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We conduct an extensive simulation study to compare the merits of several methods for using null (unlinked)
markers to protect against false positives due to cryptic substructure in population-based genetic association studies.
The more sophisticated “structured association” methods perform well but are computationally demanding and rely
on estimating the correct number of subpopulations. The simple and fast “genomic control” approach can lose
power in certain scenarios. We find that procedures based on logistic regression that are flexible, computationally
fast, and easy to implement also provide good protection against the effects of cryptic substructure, even though
they do not explicitly model the population structure.

Population-based association studies provide an attractive ap-
proach to the identification of susceptibility genes underlying
complex genetic traits. However, the recent track record of such
studies has been mixed: Many reported associations have not
been replicated, and the number of confirmed, positive associa-
tions to date is less than might have been expected a few years
ago. Some of the nonreplicated reported associations might be
due to population structure. If a higher proportion of cases than
controls is sampled from a particular subpopulation, for ex-
ample, because of biased ascertainment or higher prevalence of
the disease in that subpopulation, then association can poten-
tially be detected between case-control status and any markers
having unusual allele frequencies in that subpopulation. Many
such associations will be spurious: not due to any causal relation-
ship between phenotype and genomic variants in the vicinity of
the marker. If the population structure is recognized, it can be
accounted for either at the design or the analysis stage of a study.
Thus, the most important potential threat from population struc-
ture arises when the structure is unknown, so-called cryptic sub-
structure.

Freedman et al. (2004) observed that even well-designed
studies can incorporate modest levels of cryptic substructure,
enough to generate a substantial risk of false positives. Similarly
Helgason et al. (2005) detected population structure within Ice-
land, which would normally be regarded as genetically homoge-
neous for the purposes of study design. Differentiation among
the Icelandic regions is modest, with FST estimates well below 1%,
and is most pronounced in older individuals, but it is sufficient to
generate a noticeable inflation of the type 1 error rate for genetic
association studies. Recently Campbell et al. (2005) reported an
SNP associated with height in European Americans, but they ar-
gued that the association was due to population substructure.

Since the mid-1990s, many researchers have protected
themselves against spurious associations due to cryptic substruc-
ture by implementing family-based designs (Thomson 1995) that
eliminate the problem, for example, by matching spouses. Fam-
ily-based studies remain widely used, and are being further de-

veloped (Van Steen et al. 2005). However, family-based designs
typically imply higher genotyping costs and can face difficulty in
recruiting enough suitable families. The use of family-based de-
signs solely to avoid cryptic substructure has been criticized as
not cost-effective (Cardon and Palmer 2003), in large part be-
cause there are statistical procedures for dealing with the prob-
lem of cryptic substructure that seem to have good properties.
These statistical procedures require the genotypes of cases and
controls at several “null” markers that are not in linkage disequi-
librium with the gene being tested for association. The null mark-
ers are, in effect, used to infer aspects of the underlying popula-
tion structure. Although typing these markers may imply addi-
tional genotyping costs, this is typically modest compared with
the cost of implementing a family-based design. For a study in-
volving many candidate genes, there may be little or no addi-
tional genotyping cost.

Perhaps the simplest established method for adjusting for
the effects of cryptic substructure is Genomic Control (Devlin
and Roeder 1999), which considers the distribution over the null
markers of Y2, the Armitage test statistic that compares average
allele counts in cases and controls. Since few, if any, of the null
markers are expected to have a causal association with the disease
phenotype, any inflation of the empirical Y2 values above their
nominal �1

2 distribution may be attributed to demographic ef-
fects, such as cryptic substructure. Moreover, Devlin and Roeder
(1999) argue that the deviation from �1

2 can adequately be en-
capsulated in an over-dispersion factor, �, which takes value 1 in
the absence of population structure. Thus, by estimating � from
all the null markers and using Y2/� at individual candidate mark-
ers in place of Y2, any inflation attributable to cryptic structure
will be canceled, restoring approximately the nominal �1

2 null
distribution.

