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Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle, and infection is usually initiated via the
ocular or nasal cavity. Following acute infection, the primary site for BHV-1 latency is the sensory neuron.
Reactivation from latency occurs sporadically, resulting in virus shedding and transmission to uninfected
cattle. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA, suggesting
that it mediates some aspect of latency. An LR mutant was constructed by inserting three stop codons near the
beginning of the LR-RNA, suggesting that expression of LR proteins would be altered. The LR mutant grew
with wild-type (wt) efficiency in bovine kidney cells (MDBK). When calves were infected with the LR mutant,
a dramatic decrease (3 to 4 logs) in ocular, but not nasal, viral shedding occurred during acute infection
relative to the wt or the LR-rescued virus (M. Inman, L. Lovato, A. Doster, and C. Jones, J. Virol. 75:8507–8515,
2001). In this study, we examined the latency reactivation cycle in calves infected with the LR mutant and
compared these results to those from calves infected with wt BHV-1 or the LR-rescued virus. During acute
infection, lower levels of infectious virus were detected in trigeminal ganglion homogenates from calves infected
with the LR mutant. As judged by in situ hybridization, BHV-1-positive neurons were detected in trigeminal
ganglia of calves infected with the wt but not the LR mutant. Although LR-RNA was detected by reverse
transcription-PCR in calves latently infected with the LR mutant, a semiquantitative PCR analysis revealed
that lower levels of viral DNA were present in trigeminal ganglia of calves infected with the LR mutant.
Dexamethasone treatment of calves latently infected with wt BHV-1 or the LR-rescued virus, but not the LR
mutant, consistently induced reactivation from latency, as judged by shedding of infectious virus from the nose
or eyes and increases in BHV-1-specific antibodies. In summary, this study demonstrates that wt expression of
LR gene products plays an important role in the latency reactivation cycle of BHV-1 in cattle.

Bovine herpesvirus 1 (BHV-1) is an important viral patho-
gen of cattle that can cause severe respiratory infection, con-
junctivitis, abortions, vulvovaginitis, balanopostitis, and sys-
temic infection in neonate calves (52). BHV-1 infection is also
an important component of the upper respiratory tract infec-
tion referred to as “shipping fever” or bovine respiratory com-
plex (46). BHV-1 is not the sole infectious agent associated
with shipping fever, but it initiates the disorder by immuno-
suppressing infected cattle, which results in secondary bacterial
infections and pneumonia. Increased susceptibility to second-
ary infection correlates with depressed cell-mediated immunity
after BHV-1 infection (4, 10–12). CD8� T-cell recognition of
infected cells is impaired by repressing expression of major
histocompatibility complex class I and of the transporter asso-
ciated with antigen presentation (13, 14, 25). CD4� T-cell
function is impaired during acute infection of calves, in part,
because BHV-1 infects CD4� T cells and induces apoptosis
(48). BHV-1 infection costs the cattle industry millions of dol-
lars per year in the United States (3; bulletin from the National
Agricultural Statistics Service, Agricultural Statistics Board,
U.S. Department of Agriculture). Although modified live vac-
cines are available, they can cause disease in young calves or
abortions in cows, and they have the potential to establish
latency and reactivate from latency (21).

BHV-1 is a member of the Alphaherpesvirinae subfamily and
shares certain biological properties with herpes simplex virus
types 1 and 2 (HSV-1 and -2, respectively) (20). Viral gene
expression is temporally regulated in three distinct phases:
immediate-early (IE), early (E), or late (L). Two IE transcrip-
tion units exist: IE transcription unit 1 (IEtu1) and IEtu2.
IEtu1 encodes functional homologues of two HSV-1 IE pro-
teins, ICP0 and ICP4. IEtu2 encodes a protein that is similar to
an essential HSV IE protein, ICP22 (51). bICP0 is very impor-
tant for productive infection, because it activates all classes of
viral promoters and is expressed at high levels throughout
infection (9, 50, 51).

