Skip to main content
Immunology logoLink to Immunology
. 1997 Oct;92(2):161–165. doi: 10.1046/j.1365-2567.1997.00331.x

T-lymphocyte activation and the cellular form of the prion protein.

N A Mabbott 1, K L Brown 1, J Manson 1, M E Bruce 1
PMCID: PMC1364053  PMID: 9415021

Abstract

The transmissible spongiform encephalopathies are neurodegenerative disorders which include Creutzfeldt-Jakob disease in humans, and scrapie and bovine spongiform encephalopathy in animals. A major component of the infectious agent responsible for these diseases is considered to be a post-translationally modified form of a host-encoded glycoprotein PrPc, termed PrPSc. While PrPc is abundantly expressed in tissues of the central nervous system (CNS), little is known about its normal function. The expression of PrPc is not restricted to the CNS, as this protein can also be detected in the lymphoid tissues of mice and sheep. In this report we demonstrate that resting murine splenic lymphocytes express PrPc protein on their cell membranes. Furthermore, expression of PrPc was significantly enhanced following in vitro stimulation with the non-specific T-cell mitogen concanavalin A (Con A). Genetically engineered mice with an inactive PrPc gene (PrP-/- mice), were utilized to investigate the involvement of PrPc in lymphocyte activation. Experiments revealed that the Con A-induced proliferation of lymphocytes from PrP-/- mice was significantly reduced to approximately 50-80% that of wild-type (PrP+/+) mice 48 hr post-stimulation. These findings demonstrate an important role for PrPc in extra-neuronal tissues and suggest that PrPc is a lymphocyte surface molecule that participates in T-cell activation.

