to 1.5
s. Models in the class of diffusion models have also been applied to decision making
(Busemeyer & Townsend, 1993; Roe, Busemeyer, & Townsend, 2001) and simple reaction
time (Smith, 1995). A comprehensive comparison between the diffusion model, other diffusion
models, and other models of the sequential sampling class is presented in Ratcliff and Smith
(2004). This comparison includes fits of the various models to a lexical-decision experiment
presented in Wagenmakers, Ratcliff, Gomez, and McKoon (2004). Some of these other models
might also apply to the data from the experiments presented here.

The model assumes that decisions are made by a noisy process that accumulates information
over time from a starting point toward one of two response criteria or boundaries, as in Figure
1, where the starting point is labeled z and the boundaries are labeled a and 0. When one of the
boundaries is reached, a response is initiated. The rate of accumulation of information is called
the “drift rate” (v), and it is determined by the quality of the information extracted from the
match between the test word and lexical memory. In other words, word knowledge is
represented in the drift rate of the model. For example, a high-frequency word will produce a
high match and therefore a high drift rate, while a low-frequency word will produce a low
match and a low drift rate. Within each trial, there is noise (variability) in the process of
accumulating information so that processes with the same mean drift rate do not always
terminate at the same time (producing RT distributions) and do not always terminate at the
same boundary (producing errors). This source of variability is called “within-trial” variability.
Empirical RT distributions are positively skewed, and this is naturally predicted by simple
geometry (see Ratcliff & Rouder, 1998, Figure 1).

Components of processing are assumed to be variable across trials, and the assumption of such
variability allows the model to account for differences in RTs between correct and error
responses (Luce, 1986). Variability in drift rate across trials leads to slow errors, and variability
in starting point leads to fast errors (Ratcliff & Rouder, 1998; Ratcliff et al., 1999). Drift rate
is assumed to be normally distributed with standard deviation n which means that nominally
equivalent stimuli vary in their match to lexical memory from trial to trial (cf. signal detection
theory), and starting point is assumed to be uniformly distributed with range s,.

Besides the decision process, there are nondecision components of processing such as encoding
and response execution. These are combined in the diffusion model into one component with
mean Tg, (see the inset in Figure 1). Like drift rate and starting point, the nondecision
component of processing is assumed to have variability across trials, and it is assumed to be
uniformly distributed with range s;. The effect of variability in the nondecision component of
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processing depends on the mean value of drift rate (Ratcliff & Tuerlinckx, 2002). With a large
value of mean drift rate, variability acts to shift the leading edge of the RT distribution shorter
than it would otherwise be (by as much as 10% of s;). With smaller values of drift rate, the
effect is smaller. The standard deviation in the distribution of the nondecision component of
processing is typically less than one quarter of the standard deviation in the decision process,
so the combination of the two (convolution) will have little effect on distribution shape and on
the standard deviation in the distribution predicted from the decision process. For example, if
sy = 100 ms (SD = 28.9 ms) and the standard deviation in the decision process is 100 ms, the
combination (square root of the sum of squares) is 104 ms. With variability in the nondecision
component of processing, Ratcliff and Tuerlinckx showed that the diffusion model could fit
data with considerable variability in .1 quantile RTs across experimental conditions.

Variability in the nondecision component of processing (represented by the parameter s;) also
plays an important role in fits of the model to lexical-decision data (see Ratcliff, Gomez, &
McKoon, 2004). An important result obtained by Balota and Spieler (1999) is that there is a
relatively large shift in the leading edge of the lexical-decision RT distribution as a function
of word frequency for correct responses. The leading edge of the distribution for high-
frequency words is about 30 ms shorter than the leading edge for low-frequency words. This
shift is larger than would be expected from the diffusion model if there were no variability in
the nondecision component of processing. Without variability in the nondecision component
of processing, the model can accommaodate only 19 ms of the 30-ms leading edge shift
(assuming parameter values similar to those for the fits of the diffusion model presented later).
Ratcliff, Gomez, and McKoon replicated Balota and Spieler’s results and showed that with
variability in the nondecision component of RT, the large change in the leading edge of the
distribution was fit with only drift rate changing.

In summary, the parameters of the diffusion model correspond to the components of the
decision process as follows: z is the starting point of the accumulation of evidence, a is the
upper boundary, the lower boundary is set to 0, i is the standard deviation in mean drift rate
across trials, s, is the range of the starting point across trials, and s; is the range of T, across
trials. For each different stimulus condition in an experiment, it is assumed that the rate of
accumulation of evidence is different, so each has a different value of drift, v. Within-trial
variability in drift rate (s) is a scaling parameter for the diffusion process (i.e., if it were doubled,
other parameters could be multiplied or divided by two to produce exactly the same fits of the
model to data).

Experiments 1 and 2

Method

The experiments used a standard lexical-decision procedure. On each trial, a single letter string
was presented and subjects were asked to decide whether it was a word or a nonword. In
Experiment 1, the nonwords were pronounceable; in Experiment 2, they were random strings
of letters. In both experiments, there were high-, low-, and very low-frequency words.

Subjects—Fifty-four young adults (36 women and 18 men) and 44 older adults (27 women
and 17 men) participated in Experiment 1, and 54 different young adults (38 women and 16
men) and 40 different older adults (26 women and 14 men) participated in Experiment 2.
Subjects were tested individually for one practice session of about 20 min that followed
collection of data for the inclusion criteria described next. They returned within a week for the
experimental session.