BHV-1 establishes lifelong latency in ganglionic neurons of
the peripheral nervous system after initial replication in mu-
cosal epithelium. Reactivation from latency and spread to
other susceptible animals occur after natural or corticosteroid-
induced stress (36, 43). Although the primary site of BHV-1
latency is sensory neurons, there is evidence that long-term
persistence and reactivation also occur within germinal centers
of pharyngeal tonsil (49). The latency-related RNA (LR-RNA)
is the only abundant viral transcript detected in latently in-
fected neurons (22, 36, 37). A fraction of LR-RNA is polyad-
enylated and alternatively spliced in trigeminal ganglia (TG),
suggesting this RNA is translated into more than one LR
protein (LRP) (8, 16). LR gene products inhibit S-phase entry,
and LRP is associated with cyclin-dependent kinase 2 (cdk2)-
cyclin complexes (16, 19). LR gene products also promote cell
survival following induction of apoptosis in transiently trans-
fected cells (6). We recently constructed an LR mutant virus
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that contains three stop codons near the beginning of LR RNA
to test whether LR gene products play a role in the ability of
BHV-1 to replicate in cattle (17). Calves infected with the LR
mutant consistently exhibited diminished clinical symptoms
and ocular shedding of the virus compared to calves infected
with wild-type (wt) or LR-rescued virus. Conversely, the LR
mutant had similar growth properties in productively infected
bovine kidney cells (MDBK) and the nasal cavity of calves
during acute infection. These results suggested that LR gene
products promote virus growth in certain cell types in the eye
or optic nerve during acute infection of cattle.

HSV-1 establishes latency in ganglionic sensory neurons,
typically TG or sacral dorsal root ganglia (20, 47). In situ
hybridization has revealed that a small region, the latency-
associated transcript (LAT), within the terminal repeats is
abundantly transcribed in latently infected neurons (38, 44).
Numerous mutants that do not express detectable levels of
LAT have been constructed. Although several studies have
suggested that LAT plays no role in a latent infection, for
example (2, 15), most have concluded that LAT is important,
but not required. LAT enhances establishment of latency in
mice (40, 45) and rabbits (34), because certain LAT-null mu-
tants contain lower levels of viral DNA in TG relative to wt
virus (7, 24). LAT is also important for in vivo reactivation with
two different rabbit eye infection models. The McKrae strain
of HSV-1 is frequently shed in the tears of infected rabbits as
a result of spontaneous reactivation and LAT is necessary for
efficient spontaneous reactivation (28–32).

LAT interferes with apoptosis in transiently transfected cells
and in infected mice or rabbits (1, 18, 27). The ability of LAT
to interfere with apoptosis correlates with its ability to promote
spontaneous reactivation (18), suggesting the antiapoptotic ac-
tivity of LAT has biological significance with respect to latency.
Since the LR gene and LAT interfere with apoptosis, the LR
gene was inserted into the LAT locus to test whether it could
restore spontaneous reactivation to a LAT-null mutant. The
LR gene of BHV-1 is capable of restoring high levels of spon-
taneous reactivation from latency to a LAT-null mutant (26),
adding support to the hypothesis that inhibition of apoptosis
plays an important role in the latency reactivation cycle of
HSV-1 and BHV-1.

In this study, we examined the effects of the LR mutant on
virus production in TG and the latency reactivation cycle. Di-
minished levels of virus were detected in TG of calves acutely
infected with the LR mutant when compared to those infected
with wt or LR-rescued virus. Although we consistently de-
tected LR-RNA in TG of calves infected with the LR mutant
or the wt by PCR, we were unable to detect viral DNA in
neurons of calves infected with the LR mutant by in situ hy-
bridization. PCR analysis confirmed that calves infected with
the LR mutant contained lower levels of viral DNA during
latency compared to those in calves infected with wt BHV-1.
The LR mutant virus was not reactivated from latently infected
calves following treatment with dexamethasone (DEX). In
contrast, calves infected with wt virus or the LR-rescued virus
reactivated efficiently following the same DEX treatment.
These results demonstrate that wt expression of LR gene prod-
ucts is crucial for the latency reactivation cycle in cattle.

MATERIALS AND METHODS

Virus and cells. Bovine kidney cells (MDBK; ATCC CCL-22) were plated at
a density of 5 � 105 per 100-mm2 plastic dish in Earle’s modified medium
supplemented with 5% fetal bovine serum (FBS), penicillin (10 U/ml), and
streptomycin (100 �g/ml).

