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Objective. To develop a statistic measuring the impact of algorithm-driven disease
management programs on outcomes for patients with chronic mental illness that
allowed for treatment-as-usual controls to ‘‘catch up’’ to early gains of treated patients.
Data Sources/Study Setting. Statistical power was estimated from simulated
samples representing effect sizes that grew, remained constant, or declined following
an initial improvement. Estimates were based on the Texas Medication Algorithm
Project on adult patients (ageZ18) with bipolar disorder (n5 267) who received care
between 1998 and 2000 at 1 of 11 clinics across Texas.
Study Design. Study patients were assessed at baseline and three-month follow-up for
a minimum of one year. Program tracks were assigned by clinic.
Data Collection/Extraction Methods. Hierarchical linear modeling was modified
to account for declining-effects. Outcomes were based on 30-item Inventory for
Depression Symptomatology——Clinician Version.
Principal Findings. Declining-effect analyses had significantly greater power
detecting program differences than traditional growth models in constant and
declining-effects cases. Bipolar patients with severe depressive symptoms in an
algorithm-driven, disease management program reported fewer symptoms after three
months, with treatment-as-usual controls ‘‘catching up’’ within one year.
Conclusions. In addition to psychometric properties, data collection design, and
power, investigators should consider how outcomes unfold over time when selecting an
appropriate statistic to evaluate service interventions. Declining-effect analyses may be
applicable to a wide range of treatment and intervention trials.

Key Words. Program evaluation, treatment algorithm, disease management
systems, severe mental illness.

In this paper, we developed a new approach, called the Declining-Effects
Model, to analyze longitudinal data evaluating a disease management
program (DMP) for patients with chronic illness, including mental illness.
This approach takes into account how health outcomes may unfold over time
by comparing the course of illness between patients assigned to new treatment
programs with controls who receive treatment as usual (TAU). The model was
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tested using data from the Texas Medication Algorithm Project (TMAP), a
DMP for severe mental illness that included consensus-based medication-
algorithms, as well as patient education, uniform clinical reports, expert
consultation, and clinical coordinators overseeing algorithm adherence (Rush
et al. 1999).

Investigators often evaluate DMPs by assigning patients to treatment
tracks and repeatedly assessing their outcomes over time, beginning at
baseline when treatment begins. Disease management programs are
considered effective if the outcomes among treated patients are better than
outcomes experienced among controls. Statisticians often summarize these
differences by calculating an effect-statistic. While conceptual factors under-
lying program rationale often influence the choice of a primary outcome
measure (McDowell and Newell 1996), the choice of an appropriate effect-
statistic typically depends on: (1) the psychometric properties of selected
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outcome measures, (2) the research design, and (3) properties of the statistic
itself. These properties include the power of the statistic to avoid falsely
detecting effects that do not exist (false positives, or type I error) and failing to
find effects that do exist (false negatives, or type II error) (Siegel 1956).
Investigators often report the latter as statistical power, representing the chance
that a statistic would significantly detect an actual effect. All things equal, the
most desirable statistic is one with the greatest power for a given type I error.

Not all effect-statistics require working assumptions about how out-
comes unfold over time (Lavori 1990). However, to summarize program
effectiveness into a single estimate, researchers often borrowed from the
efficacy trials literature to select statistics powered to detect effects that grow
with time. Under a growth hypothesis, the outcomes of patients receiving
efficacious therapies are expected to improve with time, while their untreated
counterparts would remain the same, or get worse. Thus, when differences in
outcomes between program tracks grow with time, we say outcomes exhibit
an increasing-effects pattern.

In this paper, we assert that outcomes of algorithm-driven DMPs for
chronic mental illness may be more complex. Specifically, we postulate that
the size of an effect may increase by a lump-sum amount that accrues during
an initial period following baseline. After such an initial advantage, differences
may either remain constant, or decline as DMP versus TAU differences
become negligible with time. We call this initial rise, then fall, of a DMP
advantage a declining-effects pattern.