The young adults were college students who participated for course credit in an introductory
psychology course at Northwestern University. The older adults were healthy, active,
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community-dwelling individuals age 60-75 years old living in Evanston, in the nearby suburbs
or in the suburbs adjacent to Bryn Mawr. The older subjects were paid $15 for a 1-hr session
for their participation. Participants had to meet the following inclusion criteria to participate
in the study: a score of 26 or above on the Mini-Mental State Examination (Folstein, Folstein,
& McHugh, 1975); ascore of 15 or less on the Center for Epidemiological Studies—Depression
Scale (CES-D; Radloff, 1977); and no evidence of disturbances in consciousness, medical or
neurological disease causing cognitive impairment, head injury with loss of consciousness, or
current psychiatric disorder. The means and standard deviations for standard background
characteristics (including a Wechsler Adult Intelligence Scale—Revised [Wechsler, 1997] 1Q
estimate) are presented in Table 1.

Stimuli—The stimuli were high-, low-, and very low-frequency words and nonwords. There
were 800 high-frequency words with frequencies from 78 to 10,600 per million (M = 325,
SD = 645; Kucera & Francis, 1967); 800 low-frequency words, with frequencies of 4 and 5
per million (M = 4.41, SD = 0.19); and 741 very low-frequency words, with frequencies of 1
per million or no occurrence in the Kucera and Francis’s corpus (M = 0.365, SD = 0.48). All
of the very low-frequency words did occur in the Merriam-Webster’s Ninth New Collegiate
Dictionary (Merriam-Webster, 1990), which were then screened by three Northwestern
undergraduate students; any words they did not know were eliminated. Stimuli were chosen
randomly without replacement from the pools.

From each word, a pseudoword was generated by randomly replacing all of the vowels with
other vowels (except for u after g), giving a pool of 2,341 nonwords, none of which were words.
This pool was used for Experiment 1. For Experiment 2, there was a pool of 2,400 random
letter strings, created by randomly sampling letters from the alphabet and then by removing
those strings that were pronounceable. These pools are described in more detail in Ratcliff,
Gomez, and McKoon (2004).

Apparatus—Stimuli were presented on a Pentium Il class machine, and responses were
collected on the keyboard.

Procedure—The practice session consisted of 30 blocks each with 30 lexical-decision trials
(taking about half an hour), and the experimental session consisted of 70 blocks of 30 lexical-
decision trials (taking about 50 min). Subjects were given a chance to rest between each block
of trials that was self-paced.

A block of trials consisted of 5 high-, 5 low-, and 5 very low-frequency words and 15 nonwords.
Each stimulus string of letters was displayed on the PC screen until the subject responded by
pressing the / key for a word and the z key for a nonword. If a response was correct, there was
a 150-ms pause and then the next trial began; if a response was incorrect, the word ERROR
was displayed for 750 ms, then erased, and the next trial was presented 50 ms later. Subjects
were instructed to respond quickly and accurately.

In the data analyses for Experiment 1, RTs smaller than 300 ms and greater than 3,000 ms were
eliminated for young subjects (less than 1.5% of the data), and RTs smaller than 350 ms and
greater than 4,000 ms were eliminated for older subjects (less than 1.5% of the data). In
Experiment 2, the cutoffs were the same but the proportion of RTs eliminated was less than
0.5% for both older and young subjects. Further discussion of outliers and contaminants is
presented in the Fitting the Diffusion Model to the Data section.
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Many subjects made few errors, so in order to obtain reliable estimates of RT distribution
shapes for error responses, we grouped subjects with similar performance in terms of RT to
form supersubjects. This is an appropriate procedure for fitting the diffusion model, because
in other experiments (Ratcliff, Thapar, et al., 2004; Ratcliff et al., 2001, 2003; Thapar et al.,
2003) fits to average data provided similar parameter values to parameter values averaged
across fits to individual subjects. Because averaging over widely different levels of RT is more
likely to produce discrepancies in fits to data than grouping over widely different levels of
accuracy, we grouped subjects into supersubjects on the basis of correct RT for nonwords.
Nonwords were used because their estimate had a lower standard deviation—there were three
times as many observations as for each word category. For Experiment 1, there were 11 older
and 12 young supersubjects; for Experiment 2, there were 10 older and 10 young supersubjects,
each supersubject was made up of 2 to 6 individual subjects. For each of the supersubjects,
there were at least six error RTs in each condition.

A summary of the results is shown in Table 2. For correct responses to words, high-frequency
words had shorter RTs and higher accuracy than low-frequency words, which had shorter RTs
and higher accuracy than very low-frequency words. Accuracy for nonwords was higher, and
RTs were shorter when the nonwords were random letter strings (Experiment 2) than when
they were pseudowords (Experiment 1).

The older subjects were slower than the young subjects: Their correct RTs to words were longer
by 150 to 300 ms, and their correct RTs to nonwords were longer by 150 to 250 ms (the
differences in error RTs were even greater). Error rates were about twice as large for the young
subjects as for the older subjects (cf. Allen et al., 1991; Allen, Sliwinski, & Bowie, 2002).

Mean error RTs were sometimes shorter than correct RTs—and sometimes longer. However,
the behavior of these means has to be taken with a grain of salt. For some young supersubjects
in Experiment 1, for example, errors to very low-frequency words were 40 ms shorter than
correct RTs; for other young supersubjects, they were 200 ms longer. Generally, for young
subjects, the faster supersubjects had errors faster than correct responses while the slower
supersubjects had errors slower than correct responses (see similar results in Ratcliff, Gomez,
& McKoon, 2004). For older supersubjects, error responses were almost always slower than
correct responses.