Structured association methods are more sophisticated than
genomic control, and are computationally more demanding.
These methods aim to allocate an individual’s genome to one or
more subpopulations, and to test for association conditional on
this allocation. The most widely used structured association
method seems to be that of Pritchard et al. (2000a), in which an
association test STRAT is developed that works with the output of
the STRUCTURE program (Pritchard and Rosenberg 1999;
Pritchard et al. 2000b; Falush et al. 2003) for subpopulation al-
location. Satten et al. (2001) adopted a latent class analysis ap-
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proach within a maximum-likelihood framework, using the E-M
algorithm. The association model of Zhu et al. (2002) is similar,
but these authors infer the number of subpopulations via a mix-
ture model. Hoggart et al. (2003) developed AdmixMap, combin-
ing Bayesian and classical methodology. Although these ap-
proaches differ, the underlying statistical models are similar: the
beta-binomial likelihood is used for SNP allele counts in different
subpopulations, and subpopulation allocation is made in such a
way that deviations from Hardy-Weinberg and linkage equilibria
are minimized in the inferred cryptic subpopulations.

None of the structured association analyses is straightfor-
ward to implement, the most important difficulty being the se-
lection of the number of subpopulations. This must be chosen in
each method, yet is difficult to estimate from the data. Since the
notion of subpopulation is a theoretical construct that only im-
perfectly reflects reality, it is clear that the problem of estimating
the number of subpopulations will never satisfactorily be re-
solved and it is preferable, if feasible, to implement a method
that does not rely on the number of subpopulations being cor-
rectly assessed.

Despite concerns being raised over many years about the
effects of cryptic substructure, there does not yet seem to be any
extensive overview assessing the methods available to protect
association studies against its adverse effects. Some simulation
studies have been published, and we briefly review the principle
studies below. These have been limited in different respects, for
example, most consider only genomic control (GC) and not
other statistical methods for population association studies;
some use only extreme levels of population differentiation that
will rarely arise in practice, or small sample sizes or a small num-
ber of genetic markers. Most studies do not compare performance
with and without including the causal polymorphism among the
markers typed. Some studies do not incorporate genealogical ef-
fects into their simulation, and hence the validity of their con-
clusions is severely compromised.

Bacanu et al. (2000) conducted a simulation study that con-
sidered FST values up to 3%, up to 80 null markers, and a broad
range of disease models. They only considered the GC method-
ology for population association studies, and showed that it is
more powerful than a familial study analyzed using the TDT,
except in the presence of substantial stratification.

Marchini et al. (2004) examined populations consisting of
three subpopulations, corresponding to continental human
populations with overall FST around 15%, and also with two sub-
populations corresponding to within-continent groups with FST

around 1.3%. They conclude that even for their more realistic
within-continent scenario, false positives can be problematic for
large sample sizes and penetrances varying across subpopula-
tions. They only examined the performance of GC, and reported
that it can be anticonservative if only 50 to 100 null SNPs are
used to estimate �, but that it can become conservative when 500
to 2000 SNPs are used.

Hao et al. (2004) carried out a study to assess GC using
samples of 20 Asians and 42 African Americans, and two Cauca-
sian samples of sizes 42 and 54. These authors found that GC
maintains approximately the correct type 1 error rate even under
biased ascertainment, but they did not investigate the power of
GC to detect true associations.

Köhler and Bickeböller (2005) developed a modification of
structured association in which phenotype information is used
to help identify subpopulation structure. They conducted a simu-
lation study that is perhaps the most extensive to date prior to

the present study, comparing their new method with GC and
adapted structured association methods that uses the EM algo-
rithm to perform the clustering, which is faster than STRUC-
TURE’s Bayesian algorithm. Their study examined FST values up
to 4%, sample sizes from 500 to 8000, and from 25 to 400 null
markers. The authors concluded that, for simple population
structures, structured association methods are superior to GC,
although they are dependant on the correct inference of the un-
derlying population substructure.

Thus, although some results are available, there is clearly
much more to be done to investigate the relative merits of the
different statistical analyses in scenarios that reflect real, well-
designed studies and actual populations. For example, the degree
of structuring that is sufficiently problematic to require a pro-
phylactic statistical method has not been adequately character-
ized, nor has the potential loss of power from implementing such
a method when it is in fact not needed. Finally, the use of logistic
regression to account for cryptic substructure has not yet been
extensively investigated. Recently, Wang et al. (2005) investi-
gated the use of a single well-chosen null marker to adjust for
population stratification within a logistic-regression framework.
They did not compare this approach with other methods, and
did not use any population genetics’ model in their simulations.
They argue that the inclusion of a well-selected null marker in a
logistic regression model will correct for the effects of population
structure within a well-designed candidate gene study, for which
important environmental and genetic risk confounders have
been considered.