The Cooper strain of BHV-1 (wt virus) was obtained from the National
Veterinary Services Laboratory, Animal and Plant Health Inspection Services,
Ames, Iowa. A complete description of the LR mutant virus has been previously
described (17). In short, the LR mutant virus was developed by replacing wt
(Cooper strain) LR gene sequences with an oligonucleotide that contain a
unique EcoRI restriction site and three stop codons in each reading frame. In
transiently transfected cells, a plasmid with this mutation does not express de-
tectable levels of the LR protein, but does express LR-RNA (6). Viral stocks
were prepared by infecting MBDK cells with a multiplicity of infection (MOI) of
0.001 from a plaque-purified virus. Virus was titrated on MDBK cells by using
10-fold dilutions and determining the 50% tissue culture infectious dose
(TCID50) or PFU.

Animal experiments. BHV-1-free crossbred calves (�250 kg) were randomly
assigned and housed in isolation rooms to prevent cross contamination. Calves
were anesthetized with Rompun (approximately 1 mg/kg of body weight; Bayer
Corp., Shawnee Mission, Kans.). Calves were then inoculated with 1 ml of a
solution containing 107 PFU of the indicated virus per ml in each nostril and eye,
without scarification, for a total of 4 � 107 PFU per animal as described previ-
ously (41, 48, 49). Experiments with animals were performed in accordance with
the American Association of Laboratory Animal Care guidelines. At 60 days
postinfection (dpi) (latency), calves were injected intravenously with 100 mg of
DEX as described previously (49). Additional intramuscular injections (25 mg)
of DEX were given at 2 and 4 days after the initial intravenous injection of DEX
to ensure that reactivation occurs. We have previously demonstrated that mul-
tiple injections of DEX enhance shedding of virus (21). Calves were housed
under strict isolation containment and given antibiotics before and after BHV-1
infection to prevent secondary bacterial infection.

Nasal swabs, ocular swabs, and serum samples were taken at the designated
times. Nasal and ocular swabs were stored at �80°C in 2 ml of tissue culture
medium supplemented with 10 �g of amphotericin B per ml (Fungizone) and 45
�g of gentamicin per ml. Samples were thawed quickly in a 37°C water bath,
vortexed, and centrifuged (1,500 � g for 10 min). All titrations were performed
with 10-fold serial dilution and plated in quadruplicate.

Virus was isolated from TG by mincing 0.5 g of tissue, suspending the tissue in
9 ml of Dulbecco’s modified Eagle’s medium (DMEM), and homogenizing the
tissue with a tissue grinder (Polytron, Switzerland). One milliliter of fetal bovine
serum was added, and the homogenate was subjected to three freeze-thaw cycles
with a dry ice-ethanol bath. After the last cycle, the homogenate was centrifuged
at 2,000 rpm (Jouan CR412 centrifuge) for 30 min at 4°C. The supernatant from
the TG homogenate was subsequently used to infect MDBK cells. The TG
supernatant (125 �l) was added to 500 �l of medium (1:5 dilutions), and then 1:5
serial dilutions were made. One hundred microliters of each dilution was added
in quadruplicate to a 96-well plate. One hundred microliters of MDBK cells (105

cells) was added to each well. After 4 days of incubation, cells were fixed and then
stained with formaldehyde-bromophenol blue. Virus titers were measured with
the 50% end point assay as described previously (17).

Nucleic acid tissue extraction. RNA and DNA extractions from MDBK cells
or TG were performed as previously described (21, 41).

RT of RNA. Reverse transcription (RT) was performed essentially as previ-
ously described (21). Briefly, 4 �g of RNA was treated with DNase, and after
inactivation, the RNA was reverse transcribed with random hexamers as primers.
As a control for DNA contamination in the RNA samples, DNase-treated RNA
was mixed with the RT reaction mix lacking reverse transcriptase. Two microli-
ters was used for PCR.

PCR. PCR was performed on the extracted DNA and synthesized cDNA with
the indicated primer pairs p4 (nucleotide [nt] 873, 5�CGTGTATTTGCGACCC
CCAGCCT3�) and p5 (nt 596, 5�GCCAGACCAAACCCCCCGCA3�) (17, 41).
Actin, L3B, and gC primers have been described previously (16, 17, 21, 41). The
gC forward primer is 5� AAAGCCCCGCCGAAGGAG (bp 550 of the BHV-1
gC gene). The gC reverse primer is 5� TACGAACAGCAGCACGGGC (bp 756
of BHV-1 gC gene). The forward bovine growth hormone (gH) primer is 5�
GCTTTCGCCCTGCTCTGCC (bp 994 of the bovine growth hormone gene).
The reverse gH primer is 5� TCCTGCCTCCCCACCCCTA (bp 1155 of the
bovine growth hormone gene). After a hot start, each cycle consisted of 95°C for
1 min, 60°C for 1 min, and 72°C for 2 min (30 cycles total). To ensure complete
elongation of amplified products, the reaction was incubated at 72°C for an
additional 10 min. For some studies, the PCR products were digested with
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EcoRI, electrophoresed on a 2% agarose gel, and the DNA was visualized by
staining with ethidium bromide.