There were large individual differences across supersubjects. For example, in Experiment 1,
the mean RTSs for correct responses for young supersubjects varied from 510 ms to 870 ms and
their accuracy varied from .83 to .94. There was similar variability across the older subjects.
Our strategy for fitting the diffusion model was to fit it both to the data averaged across the
supersubjects and to the data for each supersubject, comparing the parameters for the fit to the
average data to the average parameter values for the fits to the individual supersubjects.

There were differences in speed—accuracy relationships across young and older supersubjects:
For the young supersubjects, the fastest were the least accurate and the slowest were the most
accurate (e.g., for Experiment 1, average accuracy for the fastest was .87 and average accuracy
for the slowest was .93). In contrast, for the older supersubjects, the fastest were no less accurate
than the slowest, except for 1 supersubject (2 subjects) with lower accuracy (the accuracy
values were .96, .96 accuracy, and .89 for these three sets of supersubjects, respectively). These
results suggest that the young subjects were more likely to trade speed for accuracy than were
the older subjects. This might be a characteristic of young subjects in general, or it might be a
characteristic of young subjects participating in experiments for course credit in introductory
psychology subject pools.
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Brinley Plots

A procedure that has been standard for examining RTs in aging research is to plot older
subjects’ RTs for each experimental condition against young subjects’ RTs for the same
conditions to produce what is called a “Brinley plot” (Brinley, 1965). The typical result has
been that the plot is a straight line with a slope greater than one. This has been taken as evidence
for a decrease in the speed of processing with age. This view has received much support (e.g.,
Birren, 1965; Cerella, 1985, 1990; Cerella, Poon, & Williams, 1980; Fisk & Warr, 1996;
Salthouse, 1985, 1996; Salthouse, Kausler, & Saults, 1988) and much criticism and debate
(Allen, Ashcraft, & Weber, 1992; Allen et al., 1993; Cerella, 1994; Fisk & Fisher, 1994; Fisher
& Glaser, 1996; Hartley, 1992; Hertzog, 1992; Lima et al., 1991; Madden, 1989; Madden,
Pierce, & Allen, 1992; Myerson et al., 1992; Myerson, Wagstaff, & Hale, 1994; Perfect,
1994).

Ratcliff, Spieler, and McKoon (2000) argued against this view from a theoretical perspective
by showing that in the frameworks of explicit models, there are multiple ways that slowing in
mean RT can be produced, such as changes in the rate of accumulation of evidence, decision
criteria settings, or both. The fits of the diffusion model to the data from four experiments
(Ratcliff, Thapar, et al., 2004; Ratcliff et al., 2001, 2003; Thapar et al., 2003) showed that
sometimes decision criteria settings alone are responsible for the increase in RT, and sometimes
there is also a decrement in the rate of accumulation of evidence. See Myerson, Adams, Hale,
and Jenkins (2003) and Ratcliff, Spieler, and McKoon (in press) for further discussion of these
issues.

Although in models like Ratcliff’s diffusion model Brinley plots can be produced from any of
several different mechanisms, and therefore are not theoretically constraining (Ratcliff et al.,
2000), we present the plots here for the data from our experiments to show that our results
provide linear functions consistent with the results from previous studies. Figure 2 shows data
and fitted straight lines for Experiments 1 and 2. In each case, the mean RTs for correct
responses for older subjects are plotted against the mean RTs for young subjects for words of
each frequency class. Figure 2 also shows error bars representing two standard errors in the
mean RTs. The straight lines lie within confidence regions of the data points, so they are
reasonably described by linear functions (see Ratcliff, Spieler, & McKoon, in press). For
Experiment 1, with pseudowords as the nonwords, the slope is 1.40; for Experiment 2, with
random letter strings, it was significantly different, 1.95 (as can be seen from the two standard
error bars presented on the function).

The fact that the slope varies according to whether the nonwords are pseudowords or random
letter strings illustrates one of the problems with the slowing hypotheses derived from Brinley
plot analyses: It would not be expected that the amount of cognitive slowing for older subjects
relative to young subjects in lexical access differs as a function of the type of nonword used
in the experiment.

Quantile Probability Functions

One of the main arguments for the use of quantitative models is that providing a complete
explanation of processing in a task requires accounting for all aspects of the experimental data.
A model that deals with only correct mean RTs is incomplete because it does not deal with
accuracy, error RTs, or RT distributions. Such a model—if extended to make predictions about
accuracy, error RTs, and RT distributions—is almost guaranteed to make incorrect predictions.
To fully test the diffusion model, it is simultaneously fit to all aspects of the data. Plotting all
of these aspects of the data separately would make their relative behaviors difficult to grasp,
so we display the data in quantile probability functions (Figures 3 and 4).
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In quantile probability functions, response probabilities are plotted against quantile RTs. The
probability of a response for a particular stimulus type determines the position of a point on
the x-axis, and the quantile RTs for that stimulus type determine position on the y-axis.
Specifically, in Figures 3 and 4, the .1, .3, .5 (median), .7, and .9 quantiles are plotted for each
of the four experimental conditions: three values of word frequency and nonwords. There are
separate plots for word responses and nonword responses for each experiment. Because all of
the response probabilities are above .8 (for correct responses) and below .2 (for error
responses), we have only plotted the parts of the functions from 0 to .2 and from .8 to 1.0. The
symbols other than xs represent the data points and the lines, and xs are the best fitting functions
from the diffusion model, which is discussed later.