We present here the most extensive simulation study to date
of statistical methods to allow for the effects of population strati-
fication. Our study is unique in several respects: It assesses mul-
tiple statistical methods (five that are designed to allow for popu-
lation stratification, and for comparison one that is not) and
different levels of between-population variation (FST) and relative
population sizes. We distinguish the situation in which the
causal variant itself is included among the markers typed in the
study from that in which only noncausal markers tightly linked
with the causal variant are included, and we separately test the
methods under a scenario of no causal association. Further, we
also consider a “biased” ascertainment scenario, as well as varia-
tion in the numbers of cases and controls and the disease model,
and the number of markers used to adjust for population strati-
fication.

Results
For each of five demographic scenarios, we simulated 50 sets of
500 cases and 500 controls genotyped at 110 SNPs in 51 genes: 10
SNPs in gene 1 (causal), and two SNPs in each of the remaining
50 genes (null). In our simulation the 51 genes are unlinked, but
this corresponds in practice to genes that are widely spaced, so
that any linkage disequilibrium due to linkage is negligible. Case/
control status was assigned according to genotype at a randomly
chosen SNP in gene 1, with genotype relative risks 1:2:4 (see
Methods for details).

The demographic scenarios vary according to relative popu-
lation size and between-population variance in allele propor-
tions, measured by FST (for definitions and a review, see Balding
2003). We only considered two underlying subpopulations as
this is the worst-case scenario for cryptic structure. The five sce-
narios were: (1) no substructure; (2) two subpopulations of equal
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size with low FST; (3) same as (2) but with high FST; (4) two
subpopulations with sizes in the ratio 4:1 and low FST; and (5)
same as (4) but with high FST. Average estimates of FST over the 50
data sets for each demographic scenario are shown in Table 1:
What we have called low FST is ∼3.5%, whereas our high FST

values are close to 8.3%. Genome-wide average values of FST es-
timated from comparisons between European populations are
often under 1%. There is typically more variation among African
populations, and FST estimates of 2% or 3% are not uncommon.
Estimates of FST can be 5% or higher for comparisons of small,
isolated populations within a continent. Although world-wide
comparisons can generate FST estimates of ∼15% (Cavalli-Sforza
et al. 1996), these comparisons are unrealistic for well-designed
association studies in humans, which are typically genetically
homogeneous. Thus our low FST value is in fact high for most
practical purposes, and our high value is very high, but useful
here for comparison of the methods under demanding assump-
tions. Another measure of the effect of population structure at
the causal SNP on case/control ascertainment is given in Table 1,
which shows the average excess of cases over controls in one of
the two subpopulations (there is an equal excess of controls in
the other subpopulation). The expected excess under random
allocation to subpopulations is 18 for Scenarios 2 and 3 and 14
for Scenarios 4 and 5.

The 110 SNPs were individually tested for association with
case/control status applying six different methods: (a) Armitage’s
trend test (CHISQ); (b) genomic control (GC); (c) stepwise logistic
regression (SLR); (d) Bayesian logistic regression (BLR); (e) STRAT
assuming K = 2, where K is the assumed number of underlying
subpopulations (STR2); and (f) AdmixMap assuming K = 2
(AM2). Methods (a), (c), and (d) do not make any explicit adjust-
ment for population stratification. The adjustment for method
(b) is encapsulated in the value of �, which is estimated from data
via the median of the CHISQ statistics.
Average estimates of � under each demo-
graphic scenario are shown in Table 1.