Direct FA for the detection of BHV-1. For the direct fluorescence assay (FA),
a 24-well plate of MDBK cells was infected with clarified viral lysate. Twenty-
four hours later, cell monolayers were fixed for 5 min with ice-cold methanol-
acetone (50:50) and then allowed to dry. A 1:50 dilution of direct conjugate
(anti-BHV-1-specific antibody-fluorescein isothiocyanate [FITC] conjugate;
American BioResearch, Milton, Tenn.) was added to the fixed cells and incu-
bated at 37°C for 30 min. The monolayers were washed twice with phosphate-
buffered saline. The presence of virus was visualized with an FITC filter.

BHV-1-specific neutralizing antibodies. The Veterinary Diagnostic Service,
University of Nebraska, Lincoln, measured neutralizing antibody titers with the
Cooper strain as the stock virus.

In situ hybridization. DNA probes specific for BHV-1 gC, ribonucleotide
reductase, bICP0, and the LR gene were used. Labeling of the probes and
hybridization steps were performed as previously described (48, 49). After hy-
bridization, slides were washed twice in 4� SSC (1 � SSC is 0.15 M NaCl plus
0.015 M sodium citrate) for 5 min at room temperature, once in 2� SSC at 40°C,
once in 0.5� SSC at 40°C, twice in 2� SSC at room temperature, twice in 0.5�
SSC at room temperature, and once in buffer I (100 mM maleic acid, 150 mM
NaCl [pH 7.5]). The conjugate antibody step and reaction development were also
performed as previously described (48, 49).

RESULTS

The LR mutant virus does not grow efficiently in TG of
acutely infected calves. We previously constructed a BHV-1
LR mutant virus that contains stop codons near the 5� terminus
of the LR transcript (LR mutant) (17). The LR mutant grew to
similar titers relative to wt or LR-rescued virus in the nasal
cavity of calves and cultured bovine cells. However, the LR
mutant shed approximately 4 logs less infectious virus from
eyes of acutely infected calves compared to wt or LR-rescued
virus, suggesting the LR gene plays a role in virus growth in
certain bovine tissue.

To test whether the LR mutant contained different amounts
of infectious virus in TG compared to calves infected with wt
BHV-1, calves were infected with the respective viruses, TG
were harvested at different times after infection, and infectious
virus was measured in TG homogenates. Levels of infectious
virus in TG homogenates were measured by incubating the
supernatants with MDBK cells. Cultures that produced cyto-
pathic effects were also subjected to FA with BHV-specific
antisera as an independent verification that cytopathic effects
were due to virus infection and not nonspecific toxic effects of
the TG homogenates. At 2 and 4 dpi, calves infected with the
LR mutant contained 10- to 100-fold less virus in TG homog-
enates compared to calves infected with wt virus (Fig. 1). In-
fectious virus was not detected in TG of calves infected with
the LR mutant on 6 dpi. FA-positive samples were detected at
6 dpi in LR mutant-infected calves and 10 dpi in calves infected
with the wt (data not shown), but the amount of virus was too
low for titration.

To verify that the LR mutant genome was present in TG of
calves infected with the LR mutant, PCR analysis was per-
formed. DNA was prepared from calves infected for 6 or 10
dpi and screened for the presence of the mutant by PCR with
the p4 and p5 primers (Fig. 2A). Amplified products were then
digested with EcoRI. Calves infected with the LR mutant con-
tained two bands (105 and 193 bp) that were detected follow-
ing digestion with EcoRI (Fig. 2B, lanes 1, 2, 5, and 6). Wt virus
yielded a single band (298 bp) as expected (Fig. 2B, lanes 3, 4,
7, and 8). In summary, this study demonstrated that, during

acute infection, lower levels of infectious virus were present in
TG of calves infected with the LR mutant.