Quantile probability functions are used to provide a summary picture of the shapes of the RT
distributions. The .1 quantile RTs for correct responses change by less than 50 ms across the
various levels of accuracy for both young and older subjects. In contrast, the .9 quantile RTs
change by up to several hundred milliseconds. Across all conditions, the change in mean error
RT is mainly reflected in the RT distribution spreading rather than shifting.

The results show the expected patterns for the effects of word frequency and type of nonword
(cf. Ratcliff, Gomez, & McKoon, 2004) on RT distributions and accuracy values. The question
for the diffusion model is what components of processing are responsible for the effects of age
on RT and accuracy.

Fits of the Diffusion Model to the Data

The diffusion model was fit to the experimental data by minimizing a chi-square value with a
general SIMPLEX minimization routine that adjusts the parameters of the model to find the
parameters that give the minimum chi-square value (see Ratcliff & Tuerlinckx, 2002, for a full
description of the methods). The data entered into the minimization routine for each
experimental condition were the RTs for each of the five quantiles for correct and error
responses as well as the accuracy values. The quantile RTs and the diffusion model were used
to generate the predicted cumulative probability of a response by that quantile RT. Subtracting
the cumulative probabilities for each successive quantile from the next higher quantile gives
the proportion of responses between each quantile. For the chi-square computation, these are
the expected values to be compared to the observed proportions of responses between the
quantiles (multiplied by the number of observations). The observed proportions of responses
for each quantile are the proportions of the distribution between successive quantiles (i.e., the
proportions between 0, .1, .3, .5,.7,.9,and 1.0 are .1, .2, .2, .2, .2, and .1) that are multiplied
by the number of observations. Summing over (observed — expected)?/expected for all
conditions gives a single chi-square value to be minimized.

Research on fitting the diffusion model to data (Ratcliff & Tuerlinckx, 2002) has found that
when long or short outlier RTs are added to simulated data, the chi-square method cannot
accurately recover the parameter values that were used to generate the data. To address this
problem, as noted earlier, short outliers (RTs shorter than 300 ms for young subjects and shorter
than 350 ms for older subjects) were trimmed out by examining the time at which accuracy
began to rise above chance (e.g., Swensson, 1972) and long outliers (responses longer than
3,000 ms for young subjects and 4,000 ms for older subjects here) were also eliminated from
analyses. Ratcliff and Tuerlinckx showed that any remaining long contaminant RTs can be
explicitly modeled. A parameter (p,) is added to represent the probability of a contaminant in
each condition of the experiment. The contaminant is assumed to come from a uniform
distribution that has maximum and minimum values corresponding to the maximum and
minimum RTs in the condition. The psychological assumption behind this choice is that
subjects are delayed by a random amount of time on some small proportion of trials (e.g., a
momentary lapse of attention). For the data reported here, the value of the probability
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parameter, po, was not significantly different for older and young subjects for the two
experiments.

For the fits of the model presented here, seven parameters were held constant across the four
stimulus conditions (three values of word frequency and nonwords): boundary separation (a),
the starting point (z), the mean duration of the nondecision component of processing (Ter), the
range of the variability in the nondecision component of processing across trials (sy), the range
of the variability in the starting point across trials (s;), the standard deviation in across-trial
variability in drift rate (), and the probability of contaminant RTs (py). Holding these seven
parameters constant reflects the assumption that the quality of the information from the
stimulus does not differentially affect any of these components of the decision process. Only
drift rate can vary to model changes in performance across stimulus conditions. Changes in
drift rate move points along the quantile probability function. With the seven constant
parameters plus a different value of drift rate for each condition, the model must account for
accuracy values, the relative speeds of correct and error responses, and the shapes of the RT
distributions for correct and error responses (all the data shown by the quantile probability
functions in Figures 3 and 4). With only drift rate changing, the model must account for the
changes in accuracy and distribution shape for both error and correct response conditions as a
function of word frequency and nonword.

We fit the diffusion model to the data in two ways. First, the data from each supersubject were
fit individually and the parameter values were averaged across supersubjects, and second, the
data were averaged over supersubjects and then the model was fit to the averaged data. We
could not fit data from individual subjects because there would be too few error RTs in some
conditions for many subjects to provide quantiles.

The means for each of the parameter values across supersubjects are shown in Tables 3 and 4
along with their standard deviations. Standard errors in the parameter values (the basis for
significance tests additional to those presented next) can be found by dividing the standard
deviations by the square root of the number of supersubjects. The parameters from the fits to
the averaged data are also shown in Tables 3 and 4. These latter fits were used as the basis for
the predictions displayed in Figures 3 and 4 (the lines). Group data have often been used in
fitting models, and the assumption (usually implicit) is that the fits and parameter values to the
group data will turn out to be the same as the averages from the fits for the individual subjects
(other fits of the diffusion model show this to apply for the diffusion model; see Ratcliff,
Thapar, et al., 2001,2003,in press; Thapar et al., 2003). We provide both for comparison. The
parameter values obtained from the group data and the average parameter values across the
supersubjects were either within two standard errors or close to within two standard errors of
each other (see Tables 3 and 4). Also, the parameter values are in the range of parameter values
from applications of the diffusion model (Ratcliff, 2002;Ratcliff, Gomez, & McKoon,
2004;Ratcliff & Rouder, 1998,2000;Ratcliff et al., 1999,2001).

In general, the model captures the changes in RT distributions for both correct and error
responses as well as accuracy values as a function of stimulus condition, with only drift rate
changing across conditions. The only systematic misses are in the .9 quantile RTs for errors in
some of the conditions.

