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1 The major adverse effect of zidovudine (ZDV) is haematological toxicity which
results in anaemia and granulocytopenia. The aim of the present study was to
investigate if HIV-positive patients developing erythroid aplasia/hypoplasia are

exposed to higher plasma concentrations ofZDV owing to impaired hepatic metabolism
to the major metabolite, 3'-azido-3'-deoxy-5'-,3-D-glucopyranuronosylthymidine
(GZDV).

2 Twelve HIV-positive male patients were studied, six having developed bone marrow
aplasia/hypoplasia within the first 6 months of ZDV therapy. Each of the patients
exhibiting toxicity were matched for age, weight, risk factors for HIV infection and
disease stage with patients who had no evidence of early bone marrow toxicity.

3 ZDV was administered orally in doses of 3-10 mg kg-' and blood samples taken at
intervals to 6 h. Urine was collected over the whole 6 h period. ZDV and GZDV were

assayed by h.p.l.c.
4 There were no significant differences in the pharmacokinetic parameters between the

two groups of patients. For patients with early bone marrow toxicity the elimination
half-life of ZDV was 1.10 ± 0.16 h with an oral clearance of 2752 ± 1031 ml min-'
compared with values of 1.06 ± 0.18 h and 2843 ± 730 ml min-' seen in the control
group. Similarly there was no significant difference in the pharmacokinetics of GZDV
or the urinary ratio of GZDV to ZDV.

5 Therefore, despite the fact that ZDV toxicity to haematopoietic progenitor cells has
been previously shown to be dose related, there was no indication from this study that
it is directly related to plasma concentrations of ZDV.
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Introduction

Zidovudine (3'-azido-3'-deoxythymidine; ZDV) is a
thymidine analogue antiretroviral drug active against
the human immunodeficiency virus (HIV) [1]. The
efficacy of ZDV in the treatment of patients with the
Acquired Immunodeficiency Syndrome (AIDS) and
AIDS-related Complex (ARC) is established [2] although
the clinical benefit to asymptomatic patients has recently
been questioned [3]. Following oral administration
approximately 65% of the drug is systemically available.
The mean volume of distribution is 1.4 1 kg-' with
plasma protein binding less than 25% [4]. The drug
has a short elimination half-life of approximately 1 h,

being metabolised extensively to an ether glucuronide,
3'-azido-3'-deoxy-5'-,-D-glucopyranuronosylthymidine
(GZDV) [5] which is rapidly excreted in the urine [6].
The extent of glucuronidation may have profound effects
on the disposition of ZDV. The major adverse effect of
ZDV is haematological toxicity which results in anaemia
and granulocytopenia. ZDV-induced myelosuppression
is associated with more advanced disease, lower CD4
lymphocyte counts, decreased serum B12 or folic acid
levels and baseline anaemia or neutropenia [7]. It is
apparent that a small percentage of patients, <5%,
develop erythroid aplasia/hypoplasia shortly after
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commencing treatment [8]. In children ZDV-induced
haematological side-effects have been demonstrated to
correlate with its steady state plasma concentration [9].
The aim of this study was to determine whether patients
developing erythroid aplasia/hypoplasia are exposed to
higher ZDV concentrations, possibly due to impaired
glucuronidation of ZDV.

Methods

Subjects

ZDV pharmacokinetics were determined in six HIV-
positive male patients aged 30-48 years who developed
bone marrow erythroid aplasia/hypoplasia within the
first 6 months of ZDV therapy, and in a control group
of six HIV-positive male patients aged 32-47 years without
evidence of early bone marrow toxicity. Patients were
matched for age, weight, risk factors for HIV infection
and disease stage according to the revised CDC definition
for AIDS (Table 1). Two patients had asymptomatic HIV
infection (CDC Group II) and ten patients had AIDS
(CDC Group IV). All patients had normal liver function
as assessed by the Pugh classification (Pugh score <5),
which includes a combination of laboratory parameters
of liver function and clinical features such as ascites and
hepatic encephalopathy [10]. There was no evidence of
renal dysfunction; urea and creatinine values were
normal. Patients were not taking any medication that
would be expected to interfere with ZDV glucuronidation
[11, 12]. Approval for the study was granted by the local
ethics committee and all patients provided written
informed consent. On the study day patients attended
following an overnight fast from 24.00 h. Patients were
allowed fluids but did not eat for at least 4 h after
commencing the study. An indwelling intravenous
cannula was inserted in the cubital fossa to facilitate
blood sampling. ZDV was administered orally in doses
of 3-10 mg kg-' (reflecting the dose variation in the
clinical setting) at 09.00 h and blood samples were taken
at 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5,.4, 5
and 6 h after dosing. Urine samples were collected over
the 6 h period. Plasma and and urine samples were