Analysis of BHV-1 DNA in calves infected with the LR mu-
tant or wt DNA. In situ hybridization was performed with
probes that specifically bind to four viral genes (48, 49). In
situ-positive neurons in TG were consistently detected in thin
sections prepared from calves infected with wt virus at 10 and
60 dpi (Fig. 3). We estimated that less than 5% of the total
neurons contained viral DNA, as judged by in situ hybridiza-
tion. In contrast, DNA-positive neurons were not detected by
in situ hybridization with TG thin sections prepared from
calves infected with the LR mutant for 10 or 60 days after
infection. This study suggested that neurons with high copies of
viral DNA were not present in TG of calves infected with the
LR mutant.

To further compare the levels of viral DNA in TG of calves
infected with the wt virus or the LR mutant, a semiquantitative
PCR was performed with BHV-1-specific primers. We focused
on samples prepared from latently infected calves (60 dpi) or
during the early stages of reactivation (24 and 48 h after DEX
treatment). As expected, wt viral DNA was readily detected in
TG of latently infected calves (Fig. 4, lanes 7 and 8) and at 24
(lanes 11 and 12) or 48 (lanes 16 and 17) h after DEX treat-
ment. In contrast, TG prepared from calves latently infected
with the LR mutant did not contain detectable levels of viral
DNA (lanes 5 and 6). At 24 h after DEX treatment, neither of
two calves latently infected with the LR mutant contained
detectable levels of viral DNA (lanes 9 and 10). At 48 h after
DEX treatment, one of three calves latently infected with the
LR mutant contained detectable levels of viral DNA (lanes 13
to 15). Under the conditions of this PCR assay, we were able
to detect approximately 200 to 400 copies of viral DNA per �g
of total DNA. In summary, two independent assays (in situ
hybridization and PCR) have demonstrated that calves latently
infected with the LR mutant contained less viral DNA in TG.

FIG. 1. Isolation and titration of virus present in TG during acute
infection. Virus was isolated from TG of mock-, LR mutant-, or wt
(WT)-infected calves on the designated days postinfection as described
in Materials and Methods. The titer of infectious virus was determined
on MDBK cells. The data shown are the averages from each group. A
value of 0.2 was used to denote a negative result in order to visualize
the bars.
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LR-RNA is expressed in calves latently infected with the LR
mutant. In theory, the LR mutant should express LR-RNA,
but not proteins because of the three stop codons (17). In
productively infected bovine cells, the LR mutant expressed
abundant levels of LR-RNA (Fig. 5, infected MDBK cells).
LR-RNA expression was examined in TG of calves infected
with the LR mutant at 60 dpi (latency). RT-PCR was per-
formed with primers that specifically amplify LR-RNA (L3B)
as described previously (6, 16, 21). LR-RNA was detected in
two of two calves infected with the LR mutant and, as ex-
pected, in two of two calves infected with the wt at 60 dpi (Fig.
5). gC RNA was not detected by RT-PCR in latently infected
calves, demonstrating that high levels of productive infection
were not occurring in TG during latency (60 days after infec-
tion).

Comparison of DEX-induced reactivation of the LR mutant
to that of the wt. Treatment of latently infected rabbits (36) or
calves (21, 43) with DEX consistently reactivates BHV-1 from
latency. Consequently, virus shedding occurs in ocular or nasal
cavities, and virus-specific antibodies increase. A preliminary
study was performed with two calves latently infected with the
LR mutant, two calves infected with wt virus, and two calves
infected with the LR-rescued virus. Following a single intrave-

nous injection of DEX (100 mg), we detected reactivation in
calves latently infected with wt or the LR-rescued virus, but not
the two calves infected with the LR mutant, suggesting the LR
mutant was not capable of reactivating. To confirm this result,
a larger study was performed with an initial intravenous injec-
tion of DEX (100 mg) followed by two intramuscular injections
of DEX (25 mg) to ensure that reactivation occurred effi-
ciently. Our previous studies demonstrated that multiple injec-
tions of DEX allowed efficient reactivation of a temperature-
sensitive mutant of BHV-1, which is used as a modified live
vaccine and is severely attenuated (21).