Full text

PDF
161

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohuslav J., Horejsí V., Hansmann C., Stöckl J., Weidle U. H., Majdic O., Bartke I., Knapp W., Stockinger H. Urokinase plasminogen activator receptor, beta 2-integrins, and Src-kinases within a single receptor complex of human monocytes. J Exp Med. 1995 Apr 1;181(4):1381–1390. doi: 10.1084/jem.181.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cashman N. R., Loertscher R., Nalbantoglu J., Shaw I., Kascsak R. J., Bolton D. C., Bendheim P. E. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell. 1990 Apr 6;61(1):185–192. doi: 10.1016/0092-8674(90)90225-4. [DOI] [PubMed] [Google Scholar]
  3. Colling S. B., Collinge J., Jefferys J. G. Hippocampal slices from prion protein null mice: disrupted Ca(2+)-activated K+ currents. Neurosci Lett. 1996 May 3;209(1):49–52. doi: 10.1016/0304-3940(96)12596-9. [DOI] [PubMed] [Google Scholar]
  4. Davis L. S., Patel S. S., Atkinson J. P., Lipsky P. E. Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol. 1988 Oct 1;141(7):2246–2252. [PubMed] [Google Scholar]
  5. Farquhar C. F., Somerville R. A., Ritchie L. A. Post-mortem immunodiagnosis of scrapie and bovine spongiform encephalopathy. J Virol Methods. 1989 Apr-May;24(1-2):215–221. doi: 10.1016/0166-0934(89)90023-2. [DOI] [PubMed] [Google Scholar]
  6. Gollob J. A., Li J., Kawasaki H., Daley J. F., Groves C., Reinherz E. L., Ritz J. Molecular interaction between CD58 and CD2 counter-receptors mediates the ability of monocytes to augment T cell activation by IL-12. J Immunol. 1996 Sep 1;157(5):1886–1893. [PubMed] [Google Scholar]
  7. Groux H., Huet S., Aubrit F., Tran H. C., Boumsell L., Bernard A. A 19-kDa human erythrocyte molecule H19 is involved in rosettes, present on nucleated cells, and required for T cell activation. Comparison of the roles of H19 and LFA-3 molecules in T cell activation. J Immunol. 1989 May 1;142(9):3013–3020. [PubMed] [Google Scholar]
  8. Harnett M., Rigley K. The role of G-proteins versus protein tyrosine kinases in the regulation of lymphocyte activation. Immunol Today. 1992 Dec;13(12):482–486. doi: 10.1016/0167-5699(92)90022-Y. [DOI] [PubMed] [Google Scholar]
  9. Korty P. E., Brando C., Shevach E. M. CD59 functions as a signal-transducing molecule for human T cell activation. J Immunol. 1991 Jun 15;146(12):4092–4098. [PubMed] [Google Scholar]
  10. Krauss J. C., PooH, Xue W., Mayo-Bond L., Todd R. F., 3rd, Petty H. R. Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fc gamma receptor IIIB and the complement receptor type 3. J Immunol. 1994 Aug 15;153(4):1769–1777. [PubMed] [Google Scholar]
  11. Kretzschmar H. A., Prusiner S. B., Stowring L. E., DeArmond S. J. Scrapie prion proteins are synthesized in neurons. Am J Pathol. 1986 Jan;122(1):1–5. [PMC free article] [PubMed] [Google Scholar]
  12. Lund-Johansen F., Olweus J., Symington F. W., Arli A., Thompson J. S., Vilella R., Skubitz K., Horejsi V. Activation of human monocytes and granulocytes by monoclonal antibodies to glycosylphosphatidylinositol-anchored antigens. Eur J Immunol. 1993 Nov;23(11):2782–2791. doi: 10.1002/eji.1830231110. [DOI] [PubMed] [Google Scholar]
  13. Manson J. C., Clarke A. R., Hooper M. L., Aitchison L., McConnell I., Hope J. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol. 1994 Apr-Jun;8(2-3):121–127. doi: 10.1007/BF02780662. [DOI] [PubMed] [Google Scholar]
  14. Manson J. C., Clarke A. R., McBride P. A., McConnell I., Hope J. PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration. 1994 Dec;3(4):331–340. [PubMed] [Google Scholar]
  15. Manson J. C., Hope J., Clarke A. R., Johnston A., Black C., MacLeod N. PrP gene dosage and long term potentiation. Neurodegeneration. 1995 Mar;4(1):113–114. doi: 10.1006/neur.1995.0014. [DOI] [PubMed] [Google Scholar]
  16. Manson J., West J. D., Thomson V., McBride P., Kaufman M. H., Hope J. The prion protein gene: a role in mouse embryogenesis? Development. 1992 May;115(1):117–122. doi: 10.1242/dev.115.1.117. [DOI] [PubMed] [Google Scholar]
  17. Meyer N., Rosenbaum V., Schmidt B., Gilles K., Mirenda C., Groth D., Prusiner S. B., Riesner D. Search for a putative scrapie genome in purified prion fractions reveals a paucity of nucleic acids. J Gen Virol. 1991 Jan;72(Pt 1):37–49. doi: 10.1099/0022-1317-72-1-37. [DOI] [PubMed] [Google Scholar]
  18. Oesch B., Westaway D., Wälchli M., McKinley M. P., Kent S. B., Aebersold R., Barry R. A., Tempst P., Teplow D. B., Hood L. E. A cellular gene encodes scrapie PrP 27-30 protein. Cell. 1985 Apr;40(4):735–746. doi: 10.1016/0092-8674(85)90333-2. [DOI] [PubMed] [Google Scholar]
  19. Petty H. R., Todd R. F., 3rd Integrins as promiscuous signal transduction devices. Immunol Today. 1996 May;17(5):209–212. doi: 10.1016/0167-5699(96)30013-3. [DOI] [PubMed] [Google Scholar]
  20. Presky D. H., Low M. G., Shevach E. M. Role of phosphatidylinositol-anchored proteins in T cell activation. J Immunol. 1990 Feb 1;144(3):860–868. [PubMed] [Google Scholar]
  21. Prusiner S. B., Bolton D. C., Groth D. F., Bowman K. A., Cochran S. P., McKinley M. P. Further purification and characterization of scrapie prions. Biochemistry. 1982 Dec 21;21(26):6942–6950. doi: 10.1021/bi00269a050. [DOI] [PubMed] [Google Scholar]
  22. Reiser H., Oettgen H., Yeh E. T., Terhorst C., Low M. G., Benacerraf B., Rock K. L. Structural characterization of the TAP molecule: a phosphatidylinositol-linked glycoprotein distinct from the T cell receptor/T3 complex and Thy-1. Cell. 1986 Nov 7;47(3):365–370. doi: 10.1016/0092-8674(86)90593-3. [DOI] [PubMed] [Google Scholar]
  23. Sakaguchi S., Katamine S., Nishida N., Moriuchi R., Shigematsu K., Sugimoto T., Nakatani A., Kataoka Y., Houtani T., Shirabe S. Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature. 1996 Apr 11;380(6574):528–531. doi: 10.1038/380528a0. [DOI] [PubMed] [Google Scholar]
  24. Schubert J., Stroehmann A., Scholz C., Schmidt R. E. Glycosylphosphatidylinositol (GPI)-anchored surface antigens in the allogeneic activation of T cells. Clin Exp Immunol. 1995 Oct;102(1):199–203. doi: 10.1111/j.1365-2249.1995.tb06656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Solomon K. R., Rudd C. E., Finberg R. W. The association between glycosylphosphatidylinositol-anchored proteins and heterotrimeric G protein alpha subunits in lymphocytes. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6053–6058. doi: 10.1073/pnas.93.12.6053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stefanová I., Horejsí V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. doi: 10.1126/science.1719635. [DOI] [PubMed] [Google Scholar]
  27. Stroynowski I., Soloski M., Low M. G., Hood L. A single gene encodes soluble and membrane-bound forms of the major histocompatibility Qa-2 antigen: anchoring of the product by a phospholipid tail. Cell. 1987 Aug 28;50(5):759–768. doi: 10.1016/0092-8674(87)90334-5. [DOI] [PubMed] [Google Scholar]
  28. Thompson L. F., Ruedi J. M., Glass A., Low M. G., Lucas A. H. Antibodies to 5'-nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral blood T cells to proliferate. J Immunol. 1989 Sep 15;143(6):1815–1821. [PubMed] [Google Scholar]
  29. Tobler I., Gaus S. E., Deboer T., Achermann P., Fischer M., Rülicke T., Moser M., Oesch B., McBride P. A., Manson J. C. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature. 1996 Apr 18;380(6575):639–642. doi: 10.1038/380639a0. [DOI] [PubMed] [Google Scholar]
  30. Yeh E. T., Reiser H., Daley J., Rock K. L. Stimulation of T cells via the TAP molecule, a member in a family of activating proteins encoded in the Ly-6 locus. J Immunol. 1987 Jan 1;138(1):91–97. [PubMed] [Google Scholar]
  31. Zarewych D. M., Kindzelskii A. L., Todd R. F., 3rd, Petty H. R. LPS induces CD14 association with complement receptor type 3, which is reversed by neutrophil adhesion. J Immunol. 1996 Jan 15;156(2):430–433. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES