JOURNAL OF VIROLOGY, June 2002, p. 6054-6061
0022-538X/02/$04.00+0 DOI: 10.1128/JV1.76.12.6054-6061.2002

Vol. 76, No. 12

Copyright © 2002, American Society for Microbiology. All Rights Reserved.

The Genomes of Sheeppox and Goatpox Viruses

E. R. Tulman,' C. L. Afonso,' Z. Lu,' L. Zsak," J.-H. Sur,' N. T. Sandybaev,>
U. Z. Kerembekova,” V. L. Zaitsev,” G. F. Kutish,! and D. L. Rock!*

Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture,
Greenport, New York 11944" and Scientific Research Agricultural Institute Zhambylskaya
Oblast Kordaiskiy Rayon, Gvardeiskiy 485444, Republic of Kazakhstan®

Received 11 February 2002/Accepted 25 March 2002

Sheeppox virus (SPPV) and goatpox virus (GTPV), members of the Capripoxvirus genus of the Poxviridae, are
etiologic agents of important diseases of sheep and goats in northern and central Africa, southwest and central
Asia, and the Indian subcontinent. Here we report the genomic sequence and comparative analysis of five SPPV
and GTPV isolates, including three pathogenic field isolates and two attenuated vaccine viruses. SPPV and
GTPV genomes are approximately 150 kbp and are strikingly similar to each other, exhibiting 96% nucleotide
identity over their entire length. Wild-type genomes share at least 147 putative genes, including conserved
poxvirus replicative and structural genes and genes likely involved in virulence and host range. SPPV and
GTPYV genomes are very similar to that of lumpy skin disease virus (LSDV), sharing 97% nucleotide identity.
All SPPV and GTPYV genes are present in LSDV. Notably in both SPPV and GTPV genomes, nine LSDV genes
with likely virulence and host range functions are disrupted, including a gene unique to LSDV (LSDV132) and
genes similar to those coding for interleukin-1 receptor, myxoma virus M003.2 and M004.1 genes (two copies
each), and vaccinia virus F11L, N2L, and K7L genes. The absence of these genes in SPPV and GTPV suggests
a significant role for them in the bovine host range. SPPV and GTPV genomes contain specific nucleotide
differences, suggesting they are phylogenetically distinct. Relatively few genomic changes in SPPV and GTPV
vaccine viruses account for viral attenuation, because they contain 71 and 7 genomic changes compared to their
respective field strains. Notable genetic changes include mutation or disruption of genes with predicted
functions involving virulence and host range, including two ankyrin repeat proteins in SPPV and three
kelch-like proteins in GTPV. These comparative genomic data indicate the close genetic relationship among
capripoxviruses, and they suggest that SPPV and GTPYV are distinct and likely derived from an LSDV-like ancestor.

Capripoxviruses (CaPVs) represent one of eight genera
within the chordopoxvirus (ChPV) subfamily of the Poxviridae.
The Capripoxvirus genus is currently comprised of sheeppox
virus (SPPV), goatpox virus (GTPV), and lumpy skin disease
virus (LSDV), causing disease in sheep, goats, or cattle, re-
spectively. These viruses are responsible for some of the most
economically significant diseases of domestic ruminants in Af-
rica and Asia (13, 19).

Sheeppox and goatpox are endemic throughout southwest
and central Asia, the Indian subcontinent, and northern and
central Africa (13, 19). In contrast, LSDV occurs largely in
central and southern Africa and is absent in Asia. Sheeppox
and goatpox exhibit similar clinical signs that are typical of
generalized poxviral diseases, including pyrexia, cutaneous le-
sions, and notably the development of lung lesions (19, 45).
Transmission of sheeppox and goatpox is efficient and sus-
pected to occur via aerosol and insect vector (19, 36, 38).

CaPVs are generally considered to be host specific, because
disease outbreaks or virus isolates may preferentially occur or
cause disease in one host species (19, 45). This has been shown
specifically for Nigerian, Middle Eastern, and Indian strains of
SPPV and GTPV and for LSDV (32, 34, 37, 46, 50, 51).
However, the ability of SPPV and GTPV strains to naturally or
experimentally cross-infect and cause disease in both host spe-
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cies has been described previously (16, 35, 37). This apparent
variability in SPPV and GTPV host range, the clinical similar-
ity between sheeppox and goatpox, and the inability to differ-
entiate the two diseases by serological assays have led to the
suggestion that sheeppox and goatpox are part of a disease
complex caused by a single viral species and that observable
host range specificities are the result of regional virus adapta-
tions to sheep or goat hosts (17, 37).

Restriction endonuclease analysis and cross-hybridization
studies of SPPV and GTPV indicate that these viruses, al-
though closely related (estimated 96 to 97% nucleotide iden-
tity), can be distinguished from one another and may undergo
recombination in nature (8, 25-27, 32). These data and limited
SPPV and GTPV DNA sequence analysis also indicate a high
degree of similarity to LSDV, whose genome sequence con-
tains a conserved ChPV-like complement of replicative genes
and a unique complement of virulence and host range genes
(11, 23, 25, 26, 29, 59).

Live attenuated SPPV and subunit formulations have been
used experimentally and in enzootic and outbreak areas as
vaccines against sheeppox, goatpox, and lumpy skin disease
(12-14, 33, 47). However, vaccine-induced disease, vaccine
failure, and restrictions on the use of live virus vaccines in
nonenzootic areas create the need for improved CaPV vac-
cines (13, 51, 61). An improved understanding of the genetic
basis of CaPV virulence and host range will permit rational
design of vaccines having greater efficacy and versatility.

Given the economic significance of CaPVs, their potential



VoL. 76, 2002

for spread into nonenzootic regions, and interest in developing
more effective CaPV-based vaccines and expression vectors,
we have sequenced and analyzed the genomes of three SPPVs
and two GTPVs. These data, combined with LSDV sequence
data, provide a comparative view of CaPV genomics and de-
scribe the genetic basis for CaPV virulence and host range.

MATERIALS AND METHODS

Virus strains. The following sequenced viruses were used: SPPV strain TU,
isolated during an outbreak of sheeppox in Turkey in the late 1970s, passaged six
times in lamb testicle (LT) cells and once in sheep coroid plexus cells, and
subsequently reisolated in 2000 from lung lesions of an experimentally infected
sheep (Plum Island Animal Disease Center, Animal and Plant Health Inspection
Service, U.S. Department of Agriculture, Greenport, N.Y.); SPPV strain A (SA),
a field isolate obtained from a sick sheep in the Almatinskaya region, Kazakh-
stan, and passaged nine times in sheep at the Scientific Research Agricultural
Institute (SRAI), Kazakhstan (1987); SPPV strain Niskhi (NK), an attenuated
vaccine strain derived from an epizootic strain through 30 passages in lamb
kidney (LK) cell cultures at SRAI (1994); GTPV strain Pellor (PL), a pathogenic
field isolate passaged three times in LK at SRAI (1996); and GTPV strain
G,-LKV (GV), a vaccine strain derived from a field isolate of low pathogenicity
through 20 passages in LK at SRAI (2000).

Viral DNA isolation, cloning, sequencing, and sequence analysis. Viral
genomic DNA was extracted from primary LT cells. Random DNA fragments
were obtained by incomplete enzymatic digestion with Tsp5091 endonuclease
(New England Biolabs, Beverly, Mass.), and DNA fragments larger than 1.0 kbp
were cloned and used in dideoxy sequencing reactions as previously described
(3). Reaction products were analyzed on an ABI PRISM 3700 automated DNA
sequencer (Applied Biosystems, Foster City, Calif.). Sequence data were assem-
bled with the Phrap and CAP3 software programs (20, 30), and gaps were closed
as described previously (2). The final DNA consensus sequences for each ge-
nome represented on average seven to ninefold redundancy at each base position
and a Consed estimated error rate of 0.01 to 0.03 per 100 kbp (20, 21, 28).