Table 2 shows the total number of
false positives over the 50 simulated
studies for each of the five demographic
scenarios. A false positive is a declaration
of significance for an SNP in any of the
50 genes other than gene 1. For CHISQ,
GC, STR2, and AM2, the nominal type 1
error rate was set to 2 � 10�4, corre-
sponding to an expected total of one
false positive for these methods in each
row of Table 2. CHISQ displays few false

positives except under our most extreme demographic scenario,
(3), suggesting that in many realistic settings the effect of popu-
lation structure on type 1 error may be small. GC, STR2, and AM2
all appear to be well calibrated, with five, three, and four false
positives overall in Table 2, compared with an expectation of five
each. The nominal type 1 error rate cannot be directly assigned
for SLR and BLR, but the actual rate appears to be extremely low
with just one false positive for SLR in the 250 data sets of the
simulation study, and none for BLR.

The empirical power for the simulation study (Table 3) is
defined as the proportion of data sets for which at least one of the
10 SNPs in gene 1 is significantly associated with case/control
status. With increasing FST, all methods showed at least a modest
loss of power, and this appears to be more severe for demo-
graphic Scenarios 4 and 5, with unequal population sizes. The
empirical power is similar across all methods, but CHISQ, SLR,
and AM2 display equal or greater power than both GC and STR2
in each of the five scenarios, although none of the individual
differences was statistically significant. STR2 shows the lowest
power of all six methods in four of the five demographic sce-
narios, whereas CHISQ and AM2 both achieve the highest power
in four scenarios, as does SLR in three scenarios.

All the data sets were then reanalyzed with the causal SNP
removed, leaving nine SNPs in gene 1. Again, GC, STR2, and AM2
appear to be well calibrated, with totals of five, three, and five
false positives, respectively, but the false-positive totals for SLR
and BLR are both now slightly worse: seven and nine (Table 4).
Power corresponds to detecting at least one of the nine SNPs in
gene 1. CHISQ now displays the highest empirical power in every
scenario, equaled in only one case by BLR (Table 5). Again, AM2
is consistently superior to both GC and STR2, but it is now con-
sistently inferior to both SLR and BLR.

In our next analysis, we removed the entire causal gene
(gene 1) from each data set, generating a scenario in which there
are no true causal associations. For this analysis every significant

Table 1. Average properties (with standard errors) of the 50 data
sets in the simulation study underlying Tables 2 through 6

FST/struct FST (%) |#cont � #case| �

(1) No structure — — 1.2 (0.03)
(2) Low/eq 3.5 (0.1) 24 (2) 1.2 (0.04)
(3) High/eq 8.3 (0.1) 43 (4) 1.9 (0.19)
(4) Low/un 3.5 (0.1) 19 (2) 1.2 (0.05)
(5) High/un 8.4 (0.1) 20 (2) 1.4 (0.06)

The first column gives a short label for each of the five demographic
scenarios described in the text. Columns 2–4 give the average maximum-
likelihood estimate of FST; the average absolute difference between the
numbers of cases and of controls drawn from one population; and the
average estimate of the � parameter of the genomic control method.

Table 3. The percentage of the 50 data sets under each demographic scenario for which at
least one of the 10 markers in gene 1 is significantly associated with disease

FST/struct

Power (%)

CHISQ GC SLR BLR STR2 AM2

(1) No structure 98 96 96 98 96 100
(2) Low/eq 100 100 100 98 92 100
(3) High/eq 92 90 90 88 88 90
(4) Low/un 94 94 94 94 86 94
(5) High/un 90 84 90 84 88 90
Average (SE) 95 (1.5) 93 (1.8) 94 (1.7) 92 (1.8) 90 (2.1) 95 (1.5)

The final row gives the mean over the first five rows, and its standard error (SE).

Table 2. The total number of false positives generated by each
method over the 50 simulated data sets for each demographic
scenario when all 10 SNPs from gene 1 are included

FST/struct

Total false positives

CHISQ GC SLR BLR STR2 AM2

(1) No structure 0 0 0 0 0 0
(2) Low/eq 3 2 0 0 1 2
(3) High/eq 45 3 0 0 1 1
(4) Low/un 0 0 0 0 0 0
(5) High/un 2 0 1 0 1 1
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association is a type 1 error. GC, STR2, and AM2 have totals of
six, six, and four false positives (Table 6), respectively, again close
to the expectation of five, whereas SLR and BLR have 11 and four,
respectively.