Analysis of the parameter estimates using t tests and analyses of variance (ANOVAs; .05
significance level, with all t tests using the Welch correction for degrees of freedom) showed
that the older subjects differed from the young subjects in several ways. First, the value of the
nondecision component of RT was larger for older subjects than for young subjects by about
100 ms in Experiment 1, t(17.84) = 3.63, and about 80 ms in Experiment 2, t(17.25) = 3.11,
approximately replicating Ratcliff, Thapar, etal. (2004), Ratcliff etal. (2001, 2003), and Thapar
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etal. (2003). Second, drift rates were slightly higher for older subjects than for young subjects,
by about 4.7%, but this difference was significant in neither Experiment 1, F(1, 21) = 0.31,
MSE = 0.0226, nor Experiment 2, F(1, 18) = 0.17, MSE = 0.0095. Drift rates differed among
stimulus conditions for both Experiment 1, F(3, 63) = 320.89, MSE = 0.00101, and Experiment
2, F(3, 54) = 241.82, MSE = 0.000408. (Note that drift rates for nonwords have the opposite
sign from drift rates for words, so they were converted to the same sign for the ANOVAs
because better performance means more positive drift rates for words and more negative drift
rates for nonwords.) Third, both boundary separation and starting point were greater for older
subjects than for young subjects in both Experiment 1, t(17.84) = 3.63; t(17.14) = 3.67, and
Experiment 2, t(17.24) = 3.10; t(17.41) = 2.72. Fourth, neither the standard deviation in drift
rate nor the range of the distribution of nondecision components of processing was different
for older and young subjects for either Experiment 1, t(20.90) = —0.057; t(13.39) = 0.31, or
Experiment 2, t(17.36) = —0.48; t(17.90) = —0.26. There was no difference in the range of the
distribution of starting points in Experiment 1, t(20.67) =—0.36, but young subjects had a larger
range in Experiment 2, t(14.32) = —3.65. Fifth, the older subjects had a larger proportion of
contaminant RTs in Experiment 1, t(14.17) = 2.14, and in Experiment 2, t(17.97) = 2.21.

In summary, the main differences between the older and young subjects were longer
nondecision components of processing and more conservative decision criteria for the older
subjects. We had thought that the older subjects might have a greater rate of accumulation of
evidence from the stimuli than the young subjects: Their average rate turned out to be slightly
(4.7%), although not significantly, larger. The differences among other parameter values were
small or nonsignificant.

We did not examine the consequences of grouping subjects into supersubjects differently than
was done here. Larger or smaller numbers of subjects per group might have provided more
power for the statistical tests, but it is clear that the difference in drift rates would not have
reached significance even if different groupings were used.

Goodness of fit—The average chi-squares across supersubjects were 203 for Experiment 1
and 304 for older and young subjects, respectively; for Experiment 2, they were 71 and 168
for older and young subjects, respectively. The number of degrees of freedom for each
experiment was 77 and the critical chi-square value was 98.5. Thus, for supersubjects, we see
systematic statistical deviations between theory and data, but for individual subjects, few of
the deviations would be significant because the number of observations would be reduced,
which would lead to the chi-square values being reduced by approximately dividing by the
number of subjects in each supersubject (between 2 and 6).

The chi-square statistic has the property that as the number of observations increases, the power
of the test increases, so even the smallest deviation will lead to a significant chi-square if the
number of observations increases enough. To illustrate, the chi-square value is the sum over
all frequency classes of (O — E)2/E, where O and E are the observed and expected frequencies.
Suppose in our computation, the observed and expected probabilities for two adjacent quantiles
systematically miss by .1 (e.g., one is .1 and the next is .3 instead of them both being .2). Then
the systematic contribution from this miss to the chi-square is N(.1)2/.3 + N(.1)%/.1, where N
is the number of observations in the condition. For this experiment with df = 77 and a critical
chi-square value of 98.5, if N = 100 per condition, the contribution to chi square from this
systematic deviation is 13.3, and if N = 1,750 per condition (the number of observations for
the word conditions for a supersubject with 4 subjects), the contribution to chi-square is 233,
avalue over two times greater than the critical value. This suggests that if the chi-square statistic
is to be used to evaluate goodness of fit, two questions must be asked: First, what size systematic
deviations would be considered large enough to make the model unattractive, and second, what
would be the contribution of such deviations to the chi-square for different sample sizes? In
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these experiments, for the average supersubject with 1,750 observations for each word
condition, if there were deviations of .03 in each of the expected frequencies between quantile
RTs, then summing over the three word conditions, 118 would be added to the chi-square value.
If there were similar deviations for the nonword condition (with three times the number of
observations), 236 would be added to the chi-square values. Thus, the significant values of chi-
square are consistent with maximum systematic deviations of about .03 in cumulative
probabilities.

Differences in accuracy between older and young subjects—Error rates for young
subjects were about twice as large as error rates for older subjects in both experiments. This
difference cannot be attributed to differences in drift rates because the differences in drift rates
were small and not significant. Instead, the difference in accuracy comes from differences in
criteria settings; older subjects adopt more conservative decision criteria (i.e., larger values of
boundary separation a) than do young subjects.