We thus (1) formulated an effect-statistic that could detect declining-
effects patterns; (2) compared the power of both declining-effects and
traditional growth statistics to detect an initial effect that either grows, remains
constant, or declines with time; and (3) applied the statistic to evaluate an
algorithm-driven disease-management program for outpatients with bipolar
disorder.

RATIONALE

For Algorithm-Driven Disease Management Programs

The need for algorithm-driven DMPs for chronic mental illness is underscored
by the proliferation of medical knowledge and cost-conscious practitioners
who often lack time to explore the scientific literature and apply its latest
discoveries. Also known as preferred-practices, evidenced-based care,
clinical-pathways, or best-practices, clinical algorithms are often presented
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as flowcharts designed to help practitioners improve outcomes (Suppes et al.
2001; Field and Lohr 1990; American Psychiatric Association 1995; Jobson
and Potter 1995) and contain costs (Lubarsky et al. 1997; La Ruche,
Lorougnon, and Digbeu 1995; McFadden et al. 1995) by organizing strategic
(what treatments) and tactical (how to treat) decisions into sequential stages
(Rush and Prien 1995). Having been applied elsewhere (e.g., Department of
Veterans Affairs VHA Directive 96-053, 1996), algorithm-driven DMPs may
satisfy concerns first expressed by the late Avedis Donabedian that structured
process interventions may be required before results from outcome studies
can begin to influence clinical practice (Donabedian 1976).

For Declining-Effects Patterns

There are several reasons why DMP outcomes may follow a declining-effects
pattern.

Treatment-as-Usual (TAU). Sometimes ethically required, TAU, rather
than no treatment, comparison groups are often used by investigators to
answer policy questions raised when new modalities are being considered to
replace current practices. If algorithm-driven DMPs help practitioners find the
service mix that optimizes outcomes, one may hypothesize that TAU
physicians will eventually find the optimum mix, allowing TAU patient
outcomes to catch up to their DMP counterparts. That is, DMP enhances the
speed of an ultimate recovery.

Chronic Iillness. Patients with chronic illness might relapse after therapies
improve health, as treatments merely delayed an inevitable deterioration in
health, or the treatment effects wore-off with time.

Derived Outcome. DMPs are intended to improve patient health out-
comes by influencing provider behaviors. However, impact on practitioner
behaviors may be short lived, or TAU practitioners may adopt the targeted
behaviors, causing patient outcomes from the two program tracks to blend. The
concept of such a derived outcome is similar to Grossman’s concept of derived
demand in which use of care springs from consumer wants for health
(Grossman 1972).

TEXAS MEDICATION ALGORITHM PROJECT (TMAP)

Study data came from the Texas Medication Algorithm Project (TMAP)
evaluation of the cost and outcome of a DMP consisting of consensus-based
medication algorithms (Crismon et al. 1999), physician training and continued
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consultation, standardized chart forms, on-site clinical coordinators provided
physician feedback on algorithm adherence and patient progress, and patient
education about mental illness and its treatment. The study enrolled 1,421
evaluable patients who received medical treatment in 19 clinics of the Texas
Department of Mental Health and Mental Retardation between March 1998
and April 1999 (Suppes et al. 2001; Gilbert et al. 1998; Rush et al. 1999; Rush
et al. 1998; Crismon et al. 1999; Chiles et al. 1999; Kashner, Rush, and
Altshuler 1999). Patients were long-term sufferers with severe mental illness
(major depressive, schizophrenic, or bipolar disorder) in need of a medication
change or required medical attention for severe psychiatric symptoms or side
effects. Patients were assessed every three months for at least one year for
psychiatric symptoms, health functioning, side-effect burden, patient satisfac-
tion, quality of life, and health care costs. The DMP or TAU assignments were
by clinic to avoid treatment blending (same doctor treats both intervention
and control patients) and water-cooler effects (doctors from the same clinic
confer about treating patients).

PROGRAM EFFECTS

Growth-Effect Statistics

When outcomes exhibit an increasing-effects pattern, the health of both DMP
and TAU patients are assumed to change with time. Outcomes are thus
described in terms of a growth-rate. If the rate of change is constant for each
patient, the difference in growth-rates between DMP and TAU patients is
called the DMP’s growth-effect. A DMP is considered effective if it results in
significant and favorable growth-effects.