The results so far (Tables 2–6) do not indicate striking dif-
ferences between the methods, although some trends are appar-
ent. CHISQ tends to achieve the highest power, reflecting the fact
that allowing for population structure does imply some cost in
terms of power. Moreover, CHISQ produces few false positives
except under Scenario 3. These observations invite the conclu-
sion that, when any population stratification is expected to be
weak, it may be best to adhere to the simple and familiar CHISQ
test and ignore the effects of population structure. However, the
power loss relative to CHISQ is small for SLR, BLR, and AM2, and
still modest for GC; only STR2 suffers a substantial loss of power.
In terms of type 1 error, GC, STR2, and AM2 all perform close to
their nominal rates; SLR and BLR show fewer false positives when
the causal SNP is included in the analysis, but more when the
causal SNP is absent.

So far subpopulation bias in case/control assignments was a
consequence of allele frequency differences at the causal SNP,
with no contribution from differing disease penetrances due, for
example, to different environmental exposures in the two sub-
populations, or the effects of selection at the causal gene, or
ascertainment bias such that cases are preferentially chosen from
one subpopulation. It is difficult to devise realistic models for
these possibilities. Since, by definition, cryptic population struc-
ture has escaped the attention of investigators, it might be argued
that any differences between subpopulations in, say, diagnosis
patterns or environmental exposures, is unlikely to be large.
However, this possibility cannot be ruled out, and we decided to
investigate an extreme setting that is the same as demographic
Scenario 3 except that all 500 cases were sampled from only one

subpopulation, while in the other subpopulation all individuals
were treated as controls. The results for this “biased” simulation
scenario are shown in Table 7. Of the four methods that have a
prespecified type 1 error rate (CHISQ, GC, STR2, AM2), only GC
is able to achieve the correct level under this extreme scenario:
No false positives were observed, compared with an expected
total of one for each of the three analyses. However the price paid
by GC for correct type 1 error is zero power at this significance
level. When we increased the nominal significance level for GC
so that the expected number of false positives per analysis was
five, the observed average was around seven, similar to that for
SLR and STR2, but the empirical power was 52% (including
causal SNP) and 48% (excluding causal SNP), in each case con-
siderably less than for both SLR and STR2. Conversely, AM2 dis-
plays the greatest empirical power in Table 7, but at the cost of a
high false-positive rate. When the nominal type 1 error rate was
reduced to 10�10, the observed average number of false positives
was also about seven, but the empirical power values were 80%
and 60%, much better than GC but lower than for SLR and STR2.
Thus, when tested under this extreme ascertainment bias, CHISQ
and AM2 fail because of high type 1 error rates, and GC fails
because of low power. SLR and STR2 appear to perform best,
displaying good power and a false-positive rate that exceeds the
nominal rate for STR2, but is modest relative to other methods.

The GRR considered so far (1:2:4) are relatively high com-
pared with realistic scenarios in which substructure is of most
concern, and the numbers of cases and controls (both 500) rela-
tively small. These limitations are dictated by computational
constraints in a large simulation study. However, we additionally
investigated the effect of sample size under Scenario 2, by in-
creasing the sample size to 2000 cases and 2000 controls and
reducing the GRR to 1:1.4:1.6 (Table 8). Even with this larger
sample size, the effect of population structure remains modest,

with a total of only four false positives
for CHISQ over the 50 data sets. CHISQ
again displays greater empirical power
than all the other methods, and STR2
shows substantially lower power than all
the other methods. Once again GC,
STR2, and AM2 all appear to be well cali-
brated, with false-positive totals close to
their expected value of one.

Finally, we resampled data under
Scenario 2 with the original disease
model but now considering 200 rather
than 50 null genes in each of the 50 new
data sets. With two SNPs per gene, this
increases the total number of null SNPs

Table 5. The percentage of the 50 data sets under each demographic scenario for which,
when the causal SNP is excluded, at least one of the nine other SNPs in gene 1 is significantly
associated with disease

FST/struct

Power (%): Causal SNP excluded

CHISQ GC SLR BLR STR2 AM2

(1) No structure 86 82 84 84 62 84
(2) Low/eq 88 84 94 88 62 86
(3) High/eq 76 60 68 72 58 68
(4) Low/un 74 68 72 72 72 72
(5) High/un 70 60 68 66 66 66
Average (SE) 79 (2.8) 71 (3.1) 77 (2.9) 76 (2.9) 64 (3.4) 75 (3.0)

The final row gives the mean over the first five rows, and its standard error (SE).