We know that criteria can be adjusted by experimental manipulations. In Ratcliff, Thapar, et
al. (2004), Ratcliff et al. (2001, 2003), and Thapar et al. (2003), explicit speed—accuracy
manipulations were carried out. Both older and young subjects were able to make changes in
RT of several hundred milliseconds with changes in accuracy of only a few percent.
Furthermore, Wagenmakers et al. (2004, Experiment 1) performed an experiment with young
subjects in which the same speed—accuracy manipulations were performed. They found that
mean RT increased from 486, 534, 550, and 535 ms to 624, 709, 761, and 746 ms for high-,
low-, and very low-frequency words and pseudowords, respectively. Corresponding changes
in accuracy were from .92, .82, .70, and .88 to .98, .94, .84, and .96 for high-, low-, and very
low-frequency words and pseudowords, respectively. These values show that young subjects
can trade speed for accuracy and that the sizes of the accuracy differences are consistent with
the argument that the accuracy differences between older and young subjects in the experiments
presented here are the result of criteria settings. Comparisons of the fits to those presented in
Wagenmakers et al. (see Ratcliff & Smith, 2004, Table 2) suggest that young subjects in
Experiment 1 are operating nearer their settings for accuracy instructions than their settings
for speed instructions.

Another way to show how criteria settings affect accuracy is to examine predictions from the
model when the settings are varied. We took all of the parameter values for young subjects for
Experiment 1 (Tables 3 and 4), except boundary separation, and generated predicted accuracy
and RT values by using the boundary separations from the older subjects (the fourth row in
Table 3). The accuracy values for high-, low-, very low-frequency words, and honwords were .
999, .975, .902, and .971, respectively. These values are within 1% of those for the older
subjects for Experiment 1 (Table 2). On the basis of these results, we conclude that differences
in speed-accuracy criterion settings for older versus young subjects are responsible for the
lower accuracy for young subjects relative to older subjects in our experiments.

Correlations among parameters, accuracy values, and mean RT—Ratcliff, Thapar,
et al. (2004) analyzed the correlations between model parameters and data. We examined the
patterns of correlations for young and older subjects for Experiments 1 and 2 in the same way
as in Ratcliff, Thapar, et al. The differences in accuracy among supersubjects for Experiment
2 were too small to provide any variability, so we present the analyses for Experiment 1 only.
We averaged the mean RTs and accuracy values for correct responses and the absolute values
of the drift rates over all conditions (three frequency classes of words and nonwords). We then
computed the correlations for young and older subjects separately and averaged these together
to produce the mean correlations that are presented in Table 5. The results are similar to those
in Ratcliff, Thapar, et al.: accuracy and mean RT are uncorrelated; boundary separation and

drift rate are moderately negatively correlated; boundary separation and mean RT are strongly
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correlated; drift rate and mean RT are moderately negatively correlated; accuracy and drift rate
are moderately correlated (this effect is smaller than in Ratcliff, Thapar, et al., possibly partly
because the supersubject grouping was performed on RT and not accuracy); and the parameter
for the nondecision components of processing, Ter, is correlated only with mean RT. These
results indicate that, averaged across all of the conditions of the experiment, RT was determined
mainly by the boundary separation that subjects adopted. More conservative subjects produced
longer RTs, and less conservative subjects produced shorter RTs. RT was not strongly
determined by drift rate; that is, faster subjects did not have much better lexical information
than slower subjects. However, accuracy was determined strongly by drift rate, that is, by
whether lexical information was good or bad. Accuracy was more weakly correlated with
boundary separation.

General Discussion

From the joint accuracy and RT data for both correct and error responses, the fits of the diffusion
model extract values of the parameters for the several components of processing. The results
show, first, that the nondecision component of RT was 80-100 ms longer for the older subjects
than for the young subjects and, second, that the older subjects adopted higher, more
conservative decision criteria settings. Ratcliff, Thapar, et al. (2004), Ratcliff et al. (2001,
2003), and Thapar et al. (2003) have shown that although older subjects’ criteria settings are
generally more conservative, it is also the case that they can vary their decision criteria
considerably. We speculate that older subjects adopt more conservative criteria in most tasks
because in some tasks, the information they extract from stimuli is relatively impoverished
(Thapar et al., 2003). Whether older subjects can set their criteria as low as young subjects
when asked to respond as quickly as possible is an open question.

Drift rates for the older and young subjects were about the same (the average difference, 0.017,
which is about 4.7%, was nonsignificant). Drift rates measure the quality of the match between
atest string of letters and lexical memory, and the finding that there is little difference between
older and young subjects suggests that the older subjects, despite their years of practice and
large differences in accuracy (Table 1), differed little in the quality of match from young
subjects.

The results obtained in the experiments reported here for older versus young subjects are similar
to those obtained in a signal detection task (Ratcliff et al., 2001), a recognition memory task
(Ratcliff, Thapar, et al., 2004), a brightness discrimination task (Ratcliff et al., 2003), and a
letter discrimination task with masking (Thapar et al., 2003). In all of these studies, older
subjects were slower than young subjects by about 40 to 100 ms in the nondecision components
of RT. In most conditions of most of the experiments, older subjects adopted more conservative
decision criteria than did young subjects. In all of the experiments, except masked letter
discrimination, older subjects had about the same drift rates as young subjects. The difference
between the two perceptual tasks—Iletter discrimination and brightness discrimination—is
consistent with the literature on letter identification when using accuracy and threshold
measures (Spear, 1993). In that literature, there is a deficit as a function of age for high spatial
frequency stimuli (e.g., letters), but no deficit with low spatial frequency stimuli (e.g.,
brightness patches).