Growth-effect statistics can be calculated from simple growth models,
including Pearson’s r, Spearman’s r, linear slope, and changed scores, with
Kendall’s t displaying the greatest power without type I error inflation (Arndt
et al. 2000). Kendall’s t is the difference between the numbers of improved
and worsened outcomes, divided by either the number of possible
comparisons, or comparisons reporting change. A nonparametric statistic
applicable to ordinal data, larger t values indicate growth-effects.

Growth-effects can also be estimated from random regression models
that include hierarchical designs such as growth curves (Stanek and Diehl
1988; Willett, Ayoub, and Robinson 1991), random-effects (Laird and Ware
1982; Ware 1985), random regression (Gibbons et al. 1993; Jennrich and
Schluchter 1986), empirical Bayesian (Maritz 1970), general mixed linear
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(Goldstein 1986), and hierarchical linear (Byrk and Raudenbush 1992)
models. These methods are desirable because they do not depend on fixed
intervals between observations, allow for missing observations, account for
repeated observations nested within patient, permit more flexible covariance
structures for a better model fit (Bryk and Raudenbush 1992), such as
regression to the mean (Berndt et al. 1998), heteroscedastic, and autocorre-
lated level-1 covariances (Louis and Spiro 1984; Hedeker 1989; Chi and
Reinsel 1989), and has been modified to handle ordinal data (Hedeker and
Gibbons 1994).

Described in the Appendix, growth-effects estimated from First-Order
Growth models are constant whenever differences between program tracks
during follow-up grow at a constant rate. With Second-Order Growth models,
patient outcomes are expected to grow, but at a diminishing rate with time.
Thus, Second-Order Growth models can be used to estimate both a growth-
effect, and the rate the growth-effect diminishes with time.

Declining-Effects Statistics

The declining-effects statistics are mathematically derived in the Appendix
and displayed in Figure 1 where the Y-axis represents symptoms (smaller
values indicate better health), and the X-axis represents time beginning at
baseline and partitioned into initial (first three months) and post (remaining
nine months) periods. Under a declining-effects pattern, the health of both
DMP and TAU patients are assumed to improve with time at a constant
growth-rate, with an additional, one-time lump-sum improvement accrued
during the initial period. We combined the lump-sum improvement and the
accumulated growth during the initial period to determine for each patient an
initial-change in health. The initial-change is calculated by taking the difference
in health determined at the end of the initial period and at baseline. Outcomes
are thus described in terms of initial-changes and post-period growth-rates.

The impact of a DMP on patient outcomes is assessed by two
parameters. The initial-effect is the mean difference in initial-changes between
DMP and TAU patients. A favorable initial-effect means that DMP patients
experienced a more favorable improvement in health between baseline and
the end of the initial period than their TAU counterparts. The growth-effect is
the mean difference in growth-rates between DMP and TAU patients during
the postperiod. An unfavorable growth-effect means that the outcomes of
TAU patients improve at a faster rate than their DMP counterparts during the
postperiod. A favorable initial-effect followed by an unfavorable growth-effect
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indicates a declining-effects pattern of outcomes. Thus, if DMP physicians,
aided by algorithms, identify the optimal service mix before their TAU
counterparts can determine an effective mix by trial and error, then DMP
patient outcomes should be initially better, with TAU patient outcomes
catching up with time.

One drawback is the size of the initial-effect would depend on the length
of the initial period, requiring investigators to consider how outcomes unfold
over time when setting assessment schedules for longitudinal studies. Setting
longer initial periods will lead to smaller estimates of initial effects under a
‘‘catching-up’’ TAU.

STATISTICAL POWER

We constructed simulated databases to compare the power of effect-statistics
based on Kendall’s t, First and Second-Order Growth Models, and Declining-
Effects Models under increasing, constant, and declining-effects conditions.

