Skip to main content
. 2006 Feb 9;34(3):905–916. doi: 10.1093/nar/gkj478

Table 2.

Hypothetical 21-state data plotted in Figure 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A 420 0 0 0 0 21 0 1 4 20 14 42 400 380 340 300 260 220 180
C 0 420 0 0 21 21 17 16 16 20 16 42 1 2 4 6 8 10 12
D 0 0 420 0 21 21 19 19 24 20 24 42 1 2 4 6 8 10 12
E 0 0 0 420 21 21 15 15 22 20 22 42 1 2 4 6 8 10 12
F 0 0 0 0 21 21 26 26 18 20 18 42 1 2 4 6 8 10 12
G 0 0 0 0 21 21 18 18 26 20 26 42 1 2 4 6 8 10 12
H 0 0 0 0 21 21 21 21 24 20 24 42 1 2 4 6 8 10 12
I 0 0 0 0 21 21 23 23 19 20 17 42 1 2 4 6 8 10 12
K 0 0 0 0 21 21 25 25 17 20 17 42 1 2 4 6 8 10 12
L 0 0 0 0 21 0 16 16 22 20 20 42 1 2 4 6 8 10 12
M 0 0 0 0 21 21 27 27 21 20 21 0 1 2 4 6 8 10 12
N 0 0 0 0 21 21 20 20 25 20 25 0 1 2 4 6 8 10 12
P 0 0 0 0 21 21 21 21 22 20 22 0 1 2 4 6 8 10 12
Q 0 0 0 0 21 21 20 20 23 20 21 0 1 2 4 6 8 10 12
R 0 0 0 0 21 21 23 23 16 20 16 0 1 2 4 6 8 10 12
S 0 0 0 0 21 21 22 22 19 20 19 0 1 2 4 6 8 10 12
T 0 0 0 0 21 21 24 24 23 20 22 0 1 2 4 6 8 10 12
V 0 0 0 0 21 21 23 23 21 20 21 0 1 2 4 6 8 10 12
W 0 0 0 0 21 21 18 18 21 20 20 0 1 2 4 6 8 10 12
X 0 0 0 0 21 21 20 20 20 20 18 0 1 2 4 6 8 10 12
Y 0 0 0 0 21 21 22 22 17 20 17 0 1 2 4 6 8 10 12

A data matrix for a hypothetical dataset of functional class frequencies over 420 sequences of length 18. Logos based on this dataset are plotted in Figure 3.