Table 4. The total number of false positives generated by each
method over the 50 simulated data sets for each demographic
scenario when the causal SNP is excluded, leaving the nine
noncausal SNPs in gene 1

FST/struct

Total false positives: Causal SNP excluded

CHISQ GC SLR BLR STR2 AM2

(1) No structure 0 0 0 0 0 0
(2) Low/eq 3 2 4 3 1 2
(3) High/eq 45 3 2 5 1 2
(4) Low/un 0 0 0 0 0 0
(5) High/un 2 0 1 1 1 1

Table 6. The total number of false positives generated by each
method over the 50 simulated data sets for each demographic
scenario when gene 1 is excluded from the analyses

FST/struct

Total false positives: Causal gene excluded

CHISQ GC SLR BLR STR2 AM2

(1) No structure 0 0 0 0 1 0
(2) Low/eq 3 2 2 3 1 2
(3) High/eq 45 4 8 0 4 1
(4) Low/un 0 0 0 0 0 0
(5) High/un 2 0 1 1 0 1
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from 100 to 400, which permits improved estimation of � in GC,
and of subpopulation allocation for STR2 and AM2. The addi-
tional null SNPs also provide additional opportunities for false
positives, allowing the effect of population stratification on the
type 1 error rate to be measured more precisely. GC, STR2, and
AM2, are again well calibrated, whereas CHISQ produces nine
false positives over the 50 data sets compared with an expecta-
tion of four under the nominal type 1 error rate (Table 9). Sur-
prisingly, a comparison with row 2 of Tables 3 and 5 suggests that
the empirical power has declined for this simulation for all meth-
ods except STR2, but the differences are not statistically signifi-
cant. In the case of STR2, the additional markers have led to an
improved power, so that it here displays about the same power as
GC and AM2.

Discussion
Our simulation study suggests that use of a simple �2 test gener-
ates substantial false-positive rates only in the presence of very
high levels of population structure or substantial between-
subpopulation difference in penetrances. Thus, explicit allow-
ance for cryptic substructure may often be unnecessary provided
that good study design principles have been used so that case and
control populations are similar. However, methods that do pro-
tect against cryptic substructure typically perform well in limit-
ing the number of false positives, and the cost of this protection,
in terms of lost power, is often small. Thus researchers may prefer
to routinely implement such a prophylactic statistical method
even if it is unlikely to be necessary. Our results suggest that 100
randomly-selected null SNPs suffice for GC and AdmixMap,

whereas additional markers were required by STRAT to achieve
the same empirical power as other methods.

Among the five methods for analyzing population-based ge-
netic association studies in the presence of population structure,
no one is uniformly superior to the others, nor is any one
method uniformly inferior. GC is computationally very fast, and
it performs reasonably well in many settings, but it has low
power when cases arise in only one subpopulation. A major
drawback of GC is its inflexibility in being directly applicable
only to single-point analyses. AdmixMap performs well except
under this biased ascertainment scenario, but here it suffers from
an inflated false-positive rate. STRAT can be relatively robust
even under this biased sampling scenario, but appears to lose
power in standard settings unless a large number of null markers
is used. However, we assumed the correct number of subpopula-
tions for both STR2 and AM2, which is unrealistic, and their
actual performance in practice may be worse than our results
suggest. Zhu et al. (2002) report that STRUCTURE tends to over-
estimate the number of subpopulations. Moreover, although dis-
crete subpopulations underlie our simulations, in practice the
subpopulation model may provide only a crude approximation
to a more continuously varying reality. Both STR2 and AM2 are
highly computationally intensive: In our study the STRUCTURE/
STRAT approach required 72 h computing time per data set,
while AM2 required 24 h.