Figure 1: Declining-Effects Condition

symptoms 

time Baseline Initial period Postperiod

initial-change of DMP 
initial-effect 

initial-change of TAU

DMP 

TAU 

TAU   
lump-sum

TAU 
accrued 
reduction TAU growth-rate 

DMP growth-rate 

Note: ‘‘Y’’ axis reflects symptom scale with lower values reflecting better health.
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Health was assessed using the 30-item Inventory for Depression Symptoma-
tology——Clinician Version (IDSC) (Rush et al. 1986; Rush et al. 1996), an
interval scale of depressive symptom severity, with well-known psychometric
properties, and with larger scores indicating more depressive symptoms and
poorer health. The desired statistic has greatest power (likelihood of detecting
differences when they existed) without inflating type I error (likelihood of
detecting differences when none existed), with power calculated as the
proportion of samples detecting significant effects to the total created. To
compare models by examining power alone, test statistics were recalibrated to
achieve a strict 2.5 percent type I error.

Databases representing each of five test patterns were simulated to
include a baseline and four quarterly values for five thousand samples of three
hundred subjects each, with a 7 percent random drop-out per quarter,
beginning with the second assessment. Data values for each of five patterns
were generated, with values deviating from the pattern by independently and
normally distributed random variates with zero mean and constant variance of
9.5 IDSC units. Test statistics were based on one-tailed tests, a5 .025, with
standard errors estimated from each drawn sample. Type I errors were
determined from a simulated ‘‘no effects’’ and constant-effects cases. See
Appendix for equations.

A DMP is considered effective if investigators find a significant growth-
effect (Kendal’s t, First and Second-Ordered Growth Models) or a significant
initial-effect (Declining-Effects Model). Outcomes follow a declining-effects
pattern if the sample reveals a significant initial effect and significant but
unfavorable growth-effect (indicating TAU patient outcomes catch up to
DMP). Second-Order Growth Model can be adopted to test for declining-
effect patterns. See Appendix.

Table 1 contains a description of five test patterns and power estimates,
by model, effect, and test pattern. All five test patterns had the same initial-
change in outcomes for DMP (� 6 IDSC), for TAU (� 2 IDSC), and thus the
same initial-effect (–4 IDSC). Pattern 1 represents an increasing effect size (� 2
IDSC/qtr), resulting from a DMP growth-rate (� 3 IDSC/qtr) that was more
favorable than TAU (� 1 IDSC/qtr). Pattern 2 represents an increasing effect
size (� 2 IDSC/qtr) that diminishes each quarter (1.50 IDSC/qtr). Pattern 3
represents a constant effect size (0 IDSC/qtr). Patterns 4 and 5 represent
declining-effects of 1/qtr and 1.33/qtr, respectively. Technical details are
provided in the Appendix.

Results are reported in Table 1. Detecting if DMP had any impact on
outcomes of care, effect-statistics derived from First-Order Growth Models
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(growth-effects) were superior under an increasing-effects pattern (1–2), while
Declining-Effects Models (initial-effects) exhibited the greatest power under a
decreasing-effects pattern (4–5). When outcomes exhibited a constant-effects
pattern (3), effect-statistics from a Declining-Effects Model had better power
than from a Second-Order Growth Model to detect if DMP had any favorable
impact on health outcomes (77 percent versus 68 percent). While the single
parameter growth-effect estimate from the First-Order Growth Model did
display better power (87 percent) than the initial-effect estimate from the
Declining-Effects Model (77 percent), the former model is misspecified, and
leads to an incorrect interpretation that effect sizes grow throughout follow-up,
when in fact the effect size remains constant after a one-time lump-sum
increase accruing during an initial period. Thus, for both constant and
declining-effects conditions, a Declining-Effects Model is the best choice to
derive an effects-statistic. Note that under constant and declining-effect
conditions, Kendal’s t was virtually powerless to detect any program
differences.

The Declining-Effects Model was also superior to Second-Order Growth
Models in detecting declining-effect patterns, a power gap that tended to
widen as effect sizes declined at a faster rate. That is, the Declining-Effects
Model provides the more appropriate test to determine if TAU caught up with
their DMP counterparts after DMP gained an advantage during the initial
period.