The same general differences that were found here between older and young subjects were
found by Moreno et al. (2002) between aphasic patients and control subjects. The aphasic
patients’ lexical decisions were slower than the control subjects’ and about equally accurate.
Fitting the diffusion model to three groups of supersubjects (Ratcliff, Perea, et al., in press)
showed that the aphasic patients were slower than the control subjects in the nondecision
components of processing with values 577, 594, and 815 ms compared with 470, 459, and 481
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ms for the control subjects (compared with a mean of 539 ms for the older subjects here). Also,
the patients set their decision criteria much farther apart than did the control subjects, with
values of a at 0.283, 0.233, and 0.393 compared with 0.147, 0.148, and 0.196 for the control
subjects (compared with a mean of 0.183 for the older subjects here). However, although the
drift rates were somewhat lower for the patients compared with the controls, drift rates for
individual subjects overlapped between the two groups.

Semantic Priming Effects

One of the topics that has been studied a great deal in the aging literature is semantic priming
in lexical decision. The decrease in RT that occurs when a target test word is preceded by a
related word relative to an unrelated word is larger for older subjects than for young subjects.
Summarizing over 22 experiments, Myerson et al. (1992) found that the average ratio of the
priming effect for older to young subjects was 1.45 based on averaging mean RTs over
experiments and 1.64 based on averaging the ratios for each experiment. There was also high
variability in the ratio across experiments. Laver and Burke (1993) found that the semantic
priming effect was constant as a function of baseline, but later analyses that separated lexical
decision from other tasks confirmed the Myerson et al. findings (Hale & Myerson, 1995;
Myerson, Hale, Chen, & Lawrence, 1997).

In the diffusion model, the simplest assumption about priming effects is that they result from
a difference in drift rate, with the drift rate greater for primed than for unprimed test words.
The preference of some of the authors of this article is to interpret priming effects in the
framework of compound cue models (McKoon & Ratcliff, 1992; McNamara, 1992, 1994;
Ratcliff & McKoon, 1988, 1994). The compound cue that determines drift rate would be the
sum of the weighted products of the familiarity of the target word and the familiarity of the
prime to all items in memory (see examples in Ratcliff & McKoon, 1988). In the unrelated
condition, the prime and target would not share associates, so the sum of the products would
be low; in the related condition, the prime and target would share associates, so the products
for these shared associates would be large and their sum would be larger than that for the
unrelated condition.

Assuming that priming effects are produced by increased drift rates, we used the parameter
values for the diffusion model for Experiments 1 and 2 to examine the ratio of the sizes of
priming effects for older relative to young subjects. We assumed a drift rate of 0.4 for primed
test words and a drift rate of 0.3 for unprimed test words. We used the same two values for
both older and young subjects because there were no significant differences in their drift rates
in Experiments 1 and 2. All of the other parameter values were set to the values obtained in
the experiments. RTs were generated from the model with these parameter values, and priming
effects were then computed. The ratio of the priming effects for older to young subjects was
1.88 for Experiment 1 and 1.68 for Experiment 2. Both ratios fall in the range of those reported
by Myerson et al. (1992). These results show that holding drift rates constant between the older
and young subjects while the older subjects have more conservative decision criteria produces
aratio of priming effects in the typical range that has been obtained experimentally. The more
conservative decision criteria are all that is needed to produce the right scaling behavior to give
the larger priming effects for older subjects.

In summary, for lexical decision, like a variety of other two-choice tasks, the diffusion model
provides a method for decoupling the rate of extraction of information from stimuli from
criterion effects and from the nondecision components of RT. This allows hypotheses about
the information extracted from stimuli to be separated from hypotheses about subject-
adjustable decision criteria, which is in contrast to monolithic accounts of processing speed in
terms of only mean correct RT.
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Figure 1.

Anillustration of the diffusion model. The top panel illustrates the total processing time as the
sum of the decision time y and the nondecision time x, T, = mean of the nondecision component
of response time (RT), and s; = range of the distribution of nondecision times across trials (from
a uniform distribution). Parameters of the decision process are shown in the bottom panel: a
= boundary separation, z = starting point, n = standard deviation in drift across trials (from a
normal distribution), s, = range of the distribution of starting point (z) across trials (from a
uniform distribution), v = drift rate, p, = proportion of contaminants, and s = standard deviation
in drift within trials.
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Brinley plots for mean correct response time (RT) for Experiments 1 and 2. The points on the
graph represent the high-, low-, and very low-frequency word conditions for older and young
subjects. Straight lines are fitted to the means for Experiments 1 and 2 separately, and error

bars are 2 SEs in mean RT.
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Figure 3.

Quantile probability plots for Experiment 1. The lines and x symbols represent the theoretical
fits of the diffusion model, and the triangles, diamonds, squares, and circles represent the
empirical quantile response times (RTs). The lines in order from the bottom to the top are for
the .1, .3, .5, .7, and .9 quantile RTs. The symbols H, L, V, and N below the .1 quantile RTs
identify the high-, low-, and very low-frequency word conditions and the nonword condition,

respectively.
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Figure 4.