Genome DNA composition, structure, repeats and restriction enzyme patterns
were analyzed as previously described (2) with the Genetics Computer Group
GCG v.10 software package (18). Pairwise genomic alignments were done with
WABA (Jim Kent; http://www.cse.ucsc.edu/~kent/) and multiple genomic align-
ments were done with Dialign (42) and Clustal (58) alignment programs. Open
reading frames (ORFs) longer than 30 codons were evaluated for coding poten-
tial as previously described (3). All ORFs with coding potential and ORFs
greater than 60 codons were subjected to homology searches as previously de-
scribed (2, 3). Based on these criteria, at least 147 ORFs were annotated as
potential genes and numbered to coincide with orthologous ORFs from LSDV
(59). Phylogenetic comparisons were done with the PHYLO_WIN software
package (22).

Nucleotide sequence accession number. The genome sequences of SPPV
strains TU, SA, and NK, and GTPV strains PL and GV have been deposited in
GenBank under accession no. AY077832, AY077833, AY077834, AY(077835,
and AY077836, respectively.

RESULTS AND DISCUSSION

SPPV and GTPV genomes. Genome sequences of SPPV
field isolate strains TU and SA, SPPV vaccine strain NK,
GTPV field isolate PL, and GTPV vaccine strain GV were
assembled into contiguous sequences of 149,955, 150,057,
149,662, 149,935, and 149,695 bp, respectively. This agrees with
previous restriction enzyme-based size estimates for SPPV and
GTPV (SGPV) genomes of approximately 143 to 147 kbp (25).
Because poxvirus hairpin loop sequences known to be present
at CaPV termini were not sequenced, the leftmost nucleotide
of each assembled genome was arbitrarily designated base 1 (8,
43). Nucleotide composition is approximately 75% A+T uni-
formly distributed for all genomes.

SPPV and GTPV genomes, like those of other poxviruses,
contain a central coding region bounded by two identical in-
verted terminal repeat (ITR) regions. Assembled ITRs of
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SPPV TU, SA, NK, and GTPV PL and GV contain at least
2,213, 2,349, 2,127, 2,305, and 2,198 bp, respectively, similar to
those previously estimated for SPPV (25). Sequences similar to
noncoding tandem repeats previously described in SPPV and
LSDV terminal regions were identified in SPPV TU, SA, NK,
and GTPV PL and GV ITRs (24, 59). Available data from
terminal genomic regions indicate that CaPVs differ in the
nature and size of tandemly repeated sequence. Notably, all
SPPV isolates contain 46 bp of the ORFs closest to the termini
(ORFs 001 and 156) in their tandem repeats, compared to
LSDV, which contains 5 bp of ORFs 001 and 156 in its tandem
repeats (24, 59). Although ORFs 001 and 156 were completely
sequenced in each GTPV strain, no terminal tandem repeti-
tion was noted. Comparison with experimental and published
restriction fragment analysis indicates that additional terminal
repeats and hairpin loop sequences of less than 200 bp may be
present in each genome (8, 25, 32) (data not shown).

SGPV field isolates contain 147 ORFs, which have been
annotated here as putative genes and as orthologues of LSDV
genes (Table 1). These genes represent an approximate 93%
coding density and encode proteins of 53 to 2,027 amino acids
(Table 1). The central genomic region of SGPV (ORFs 024 to
123) contains homologues of conserved poxvirus genes in-
volved in basic replicative mechanisms, including viral tran-
scription and RNA modification, viral DNA replication, and
structure and assembly of intracellular mature and extracellu-
lar enveloped virions (43) (Table 1). Terminal genomic regions
of SGPV (ORFs 001 to 0023 and ORFs 124 to 156) contain
genes with putative virulence and host range functions similar
to those found in LSDV (59). These include gene families (five
genes with ankyrin repeat motifs and three genes with kelch-
like repeat motifs) and other genes likely involved in viral
modification or evasion of host cellular, apoptotic, and im-
mune responses or processes, including homologues of cyto-
kine binding proteins, interleukin-10 (IL-10), an epidermal
growth factor (EGF)-like protein, PKR inhibitors, a serpin,
and poxvirus-specific virulence and host range genes (Table 1)
(5, 43).