exposed to a temperature of 58° C for at least 30 min in

a waterbath. This treatment inactivates HIV [13], but
does not affect ZDV or its metabolite.

Analytical methods

ZDV and its glucuronide metabolite (GZDV) were
assayed in plasma using a modification of the method of
Blum et al. [6]. Plasma samples were spiked with 5 tUm
of either A22U (Wellcome, Beckenham) or ,-hydroxy-
ethyltheophylline (Sigma) as internal standard and
were ultrafiltered using an Amicon Centrifree Micro-
partition System. The ultrafiltrates were subsequently
analysed by h.p.l.c. Samples were eluted on an Ultratech
SODS column (4.6mm x 250 mm) using a mobile phase
of 25 mm ammonium phosphate buffer, pH 7.2, with a
linear gradient of 0-30% v/v acetonitrile over 35 min
followed by a return to 100% buffer over S min and a 5

min reequilibration period with 100% buffer at a flow
rate of 0.6 ml min-. Retention times of authentic
standards (u.v. detection at 267 nm) were 19, 23, 26
and 28 min for GZDV (Wellcome, Beckenham), ,B-
hydroxyethyltheophylline, A22U and ZDV (Wellcome,
Beckenham), respectively. Peak height ratios of ZDV
and GZDV to the internal standard were used to calculate
concentrations from standard curves (range 0-20 ,UM and
0-40 ,UM for ZDV and GZDV respectively). Intraassay
coefficients of variation were 8.1%, 1.7% and 2.1% for
0.25 ,UM, 2.5 ,UM and 20 ,UM ZDV respectively and 8.3%,
5.9% and 3.2% for 0.5 ,UM, 5.0 ,UM and 40 ,UM GZDV,
respectively (n = 10). Interassay coefficients of variation
were 5.7% and 7.9% for 2.5 ,LMZDV and 5 ,UMGZDV,
respectively (n = 5). Urine samples were diluted 1:100,
spiked with S I.LM of internal standard (A22U) and
analysed by h.p.l.c. as above. Intraassay coefficients of
variation were 5.24% and 5.14% for 0.5 ,UM and 20 ,UM
ZDV, respectively, and 8.73% and 9.59% for 1 JIM and
40 ,UM GZDV, respectively (n = 10). Interassay co-
efficients of variation were 9.9% and 9.8% for 2.5 ,M
ZDV and 5 JIM GZDV, respectively (n = 5). Limits of
detection were 0.1 ,LM for ZDV and 0.2 ,UM for GZDV.

Pharmacokinetic calculations

Cmax values (JImol 1-1) and tmax values (h) for ZDV and
GZDV were noted directly from the data. The elimina-
tion rate constant (X,) was calculated by log linear

Table 1 Clinical details and drug treatment of patients participating in the study

Age Weight CDC Bone marrow Zidovudine
Patient (years) Sex (kg) classification toxicity dose (mg) Other medications

1 45 M 85 IV Cl Yes 850
2 47 M 75 IV C1 No 800 Acyclovir 200mg 4 hourly, Pentamidine (nebulised)
3 37 M 67 IV C1 Yes 650 Paracetamol 500 mg prn., Fluconazole 50 mg b.d.
4 41 M 60 IV C1 No 600 Ibuprofen 200 mg b.d.
5 39 M 63 IV C2 Yes 650
6 38 M 73 IV C2 No 700 Cotrimoxazole 450 mg b.d., Volterol 75 mg pm.
7 30 M 60 IVC2 Yes 600
8 39 M 60 IV C2 No 600
9 40 M 64 IV C1 Yes 250 Pentamidine (nebulised)