Quantile probability plots for Experiment 2. The lines and x symbols represent the theoretical
fits of the diffusion model, and the triangles, diamonds, squares, and circles represent the
empirical quantile response times (RTs). The lines in order from the bottom to the top are for
the .1, .3, .5, .7, and .9 quantile RTs. The symbols H, L, V, and N below the .1 quantile RTs
identify the high-, low-, and very low-frequency word conditions and the nonword condition,
respectively.
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Table 1
Subject Characteristics
Older Adults Young Adults
Experiment and measure M SD M SD
1
Age 68.53 4.83 19.78 121
Years of education 16.36 2.77 13.12 111
MMSE 28.73 1.22 29.00 0.80
1Q estimate (WAIS-R) 113.37 10.65 117.31 10.52
CES-D 7.81 4.32 8.76 3.95
2
Age 67.23 4.72 20.18 167
Years of education 16.04 2.62 13.58 1.55
MMSE 28.88 0.91 29.04 121
1Q estimate (WAIS-R) 115.59 12.97 116.69 11.91
CES-D 8.12 3.81 9.36 4.03

Note. MMSE = Mini-Mental State Examination; WAIS-R = Wechsler Adult Intelligence Scale—Revised; CES-D = Center for Epidemiological Studies

—Depression Scale.
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Summary of Data From Experiments 1 and 2

Table 2
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Experiment, age group, and Accuracy Mean correct RT Mean error RT No. of observations
condition
1. 0ld
HF words .992 815 819 14,808
LF words 972 925 1,123 14,703
VLF words 911 1,015 1,172 14,574
Pseudowords 975 969 1,137 43,938
1. Young
HF words .970 590 577 18,373
LF words .905 664 688 18,357
VLF words 811 712 755 18,334
Pseudowords 929 724 690 54,939
2.0ld
HF words .993 730 699 13,958
LF words .987 788 947 13,935
VLF words .970 855 1,065 13,871
Random letter strings .989 751 993 41,703
2. Young
HF words .966 574 513 18,789
LF words .953 614 569 18,777
VLF words .939 644 657 18,770
Random letter strings .966 590 626 56,300

Note. SEs for older subjects are in the range 2045 ms for error responses and 2-5 ms for correct responses. SEs for young subjects are in the range 5-11
ms for error responses and 1-3 ms for correct responses. RT = response time; HF = high-frequency words; LF = low-frequency words; VLF = very low-

frequency words.
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Table 3
Parameter Values and Standard Deviations From Fits of the Diffusion Model
Experiment and group a z Ter n S, Po S M xz

1. Young (average parameters 0.127 0.063 0.440 0.101 0.053 0.023 0.164 303.9
over supersubjects)

1. Young (fit to average data) 0.126 0.062 0.447 0.120 0.069 0.033 0.154 2295.1
1. Young SDs (over 0.030 0.014 0.029 0.050 0.031 0.024 0.042 116.6
supersubjects)

1. Older (average parameters 0.183 0.090 0.539 0.100 0.048 0.057 0.174 202.6
over supersubjects)

1. Older (fit to average data) 0.184 0.091 0.548 0.097 0.064 0.066 0.177 909.9
1. Older SDs (over 0.043 0.020 0.062 0.042 0.033 0.049 0.097 119.7
supersubjects)

2. Young (average parameters 0.130 0.072 0.399 0.097 0.072 0.038 0.149 172.4
over supersubjects)

2. Young (fit to average data) 0.124 0.069 0.398 0.084 0.065 0.044 0.141 1334.8
2. Young SDs (over 0.029 0.016 0.024 0.023 0.014 0.028 0.032 64.5
supersubjects)

2. Older (average parameters 0.175 0.094 0.476 0.091 0.040 0.065 0.145 713
over supersubjects)

2. Older (fit to average data) 0.166 0.090 0.480 0.111 0.042 0.063 0.150 381.2
2. Older SDs (over 0.036 0.020 0.034 0.029 0.024 0.027 0.030 385
supersubjects)

Note. The X2 values are the means across subjects, except for the fit to average data. a = boundary separation; z = starting point; Ter = nondecision
component of response time; n = standard deviation in drift across trials; sz = range of the distribution of starting point (z); pg = proportion of contaminants;
st = range of the distribution of nondecision times.
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Table 4

Parameter Values and Standard Errors From Fits of the Diffusion Model for Drift Rates

Page 24

Experiment and group VHE ViE VyLF Vn
1. Young (average parameters over supersubjects) 0.491 0.283 0.182 -0.279
1. Young (fit to average data) 0.481 0.281 0.180 —0.279
1. Young SDs (over supersubjects) 0.086 0.050 0.040 0.054
1. Older (average parameters over supersubjects) 0.470 0.330 0.216 —0.289
1. Older (fit to average data) 0.435 0.287 0.200 -0.268
1. Older SDs (over supersubjects) 0.128 0.088 0.073 0.091
2. 'Young (average parameters over supersubjects) 0.487 0.383 0.331 —0.355
2. Young (fit to average data) 0.437 0.356 0.300 -0.321
2. Young SDs (over supersubjects) 0.058 0.050 0.034 0.043
2. Older (average parameters over supersubjects) 0.495 0.391 0.316 —-0.390
2. Older (fit to average data) 0.465 0.367 0.296 -0.363
2. Older SDs (over supersubjects) 0.068 0.054 0.045 0.056

Note. The subscripts of the drift rates (v) are N = new words, H = high-frequency words, L = low-frequency words, and V = very low-frequency words.
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Correlations Between Mean Response Time (RT), Accuracy, and Model Parameters Averaged Over Young and

Older Supersubjects for Experiment 1

Variable 1 2 3 4 5
l.a —
2. Ty, 0.35 —
3.v -0.41 0.13 —
4. Accuracy 0.30 0.25 0.37 —
5. MRT 0.91 0.54 —0.56 0.11 —

Note. The correlations were computed for young and older supersubjects separately, and they were averaged. a = boundary separation; Ter = mean of the

nondecision component of RT; v = drift rate.
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