Comparison of SPPV and GTPV. SPPV and GTPV are
highly similar to each other at the genomic level, sharing co-
linearity (147 orthologous genes) and average nucleotide iden-
tity of 96% over the length of their genomes (Tables 1 and 2 ).
Intraspecies nucleotide identity was greater than 99%, because
SPPV TU and SA contained only 192 genomic changes, in-
cluding 131 single-nucleotide substitutions (Table 2). Analysis
of entire genome sequences suggests that SPPV and GTPV,
although highly similar, are phylogenetically distinct (Fig. 1).
This phylogenetic grouping of CaPVs isolated from a given
host species supports a genetic basis for CaPV species-specific
host range, and it agrees with data suggesting that viruses of
sheep and goat origins can be differentiated via genomic re-
striction fragment pattern analysis (8, 25, 32).

SPPV and GTPV field isolates demonstrate average amino
acid differences of 4% (Table 1). SPPV SA and GTPV PL
share 101, 39, and 7 genes with 96 to 100%, 91 to 95%, and 80
to 90% amino acid identity, respectively (Table 1). Twenty-six
SPPV and GPV OREFs differ in size (1 to 18 amino acids) due
to insertion or deletion of amino acids within the ORF or
alterations in start or stop codons. SPPV TU ORFs 003 and
154 are 73 amino acids longer than in other SPPVs due to two
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TABLE 2. Comparisons between CaPV genomes®

Identity

Genome SPPV GTPV

TU SA NK PL GV
SA 193-131 (99.7)
NK 188-137 (99.8) 71-36 (99.9)
PL 2939-1972 (96.2) 2949-1979 (96.2) 2960-1986 (96.2)
GV 2945-1974 (96.2) 2955-1980 (96.2) 2964-1987 (96.2) 7-4 (100.0)
LSDV 2603-1816 (96.8) 2617-1822 (96.9) 2615-1825 (97.0) 2373-1676 (97.2) 2380-1676 (97.2)

¢ Pairwise comparisons of CaPV genomes presented as total differences—single-nucleotide substitutions (percent nucleotide identity rounded to the nearest 0.1%).
Boldface numbers reflect intraspecies comparisons. Changes were calculated with the Diffseq program (ftp:uk.embnet.org/pub/EMBOSS).

upstream insertions resulting in frameshifts. Additionally,
GTPV contains a 90-amino-acid ORF (ORF 136a) that is
homologous to the carboxyl terminus of LSDV136. This ORF
is absent in SPPV.

Differences between SPPV and GTPV in amino acid identity
and OREF size are greater in terminal genomic regions and in
genes with likely virulence and host range functions. Seventy-
six percent of the most variable ORFs (<96% amino acid
identity) and 54% of the ORFs differing in size between SPPV
and GTPV occur in the terminal 35% of the genome (ORFs
001 to 023 and ORFs 122 to 156) (Table 1). Of the seven least
similar ORFs (82 to 90% amino acid identity), three are sim-
ilar to myxoma virus (MYXV) MO16L (ORF 021), vaccinia
virus (VACYV) interferon-o/B binding protein (ORF 135), and

SA

TU NK

0.016

0.006

LSDV

0.014

GV PL

FIG. 1. Phylogenetic comparison of CaPVs. Genomic nucleotide
sequences excluding terminal repetition were aligned by using Dialign
(42) to generate the unrooted tree. The maximum-likelihood algo-
rithm with HKY correction for multiple substitutions was used as
implemented by the Phylip package (22). Branch length values indicate
changes per nucleotide. Similar results were obtained by using the
maximum-parsimony algorithm and the neighbor-joining algorithm,
which maintained 100% support for species-specific groupings after
1,000 bootstrap replicates (data not shown).