Neutralizing antibody titers were measured after DEX treat-
ment to determine if reactivation occurred. As expected, a
dramatic increase in virus-specific antibodies was detected in
animals infected with wt or LR-rescued virus after DEX-in-
duced reactivation (Fig. 6), indicating that virus replication and
shedding occurred. A five- to sixfold increase in antibody titers
was detected, which is consistent with reactivation from la-
tency. In contrast, an increase in virus-specific antibodies was
not observed when calves latently infected with the LR mutant
were treated with DEX.

To confirm the neutralizing antibody results, nasal and oc-
ular swabs were collected at different times after DEX treat-

FIG. 2. PCR of TG from calves infected with either LR mutant or wt viruses. DNA was prepared from TG as described in Materials and
Methods. Primers P4 and P5 (17) (A) were used to amplify a region that contains the mutated sequences, including a unique EcoRI site. The
amplified products were then digested with EcoRI (position in LR mutant is denoted by asterisk) and visualized by ethidium bromide staining on
2% agarose gel electrophoresis (B). The presence of wt (WT) virus yields a single band of 298 bp, while LR mutant virus yields two bands migrating
at 105 and 193 bp. The LR mutant plasmid (LR-m) and a plasmid with the wt LR gene served as positive controls to show the positions of the
expected products. Molecular weight markers (100-bp ladder) are identified. PCR of representative samples from calves infected for 6 or 10 days
demonstrates that only the inoculated virus was detected in the TG.
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ment, and the presence of infectious virus in swabs was de-
tected by incubation with MDBK cells. As expected, during
latency, wt, rescued, or LR mutant virus was not detected in
swabs on the day of DEX treatment (day 0). At 4 and 7 days
after DEX treatment, infectious virus was detected in swabs
obtained from six of seven and seven of seven calves latently
infected with wt virus (Fig. 7). At 4 and 7 days after DEX
treatment, infectious virus was detected in four of four calves
infected with the rescued virus. At these time points, infectious

virus was detected in nasal and ocular swabs of calves shedding
wt and LR-rescued virus. To simplify the data, the ocular and
nasal results were combined. In sharp contrast, infectious virus
was not detected in seven of seven calves latently infected with
the LR mutant at any time point tested. Infectious virus was
not detected in nasal or ocular swabs of any calf after 10 days
postreactivation (Fig. 7 and data not shown). These studies
demonstrated that the LR mutant did not reactivate from
latency following multiple injections of DEX.

FIG. 3. In situ hybridization of TG samples after infection. Thin sections were prepared from TG of calves infected with the LR mutant or wt
(WT) virus at 10 (end of acute infection or establishment of latency) or 60 (latency) dpi. In situ hybridization was performed as described in
Materials and Methods. The results shown are representative of numerous independent sections.
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DISCUSSION

These studies demonstrated that the LR mutant did not
reactivate from DEX-induced reactivation, whereas the wt or
LR-rescued virus did. The LR mutant contains three stop
codons near the beginning of the LR-RNA that are designed
to prohibit protein expression from all three reading frames
(17). The LR mutant also lacks 25 bp from wt sequence to
prevent reversion to the wt. A peptide antibody that is directed
against amino acid sequences within the LR open reading
frame (ORF2) recognizes a protein of approximately 40 kDa in
cells transfected with a wt LR gene construct (6, 16, 19), but
not when transfected with a plasmid containing the mutation
used to make the LR mutant virus (6). On the surface, it
appears that any phenotypic difference between the LR mutant
and wt or LR-rescued virus is attributable to lack of protein
expression by the LR mutant. Because the LR-RNA is alter-
natively spliced (8), there is the possibility that more than one
protein is expressed. We are using baculovirus expression sys-
tems to overexpress the various LR proteins to make poly-
clonal antibodies directed against these putative proteins.
When all of these reagents are available, we will be able to
accurately determine which, if any, LR proteins are disrupted
by the mutation in the LR mutant virus. At this time, we cannot
rule out the possibility that differences in LR-RNA expression
between wt BHV-1 and the LR mutant were responsible for
the attenuated phenotype. Regardless of whether an LR pro-
tein or changes in LR-RNA mediate the altered phenotype of
the LR mutant, these studies clearly demonstrated that the