Possibly our most important finding is that simple statistical
procedures based on logistic regression perform well in all sce-
narios considered. Our stepwise and Bayesian logistic regression
methods (SLR and BLR) both protect against false positives in
standard settings and mitigate their effects under extreme ascer-
tainment bias, without significantly compromising power. These
methods do not require an estimate of the number of underlying
subpopulations; indeed they dispense entirely with the notion of
subpopulation. It may seem surprising that these methods are so
successful in countering the effects of cryptic substructure, de-
spite the fact that population structure is not explicitly modeled.
Indeed, this may explain why these methods have been little
studied in the context of protection against population stratifi-
cation. A possible explanation of their effectiveness is that when
null markers are included in a regression analysis, each of them
soaks up some of the effect of population stratification, but be-
cause this effect is shared across many markers, none of them is
individually significant. In the case of SLR, this explanation does
not apply to the final steps in the procedure when only few SNPs
remain, but here it seems from our results that we can rely on the
causal variant having a stronger signal than any of a small num-

Table 8. Empirical power and total number of false positives
generated by each method over 50 simulated data sets simulated
under Scenario 2 but with 2000 cases, 2000 controls, and
genotype relative risks 1:1.4:1.6

Scenario 2: Larger sample sizes and weaker disease model

CHISQ GC SLR BLR STR2 AM2

All SNPs included
Power (%) 88 84 84 88 72 84
Total no. false +ve 4 1 1 1 0 3

Causal SNP excluded
Power (%) 56 52 52 54 38 56
Total no. false +ve 4 1 1 2 1 2

Gene 1 excluded
Total no. false +ve 4 1 2 2 1 1

Table 9. Empirical power and total number of false positives
generated by each method over 50 simulated data sets simulated
under Scenario 2 but with 201 genes (410 SNPs)

Scenario 2: Additional null genes

CHISQ GC SLR BLR STR2 AM2

All SNPs included
Power (%) 94 94 94 94 94 94
Total no. false +ve 9 3 1 4 4 3

Causal SNP excluded
Power (%) 72 68 68 72 74 76
Total no. false +ve 9 3 1 3 2 4

Gene 1 excluded
Total no. false +ve 9 3 2 6 3 4

Table 7. Empirical power and average number of false positives
generated by each method in 50 simulated data sets simulated
under Scenario 3 but with cases chosen only from one population

Scenario 3: All cases from one population

CHISQ GC SLR BLR STR2 AM2

All SNPs included
Power (%) 98 0 86 92 92 98
Average no. false +ve 52 0 6 13 7 29

Causal SNP excluded
Power (%) 98 0 68 80 78 94
Average no. false +ve 52 0 6 14 7 31

Gene 1 excluded
Average no. false +ve 52 0 6 15 6 30
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ber of variants displaying spurious association: Broadly speaking,
problems only arise when causal variants have to compete with
many spurious variants.

There seems little to choose between SLR and BLR, although
SLR was more robust to ascertainment bias. They are both com-
putationally very fast, with SLR requiring only a few minutes per
data set, and BLR only a few seconds. SLR and BLR enjoy several
other advantages, including the ability to simultaneously incor-
porate signals from multiple SNPs in the vicinity of a causal lo-
cus, without the need to infer phase (Clayton et al. 2004), and
also the effects of multiple causal loci. Furthermore, it would be
reasonably straightforward to adapt both these approaches to
very large (e.g., genome-wide) analyses, for example, by ran-
domly choosing a subset of the available null markers when ana-
lyzing any specific locus. One drawback of SLR is that there is no
nominal type 1 error rate and thus the choice of penalty must be
based on trial and error. However, BLR does have an intuitive
interpretation in terms of prior and posterior probabilities. Here,
for comparison with non-Bayesian methods, we have not fully
exploited the Bayesian interpretation, but even in classical terms
the performance of the Bayesian method is close to the best.

Overall we conclude that for well-designed studies, popula-
tion structure might not be a serious cause for concern, even for
large sample sizes. Structured association methods protect
against false positives but are computationally intensive and lead
to some loss of power. Genomic Control is fast and provides the
best protection against false positives, but can be overly conser-
vative in complex scenarios, such as differential penetrances or
biased ascertainment. We believe that logistic regression using
null markers as covariates provides a good solution, in terms of
computational speed, flexibility, ease of implementation, statis-
tical power, and robustness. Further work is required to refine the
implementation details that provide the best solutions for spe-
cific association studies.

Methods

Where not otherwise indicated, all analyses were performed us-
ing R, a statistical software package freely available at http://
www.r-project.org.