VACV NlL-secreted virulence factor (ORF 142), and four
differ in size (4 to 14 amino acids) and include a CaPV-specific
ORF (OREF 022) and homologues of late transcription factor 4
(ORF 076), MYXV M130R (ORF 129) and an OX-2-like
immunoglobulin (Ig) domain protein (ORF 138) (Table 1).
Size differences (4 to 19 amino acids) are also present between
SPPV and GTPV homologues of CC chemokine receptor
(ORF 011), epidermal growth factor (EGF)-like growth factor
(ORF 016), kelch-like protein (ORF 019), double-stranded
RNA (dsRNA)-binding PKR inhibitor (ORF 035), RPO30
(ORF 036), VACV D9R mutT motif protein (ORF 086), Hol-
liday junction resolvase (ORF 114), variola virus B22R (ORF
134), and ankyrin repeat protein (ORF 152). These differences
in proteins located in terminal genomic regions likely affect
aspects of viral virulence and host range.

Comparison of SGPV and LSDV. Nine LSDV genes with
likely virulence and host range functions are disrupted in SPPV
and GTPV (Table 1). Genes affected by insertions, deletions,
and substitutions include an LSDV-specific gene (LSDV132)
and those similar to IL-1 receptor (IL-1R) (LSDVO013),
MYXV M003.2 (LSDV002 and LSDV155), MYXV M004.1
(LSDV004 and LSDV153), VACV N2L (LSDV009), VACV
F11L (LSDVO026), and VACV K7L (LSDV136) genes (24)
(Table 1). Affected SGPV genes are highly fragmented, with 4
to 23 potentially frameshifting nucleotide changes per ORF
compared to LSDV. The number of genomic changes relative
to LSDV in these nine SGPV genomic regions is relatively high
(average of 2.6 nucleotide insertion/deletion sites per 100
bases) compared to changes throughout the remainder of the
genome (average of 0.09 nucleotide insertion/deletion sites per
100 bases). Although ORF 136 is highly fragmented in SGPV,
two-thirds of the predicted protein remains as a carboxyl-ter-
minal fragment in GTPV (Table 1). Given the likely ancestral
nature of several LSDV genes disrupted in SGPV (present in
other poxvirus genera), available data suggest that gene frag-
mentation and sequence divergence occurred during adapta-
tion of an LSDV-like ancestor to sheep and/or goats.

Extensive fragmentation of these nine ORFs in SGPV likely
results in functional inactivation. Of the nine genes disrupted,
only the IL-1R gene (ORF 013) is orthologous to genes of
known function, including VACV WR B15R homologues, se-
creted proteins that bind and inactivate host IL-1B to affect
viral virulence (6, 56). LSDVO013 contains the three Ig domains
common to IL-1R and likely functions as an IL-1 binding
protein (59). Disruption of ORF 013 in SGPV likely affects the
ability of the virus to modulate host IL-1-mediated responses.
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ORF 009 is similar to VACV N2L, an ORF associated with
viral sensitivity to a-amanitin (57). ORF 136 has limited sim-
ilarity to a previously described poxvirus gene family, which
includes VACV AS52R, an antagonist for host cell IL-1 and
Toll-like receptor-mediated intracellular signaling (9, 55, 59).
The absence of these genes in SGPV likely affects aspects of
CaPV virulence and host range and suggests a specific role for
them in bovine host range.

ORFs 002 and 155 and ORF 013, disrupted in all SGPVs
described here and in an Indian strain of SPPV, are intact in
both the Kenyan “sheep and goat poxvirus” 0240 strain (KS-1)
and LSDV (Table 1) (11, 16, 17, 24). Strain 0240 yields restric-
tion patterns very similar to LSDV, and it causes mild disease
in sheep and goats (8, 32, 33). Notably, published sequences
from strain 0240 are more similar to LSDV (99.6 to 99.8%
nucleotide identity) than to SPPV (92.0 to 97.1% nucleotide
identity). Although considered of low virulence in cattle, strain
0240 induced more severe reactions than other SPPV and
GTPV strains when administered experimentally, and it caused
LSDV-like disease when used as a vaccine (8, 32, 60). These
data suggest that strain 0240 may in fact be LSDV (32).