The results from these simulations meant that in the absence of theory-
driven hypotheses, exploratory analyses should begin with a test for declining-
effects patterns using Declining-Effects Models. In the absence of declining- or
constant-effects patterns, investigators should proceed with Growth Models.
To rely on Growth Models when declining or constant effects exist,
investigators risk either having insufficient power to detect any program
advantages, or risk incorrectly interpreting the data to suggest that group
differences continue to grow throughout follow-up.

DETECTING DECLINING-EFFECT CONDITIONS: TMAP

Declining-Effects Models are relevant only if there is empirical support for
declining-effects patterns in nature. To test for such patterns, we use TMAP
data for 267 adult patients with a Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) diagnosis of bipolar disorder (American
Psychiatric Association 1994). All subjects had signed informed consent,
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provided baseline and at least one follow-up IDSC assessment, and had been
assigned to one of 4 ALGO clinics (n5 141) or 7 TAU clinics (n5 126). The
sample was diverse ethnically (27 percent Hispanic, 12 percent African
American, 60 percent Caucasian, and 1 percent other), with a mean age of 39.0
years (SD5 10.3), and 68 percent female, 24 percent married, 26 percent
living alone with household sizes averaging 1.7 plus patient (SD5 1.8), were
high school graduates (78 percent), but mostly unemployed (73.6 percent)
with mean monthly household disposable income (after housing costs) of
$450/month (SD5 $599) (1999 US$), with income assistance or food-stamps
(49 percent) and on Medicaid during six months prior to baseline (53 percent).
Clinically, patients at baseline reported a mean length of illness of 14.7 years
(SD5 12.5), IDSC score of 30.9 (SD5 14.5), 24-item Brief Psychiatric Rating
Scale (BPRS24) (Overall and Gorham 1988; Ventura et al. 1993) of 52.8
(SD5 13.5), and Medical Outcome Study 12-item Short Form (SF-12) (Ware,
Kosinski, and Keller 1996) mental functioning of 35.0 (SD5 11.3) and
physical functioning of 42.6 (SD5 11.6), with 20 percent reporting substance
abuse during the prior six months. A 10-item Patient Perception of Benefits
scale was constructed for TMAP to measure patient attitudes concerning
whether health care can improve patient functioning. Patients were asked ‘‘If I
can get the help I need from a doctor, I believe that I will be much better able
toymanage problems at home, earn a living or go to school, enjoy things that
interest me, feel good about myself, handle emergencies and crises, get along
with friends, get along with my family, control my life, do things on my own,
and make important decisions that affect my life and my family.’’ Patients
ranked each item as strongly agree (5 1) to strongly disagree (5 5). For this
sample, baseline scores ranged from 10 to 50, with mean 19.1 (SD5 7.6), with
higher scores indicating greater pessimism about care.

Declining-Effects Models (equations 8b and 9b in Appendix) were
estimated using HLM/3L software (Bryk, Raudenbush, and Congdon 1996)
with subjects grouped by baseline symptoms into very severe (IDSCZ46,
n5 48), severe (IDSC 17–45, n5 170), and mild (IDSCr16, n5 46).
Estimates were adjusted to reflect patient differences in baseline BPRS24

score, age (years), family size, disposable income, years of education, patient
perception of benefits, gender, African American status, and Hispanic status.

Results are reported in Table 2. Examining only those subjects who
began the study with the most severe depressive symptoms at baseline,
patients in both TAU and DMP tracks experienced a reduction in symptoms
during the initial three months of the program by –6 IDSC and –16.5 IDSC,
respectively. The greater reduction in symptoms during the initial period
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among DMP patients (DMP initial-effect) was significant (�10.5 IDSC),
indicating a more favorable DMP outcome than TAU at the end of the initial
period. During the postperiod, however, TAU patients continued to improve
at a growth-rate of –3.2 IDSC/qtr, while symptoms for DMP patients were
unchanged. The difference in growth-rates was significant (DMP growth-
effect) suggesting that TAU patients caught up with their DMP counterparts
during the postperiod as IDSC outcome differences between tracks
diminished by 3.7 IDSC/qtr.