FIG. 4. PCR of DNA prepared from TG to detect viral DNA during latency and reactivation. DNA was extracted from TG of latently infected
calves (60 days after infection) or when latently infected calves were treated with 100 mg of DEX to initiate reactivation (single intravenous
injection). PCR was performed as described in Materials and Methods. PCR primers were used to detect BHV-1 gC DNA (A) and bovine growth
hormone (gH) (B). PCR products were electrophoresed on 2% agarose gels, and the DNA was stained with ethidium bromide. Lanes 1 and 18
contain the 100-bp ladder (NE Biolabs). Lane 2 contains DNA prepared from TG of a mock-infected calf. Lane 3 contains DNA prepared from
MDBK cells infected with BHV-1 (MOI � 1) for 24 h. Lane 4 contains DNA purified from BHV-1 virions. Lanes 5 and 6 contain DNA prepared
from TG of calves latently infected with the LR mutant. Lanes 7 and 8 contain DNA prepared from TG of calves latently infected with wt BHV-1.
Lanes 9 and 10 contain DNA prepared from TG of calves latently infected with the LR mutant 24 h after DEX treatment. Lanes 11 and 12 contain
DNA prepared from TG of calves latently infected with wt BHV-1 24 h after DEX. Lanes 13, 14, and 15 contain DNA prepared from TG of calves
latently infected with the LR mutant 48 h after DEX treatment. Lanes 16 and 17 contain DNA prepared from TG of calves latently infected with
the wt 48 h after DEX treatment. For each DNA sample, 1 �g of DNA was used for PCR. In the lanes that contained purified viral DNA, 20 ng
of DNA was used for PCR. The arrows indicate the position of the expected PCR product.

FIG. 5. RT-PCR of TG from infected calves during latency. RNA
was extracted from TG of infected calves or MDBK cells as described
in Materials and Methods. cDNA was generated with random primers,
and PCR was performed with specific primers. Primers that amplify a
segment of the �-actin transcript flank an intron, which allows for
detection of contaminating DNA as previously described (17). L3B
primers were used to detect the LR transcript. Primers that amplify gC
RNA were used to verify that calves were in the latent phase of
infection. m, calves infected with the LR mutant virus; wt, calves
infected with wt virus. When reverse transcriptase was omitted during
cDNA synthesis, no PCR product was detected (data not shown).
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latency reactivation cycle was disrupted following infection of
calves with the LR mutant.

The TG is divided into three sections (ophthalmic, maxillary,
and mandibular), and each section innervates the eye, nose, or
mouth, respectively. Following infection of calves with the LR
mutant, a 3- to 4-log reduction in virus shedding from ocular
swabs was detected compared to the level in calves infected
with wt or LR-rescued virus (17). In contrast, shedding of the

LR mutant from the nasal cavity during acute infection was not
significantly different from that of wt BHV-1 or the LR-res-
cued virus. These data suggested that “seeding” of the TG by
the LR mutant would be fairly normal via the maxillary route
following infection, but lower levels of virus would seed the TG
via the ocular route. Considering that we were not able to
reactivate the LR mutant and lower levels of viral DNA were
detected in TG of calves latently infected with the LR mutant,

FIG. 6. BHV-1 neutralizing antibody titers. Serum was collected from calves at the indicated times and stored at �20°C until tested. Standard
testing was performed with constant amounts of virus (Cooper strain) and twofold serial dilutions of the serum. The Veterinary Diagnostic
Services, University of Nebraska, Lincoln, performed the assay. Solid rectangles, calves infected with wt virus; solid triangles, LR-rescued virus;
and open rectangles, calves infected with the LR mutant virus. Each time point represents at least four calves. The inset panel is shown to illustrate
the differences during acute phase more clearly. The x-axis scale is different. The differences between the time points after 10 days postreactivation
were statistically significant (P 	 0.05).

FIG. 7. Viral shedding from ocular and nasal cavities after DEX-induced reactivation. Ocular and nasal swabs were collected from each calf
at the designated times after treatment with DEX. Infectious virus in swabs was detected by inoculating MDBK cells with a 1:20 dilution of the
swab medium solution. FA was used to confirm the presence of infectious BHV-1 in cultures containing cytopathic effects. Shown are the
percentages of calves that shed BHV-1 virus/total number of calves in each group on the designated day after DEX treatment. Four calves were
used for the study with the LR-rescued virus, seven were used for the wt (WT) study, and seven were used for the study with the LR mutant.
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it appears that seeding of viral DNA via the ocular route is
more important. It is also possible that regardless of whether
the LR mutant seeds the TG via the maxillary or ocular route,
efficient amplification of the viral genome or reactivation from
latency would not occur. The finding that 10- to 100-fold less
infectious virus was present in TG of calves acutely infected
with the LR mutant supports the contention that wt expression
of LR gene products was important for acute infection of
sensory neurons.

Several reports have demonstrated that HSV-1 LAT plays
an important role in establishing latency (34, 39, 40), suggest-
ing LR gene products also play a role in establishing latency.
Two findings in this study support a role for wt expression of
LR gene products in the establishment of latency. First, re-
duced levels of viral DNA were detected in calves latently
infected with the LR mutant. Second, the failure to detect in
situ hybridization-positive neurons in calves latently infected
with the LR mutant suggested that LR gene products were
necessary for latency in neurons containing high copies of viral
DNA. Based on these two observations, we suggest that LR
gene products promote (i) productive infection in certain neu-
rons, (ii) survival of “permissive” neurons that support produc-
tive infection, or (iii) infection of certain types of neurons.
Considering that LR gene products interfere with apoptosis in
transiently transfected cells (6) and HSV-1 LAT interferes
with apoptosis (1, 18, 27), it is tempting to speculate that LR
gene products promote neuronal survival in TG of infected
calves during acute infection. Since our results do not exclude
the possibility that LR gene products play a direct role in
reactivation from latency, it is clear that additional experi-
ments are necessary to appreciate the steps in the latency
reactivation cycle that LR gene products regulate.

We were unable to detect infectious virus from calves la-
tently infected with the LR mutant following DEX treatment
to initiate reactivation (Fig. 6 and 7). One could argue that the
efficiency of virus shedding was below the levels of detection in
calves latently infected with the LR mutant. However, we were
also unable to detect changes in virus-specific antibodies dur-
ing the course of reactivation. An increase in virus-specific
antibodies is a sensitive method to detect reactivation from
BHV-1 (21) and HSV-1 (33). Furthermore, we used multiple
injections of DEX to ensure that reactivation occurred. By
using a similar protocol, we reactivated a modified live vaccine
strain of BHV-1 that is severely attenuated (21). It is generally
accepted that the amount of viral DNA in TG of HSV-1-
infected small animal models plays a role in the efficiency of
reactivation (20, 47), implying there is a similar mechanism for
BHV-1. As discussed above, calves infected with the wt, but
not the LR mutant, have neurons with high levels of viral DNA
and reactivate efficiently, suggesting these neurons support
reactivation.

In general, HSV-1 LAT has been shown to be important, but
not required, for latency reactivation in rabbits and mouse
models (20, 47). The results presented in this study indicate
that wt expression of LR gene products was required for the
latency reactivation cycle in calves when reactivation was ini-
tiated by DEX. The simplest explanation for this is that the LR
gene is more important than LAT for the latency reactivation.
BHV-1 lacks several genes contained in the HSV-1 genome,
which mediate pathogenesis and/or latency: the 34.5 gene, for

example (42). The 34.5 gene plays a crucial role in neuroviru-
lence by inhibiting antiviral functions of the interferon-induc-
ible double-stranded RNA-dependent protein kinase R (5, 23).
34.5-null mutants have reduced pathogenesis in rabbits and
mice, in large part because of poor growth properties in the
eyes and TG (35). Since LR gene products play a role in ocular
growth of BHV-1 in calves (17) and lower levels of infectious
virus were detected in TG of calves acutely infected with the
LR mutant (Fig. 1), they have additional properties that have
not been described for HSV-1 LAT. The LR gene restores
spontaneous reactivation to a McKrae LAT-null mutant
(dLAT2903), demonstrating that LAT and LR gene products
have common functional properties that are necessary for ef-
ficient reactivation from latency (26). In addition, the LR gene
enhanced the ability of dLAT2903 to kill mice during acute
infection and induce recurrent eye disease in latently infected
rabbits, underscoring our hypothesis that LR gene products
have expanded roles during the latency reactivation cycle and
even pathogenesis when compared to LAT. Although the cur-
rent studies point to added functions of the LR gene in the life
cycle of BHV-1, the importance of HSV-1 LAT in the latency
reactivation cycle may be underestimated because its role in
the natural host cannot be analyzed.
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