Comparison of SGPV field and vaccine strains. SPPV NK
and GTPV GV vaccine strains have greater than 99.9% amino
acid identity to their respective field strains (Table 2). SPPV
NK contains only 71 genomic differences compared to SPPV
SA, including 36 single-nucleotide substitutions, 15 insertions
of 1 to 29 nucleotides, and 20 deletions of 1 to 4 nucleotides
and affecting 17 proteins (Table 1). GTPV GV is extremely
similar to the PL field isolate; differences occur in only seven
genomic locations and include four single-nucleotide substitu-
tions, two single-nucleotide insertions, and one deletion of 28
nucleotides and affect six proteins. Comparative genomic data
suggest that these genomic changes account for viral attenua-
tion and that the changes affect genes with predicted virulence
and host range functions (Table 1).

In SPPV NK, single in-frame stop and frameshift mutations
are present in ankyrin repeat-containing genes ORF 145 and
ORF 148, respectively. Each gene is represented by two
smaller ORFs in NK (ORFs 145a and 145b and ORFs 148a
and 148b). Poxvirus ankyrin repeat genes have been associated
with host range functions in orthopoxviruses and leporipoxvi-
ruses, and they may inhibit virally induced apoptosis (31, 44,
48). It has also been suggested that specific complements of
ankyrin repeat genes may affect poxvirus host range (7, 54).
The attenuated phenotype of the VACV Ankara strain may be
due in part to mutations in ankyrin repeat genes (7). Ankyrin
repeat motifs in other proteins are clearly involved in mediat-
ing protein-protein interactions, and the VACV KI1L ankyrin
repeat host range protein interacts with at least one other viral
protein (41, 52). Disruption of two of the five ankyrin repeat
genes in SPPV vaccine strain NK further suggests a significant
role for them in viral virulence and/or host range.

GTPV vaccine strain GV contains mutations in all genes
encoding kelch-like family proteins (ORFs 019, 144, and 151).
ORF 019 contains a single frameshift that results in two
smaller ORFs (ORFs 019a and 019b), ORF 144 contains a
28-nucleotide deletion in the carboxyl and 3’-noncoding re-
gion, and ORF 151 contains a single nonconservative amino
acid substitution (N to H). These three ORFs in CaPV field
isolates contain four to five imperfect carboxyl-terminal re-
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peats similar to those found in the Drosophila kelch protein
and to kelch-like proteins present in several ChPV genera (4,
10, 40, 53). Kelch and poxviral kelch-like proteins also contain
an amino-terminal domain (BTB/POZ domain) known to me-
diate oligomerization and protein complex formation in nu-
merous cellular actin-binding and transcriptional regulatory
proteins (15, 53). Kelch repeat motifs are found in functionally
diverse proteins known to affect cellular transcription, devel-
opment, and organization, and they are involved in protein-
protein interactions (1). Notably, proteins from influenza virus
and herpes simplex virus bind cellular kelch repeat proteins
and affect viral pathogenesis (1). The function of poxvirus
kelch-like proteins is unknown; however, they are nonessential
for replication of VACYV in cell culture and have been specu-
lated to mediate viral interaction with specific cellular compo-
nents (39, 49, 54). The changes observed in all kelch-like pro-
teins of the GTPV vaccine strain GV may be highly significant
for viral attenuation. Overall, data from attenuated CaPVs
suggest that further elucidation of functions of ankyrin repeat
and kelch-like proteins may be helpful in design of more ef-
fective and versatile CaPV vaccines.

Conclusions. Genome sequences of SPPV and GTPV de-
scribed here, together with their comparison to the complete
genomic sequence of LSDV, provides a comprehensive view of
CaPV genomics. CaPV genomes are very similar to each other,
averaging no less than 96% nucleotide identity over their en-
tire length. SPPV, GTPV, and LSDV contain the same reper-
toire of orthologous genes, with the exception that SPPV and
GTPV lack nine LSDV genes with likely CaPV virulence and
host range functions. SPPV and GTPV genomes sequenced
here are phylogenetically distinct from each other and from
LSDV, and they contain species-specific nucleotide differences
that may be associated with aspects of host range. Relatively
few genomic changes in SPPV and GTPV vaccine viruses ac-
count for viral attenuation.
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