In contrast, patients who entered the study with severe baseline
depressive symptoms showed only modest reductions in symptoms after the
initial period (–3.7 IDSC for DMP and –2.6 IDSC for TAU), though DMP and
TAU differences were not significant. On the other hand, patients with mild
symptoms actually showed a worsening of symptoms at the end of the initial
period as both DMP and TAU patients regressed into depressive symptom
episodes. An apparent inverse relationship between initial reductions and
baseline symptoms suggest a regression to the mean confound. The impact on
DMP initial- and growth-effects is small, as baseline IDSC values were
30.3714.5 for DMP and 31.5714.5 for TAU, or a mean difference of
� 1.271.8 (t5 0.67, df5 261, p5 .51).

In summary, DMP versus TAU exhibited a declining-effects pattern for
only the very severely depressed patients.

CONCLUSION

Investigators often borrow from the clinical trials literature applying test
statistics (Kendall’s t, growth models) to determine program effectiveness by
detecting if the effect sizes grow with time. This is appropriate when treatments
under study ‘‘cure’’ debilitating illnesses that, if left untreated, would grow
worse.

However, a growth hypothesis may not be reasonable in intervention
trials focusing on provider behaviors, chronic conditions, and com-
parisons with TAU controls. Examples include the TMAP algorithm-driven
DMP for patients with mental disorders designed to help clinicians find the
right mix of available treatments and assist compliance through patient
education.

Pattern of outcomes may deviate from a simple growth. Disease
management program practitioners may revert to former methods as TAU
practitioners accept new ones, causing practice patterns to blend, and
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outcomes to become similar. TAU practitioners may eventually prescribe an
appropriate mix of services that may eventually work, helping TAU outcomes
to catch up to their DMP counterparts, though more time is required to reach
desired levels. On the other hand, treatments for intractable chronic
conditions may eventually wear off, patients may stop care due to intolerable
side-effects, or poor prognoses may mean that a DMP merely delays an
inevitable decline in health.

In such cases, an intervention could exhibit significant improvement
during an initial period, with the advantage declining in subsequent periods.

Our analyses of TMAP data suggested that declining-effects patterns do
exist when algorithm-driven DMPs are evaluated against TAU controls.
Declining-effects also appear in work therapy programs for homeless,
substance dependent veterans (Kashner, Rosenheck et al. 2002), and in acute
randomized controlled trials whenever placebos impact outcomes (Hrob-
jartsson and Gotzsche 2001; Andrews 2001; Kirsch 2000; Lavori 2000).

Our power calculations suggested that under declining-effects patterns,
growth models are inappropriate. They either lack power to detect program
effects, or misspecify how program advantages unfolded over time. We
recommend investigators begin with a test for declining-effects patterns before
proceeding with growth models when evaluating DMP for patients with
chronic conditions.

In summary, in addition to the psychometric properties of outcome
measures, the research design, and the power and type II error of the statistic
itself, services researchers should carefully consider how outcomes are
expected to unfold over time before selecting an appropriate program effect
statistic.

APPENDIX: INCREASING-EFFECTS MODEL

A First-Order Growth Model is:

yit ¼ a0 þ a01Ii þ a10t þ a11Ii t þ ui þ vit ; ð1aÞ

where yit is health status assessed at time t from baseline (t5 0) when patient i
was assigned to either treated (Ii5 1) or controls (Ii5 0). Patient and time level
random effects are ui and vit. The growth-effect is a11, or difference in growth-
rates in outcome between treated (a101a11) and control (a10) patients. For
symptom outcomes (fewer symptoms reflect better health), a favorable
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growth-effect suggests a11o0. a01 is the average baseline difference between
treated (a01a01) and controls (a0).

A Second-Order Growth Model allowing growth-rates to change with
time and adjusting for baseline covariates is:

yit ¼ a0 þ a01Ii þ a10t þ a11Ii t þ a20t2 þ a21Ii t
2 þ a3ðXit � �XX Þ þ ui þ vit ; ð1bÞ

where a21 is the rate of change in growth-rates over time between treated
(a201a21) and controls (a20). How health varies as patient characteristics (Xit)
differ from a reference, or average, patient ( �XX ) is described by a3.