Simulation study
For each gene in each simulated data set, 20,000 haplotypes were
simulated under the coalescent model using MS, a program de-
veloped by Hudson (2002), and randomly paired. We used a
single population for the unstructured simulation, and otherwise
an island model with two subpopulations and migration be-
tween them of six and 1.5 individuals per generation for the low-
and high-FST scenarios, respectively. Using maximum-likelihood
estimation (Balding 2003), we found that these migration rates
corresponded to FST values of ∼3.5% and 8.3%, both for equal and
unequal subpopulation sizes (Table 1). The scaled recombination
and mutation rates were both 20 per 50-kb gene, corresponding
to 10�8 per base pair per generation. Within each gene, the re-
quired number of SNPs (10 for the causal gene and two for the
remaining 50 null genes) were sampled omitting markers with
minor allele frequency below 5%. Case/control status was simu-
lated according to a disease model in which the population dis-
ease prevalence was 10% and genotypic relative risks (GRR) at a
SNP chosen at random in the causal gene [proportional to
P(1 � P), where P is the population allele frequency] were 1:2:4.
From the ∼1000 cases, 500 were sampled at random, and simi-

larly 500 controls were randomly selected. For the studies con-
sisting of 2000 cases and 2000 controls, four times as many in-
dividuals were simulated. Table 1 shows the average difference
between the numbers of cases and of controls in either one of the
subpopulations. For example, in Scenario 3, the subpopulation
from which the majority of cases is drawn contributes on average
43 more cases than controls to the data set.

Armitage’s trend test
The test statistic is

Y2 =
n0 × n1

�n0 + n1� × Var�X�
�X0 − X1�2

where n0 and n1 denote the numbers of cases and controls, re-
spectively; X denotes the vector of genotypes, coded as 0, 1, and
2 according to the number of minor alleles; and X0 and X1 denote
the mean genotype among cases and controls, respectively. Since
Y2 is assumed to have a � distribution, and we used � = 2 � 10�4,
the critical value was 13.83. See Sasieni (1997) for further details
and discussion.

Genomic control (GC)
We estimated � by the median of the Y2 values for a SNP drawn
at random from each gene, divided by the median of the �2

1

distribution. If the resulting estimate was <1, we used 1 (thus the
average � estimate exceeds 1, even under Scenario 1). We also
considered estimating � via the mean of the Y2 values, but found
that the median gave slightly better power. For each SNP consid-
ered in the analysis, we assumed a �2

1 distribution for Y2/�.

Stepwise logistic regression (SLR)
Disease status was the outcome variable, and initially all SNP
genotypes were included as predictors. From this full model we
applied R function step(s), using a penalty 4 log(n), where n de-
notes the number of SNPs. Thus, terms were dropped from the
model unless they improved the fit (measured by the deviance,
which equals twice the log-likelihood) by at least this amount.
Except for the study underlying Table 9, n was 110, 109, or 100
according to whether or not the causal SNP or the causal gene
was excluded from the analysis. At each step we also considered
reintroducing SNPs that had previously been dropped. When the
procedure terminated (no further SNPs can be added or dropped),
the SNPs retained in the model were treated as significant.

Bayesian logistic regression (BLR)
We used a Laplace prior that corresponds to Tibshirani’s LASSO
algorithm (Tibshirani 1996), implemented in software BBR de-
veloped by A. Genkin, D.D. Lewis, and D. Madigan [http://
www.stat.rutgers.edu/∼madigan/BBR/]). We standardized the
genotype data to have mean 0 and unit variance, and the
hyperparameter for the Laplace prior was set to 60 (or 120 for
Table 8).

STRUCTURE/STRAT
We used the default settings assuming correlated allele frequen-
cies and the admixture model for two subpopulations (recom-
mended in the STRUCTURE manual as a good starting point for
any analysis). We ran STRUCTURE for 20,000 burnin steps fol-
lowed by 300,000 replications. We used 100,000 permutations to
calculate empirical P-values within STRAT.
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AdmixMap
We ran AdmixMap using the default settings assuming two an-
cestral populations for 2000 burnin steps and 3000 subsequent
iterations. For these simulations, we assume that the genetic dis-
tance between SNPs within the same gene is 0.05 cM, whereas for
loci in different genes it is 100 cM.
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