DERIVATION OF DECLINING-EFFECTS MODEL

Declining-Effects Models compare health outcomes of patients assigned to a
disease management program (DMP) with those assigned to treatment-as-
usual (TAU). Let yit be a ratio scale measuring health status for patient i
assessed at time t following baseline (tZ0). Health status is assumed to be a
linear function of: (1) patient characteristics (b0,), (2) a growth-rate (b1,), (3) a
one-time, lump-sum change in outcome (b2) occurring at t 0 following baseline,
and (4) patient (ui) and time (vit) level random variates, or:

yit ¼ b0 þ b1t þ b2Bt þ ui þ vit ; ð2Þ

where Bt is a step function that equals one whenever tZt0, and zero otherwise,
with random variates assumed to be identically distributed with zero mean
and constant variance: COV(ui, uj)5 0 for iaj; and COV(vis, vit)5 0 for sat.

Describing the patient effect, let:

b0 ¼ b00 þ b01 Xit � �XX
� �

; ð2aÞ

where b00 equals baseline health for the average patient with characteristics,
�XX ; and the vector b01 is the rate health varies for patients at time t whose

characteristics, Xit, differ from the average patient.
Describing the growth-effect, let:

b1 ¼ b10 þ b11 Xit � �XX
� �

; ð2bÞ

where b10 is the change in health per unit time for the average patient and the
parameter vector b11 describes how the growth-rate varies for patients at time t
whose characteristics differ from the average patient. Equation 2b can be
expanded to include nonlinear time trends.

Describing the lump-sum effect, let:

b2 ¼ b20 þ b21 Xit � �XX
� �

; ð2cÞ
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where b20 is the lump-sum change for the average patient and the parameter
vector b21 describes how the lump-sum varies for patients whose character-
istics differ from the average patient.

Finally, all parameters may be a function of which service system
protocol patients were assigned:

bjk ¼ bjk0 þ bjk1Ii for j ¼ 0; 1; 2; and k ¼ 0; 1; ð2dÞ

where Ii is a dichotomous variable that assumes the value of 1 if the patient
were assigned to DMP services protocol, and5 0 for TAU, with bjk1 as the
difference between DMP and TAU. Alternatively, bjk1 can be described as a
rate when Ii is measured as a continuous variable describing provider
adherence and/or patient compliance with the service protocol.

Balancing model parsimony with misspecification error, we: (1) assumed
growth-rates were unchanged over relatively short observation periods; (2)
focused on how lump-sum and growth-rates vary by treatment group; and (3)
focused on lump-sum changes that were allowed to vary with patient
characteristics. Thus:

yit ¼b000 þ b001Ii þ b01 Xit � �XX
� �

þ b100t þ b101Ii t

þ b200Bt þ b201IiBt þ b21Bt Xit � �XX
� �

þ ui þ vit : ð3Þ

where, b000 is the average baseline value for TAU patients; b001 is the average
adjusted difference in baseline values between DMP and TAU patients; b100 is
the growth-rate calculated for TAU patients; b101 is the adjusted difference in
growth-rates between DMP and TAU; b200 is the one-time lump-sum change
in outcomes for the average TAU patient; and b201 is the adjusted difference in
lump-sum changes in outcomes between DMP and TAU.

Equation 3 was simplified by substituting change scores for raw health
values. Common in clinical trials literature, change scores are calculated by
subtracting baseline values from each follow-up assessment. Setting t5 0 and
Bt5 05 0, equation 3 becomes:

yit¼0 ¼ b000 þ b001Ii þ b01 Xit � �XX
� �

þ ui þ vit¼0: ð4Þ

Subtracting equation 4 from 3, assuming the first assessment was administered
after the lump-sum change (Bt�t0 ¼ 1), and recalibrating time so the first
assessment occurs at t5 1, then:

Dyit ¼ b100t þ b101Ii t þ b200 þ b201Ii þ b21 Xit � �XX
� �

� vit¼0 þ vit0; ð5Þ
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with change scores Dyit5 yit-yit5 0. Rearranging terms and substituting
un

i5 � vit5 0, equation 5 is reconfigured as:

Dyit ¼ b200 þ b201Ii þ b100t þ b101Ii t þ b21 Xit � �XX
� �

þ u�
i þ vit ; for t40: ð6Þ

Equation 6 is a more familiar random regression equation, but with change
scores replacing raw values for the dependent variable. Setting t5 1 in
equation 6, the average initial-change in outcomes between baseline (t5 0)
and the first assessment (t5 1) can be computed by:

Dyit¼1 ¼ b200 þ b201Ii þ b100 þ b101Ii : ð7Þ

for DMP (Ii5 1) and for TAU (Ii5 0) patients. The initial-change between
baseline and the first assessment equals a lump-sum change (b2001b201Ii) plus
an accrued growth-rate during the first period (b1001b101Ii). Adding and
subtracting equation 7 from equation 6 yields:

Dyit ¼ b200 þ b100ð Þ þ b201 þ b101ð ÞIi þ b100 t � 1½ 	 þ b101Ii t � 1½ 	
þ b21 Xit � �XX

� �
þ u�

i þ vit :
ð8aÞ

or

Dyit ¼ g0 þ g1Ii þ g2 t � 1½ 	 þ g3Ii t � 1½ 	 þ g4 Xit � �XX
� �

þ u�
i þ vit ; ð8bÞ

with TAU initial-change (g0), TAU growth-rate (g2), initial-effect (g1), growth-
effect (g3), the impact on change scores when patient characteristics differ from
an average patient (g4), where g05b2001b100; g25b100; g15 b2011b101;
g35b101; and g45b21, and ui

n and vit as patient and time-level random
variates. Note, the model can be modified to account for bivariate and ordinal
value outcome measures. The DMP initial-change and growth-rate can be
calculated directly by substituting:

Ii ¼ 1 � I �
i : ð9aÞ

into Eq. 8b to obtain:

Dyit ¼ g�0 þ g�1I �
i þ g�2 t � 1½ 	 þ g�3I �

i t � 1½ 	 þ g�4 Xit � �XX
� �

þ u�
i þ vit ; ð9bÞ

with DMP initial-change (g0
n) and growth-rate (g2

n), and identical but opposite
effect size estimates (g15 � g1

n), (g35 � g3
n).

Effects are said to be declining if following an initial-effect (g1o0), TAU
has a more favorable growth-rate, g2og2

n; or g2
n� g25 g340. The TAU is

catching up if the declining-effects were the result of TAU patients improving
(g2o0) while DMP patients got no worse during the postperiod (g2og2

nr0).
On the other hand, both DMP and TAU patients are said to face an inevitable
decline if symptoms return to patients in both groups during the postperiod
(0og2og2

n). Effects are constant if following an initial-effect (g1o0), DMP and
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TAU growth-rates are equal (g2
n5 g2 or g35 0). Effects are increasing if DMP

patients continue to improve at a faster rate than TAU (g3o0).

DETAILS OF SIMULATION MODELS

Let Bit5 1 for all patient i with to1 and Bit5 0 for tZ1. Data were generated
to represent different test patterns including: [#0] No-effects: yit5 501ui1vit;
[#1] Increasing-effects with Lump-sum: yit5 50� t� 2Iit�Bit� 2IiBit1ui1vit;
[#2] Increasing-effects that diminish: yit5 50� 2.25t� 4.5Iit10.25 t 210.5 Iit

2

1ui1vit; [#3] Constant-effects: yit5 50� t�Bit� 4IiBit1ui1vit; [#4] Small
declining-effects: yit5 50� t11tIi�Bit� 5IiBit1ui1vit; and [#5] Declining-
effects: yit5 50� t11.33tIi�Bit� 5.33IiBit1ui1vit.

Models testing for initial-, declining- and growth-effects included: (A)
First-Order Growth: Dyit5 at1btIi (growth-effect: bo0); (B) Second-Order
Growth: Dyit5 at1btIi1ct 21dt 2Ii (growth-effect: bo0; diminishing growth-
effect: d40; declining-effects: bo0 and b18d40); and (C) Declining-Effect:
Dyit5 e1fIi1g [t� 1]1hIi[t� 1] (initial-effect: fo0; growth-effect: h40; and
declining-effects: fo0 and h40).
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