10 32 M 65 IV C1 No 250 Cotrimoxazole 900 mg nocte
11 48 M 85 II Yes 250 Pentamidine (nebulised)
12 46 M 90 II No 250 Acyclovir 200 mg 4 hourly
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Table 2 Pharmacokinetic parameters of ZDV and GZDV following an oral dose of ZDV to control patients and patients with bone
marrow suppression. Data expressed as mean ± s.d. with the exception of tmax, median (range). 95% CI: 95% confidence intervals of
the differences between the means for the two groups of patients

ZDV GZDV
Patients with Patients with

Control bone marrow bone marrow
patients suppression Control patients suppression
(n = 6) (n = 6) 95% CI (n = 6) (n = 6) 95% CI

tmax (h) 0.5 (0.540.75) 0.75 (0.5-1.25) - 1.00 (0.75-1.25) 1.00 (0.75-1.5) -

t½l (h) 1.06 ± 0.18 1.10 ± 0.16 -0.26 to 0.16 1.11 ± 0.22 1.10 ± 0.19 -0.27 to 0.26
AUC normalised to 250 mg 5.8 ± 1.6 6.5 ± 2.7 -4.2 to 2.3 17.3 ± 4.5 17.8 ± 6.6 -7.7 to 7.2

dose (,umol 1-1 h)
Urinary ratio 6.72 ± 1.80 8.17 ± 4.68 -8.05 to 3.24 -

[GZDV]/[ZDV]

There were no significant differences in either ZDV or GZDV pharmacokinetic parameters between the two groups of patients.

regression of the terminal portion of the plasma drug
concentration-time curve using the method of least
squares. The elimination half-life (t,Z) was calculated
from ln2/Xk. The areas under the plasma ZDV and
GZDV concentration-time curves (,umol 1-1 h) were
calculated using the linear trapezoidal rule. The urinary
ratio of GZDV to ZDV was calculated from concentra-
tions in total urine collected over the 6 h period. The
pharmacokinetic parameters of ZDV and GZDV are
expressed as mean values ± s.d. and were compared
between the groups using the Mann-Whitney U-test.
The power of the study was such that a difference of50%
in AUC could have been detected (as statistically signifi-
cant; P < 0.05) with a probability of 75%.

Results

The pharmacokinetic parameters for ZDV and GZDV
in the patients with early bone marrow toxicity and in
the control group are shown in Table 2. The values were
consistent with those reported by others [6, 14, 15].
The decline in plasma concentration was monoexponen-
tial. Variability in values of Cmax and AUC partly reflects
the fact that eight patients were given 10 mg kg-' ZDV
while four received a standard 250 mg dose. However,
ZDV kinetics have been shown to be dose-independent
up to a 10 mg kg-' dose [6, 15]. Thus it is possible to
normaliseAUC values to a 250mg dose (Table 2). There
was no significant difference in the pharmacokinetic
parameters between the two groups studied. AUC values
for ZDV and GZDV, t½z values of ZDV and urinary
ratios of [GZDV] to [ZDV] are shown in Figure 1, each
patient matched to the corresponding control. There
was no evidence of an increased AUC of ZDV or a
decrease in AUC of GZDV in patients with marrow
toxicity when compared with the matched control
patients.

Discussion

Toxicological data from the original Phase I study of
ZDV in patients with AIDS indicated that neutropenia
was more likely to occur at higher doses [16]. Subsequent

studies of the efficacy and toxicity of low-dose ZDV found
anaemia and neutropenia to be dose-related [17-19].
This is consistent with the findings of Balis et al. [9] who
showed steady state plasma concentrations of ZDV to
be higher in children with symptomatic HIV infection
who developed severe neutropenia (neutrophils <0.5 x
109 1-1) compared with children who did not develop
haematological toxicity. In vitro studies have supported
this dose-dependence. ZDV inhibited Granulocyte-
Macrophage Colony Forming Units (CFU-GM) and
Erythroid Burst Forming Units (BFU-E) in a concen-
tration-dependent fashion [20, 21], continuous exposure
being more inhibitory than exposure for 1 h [20].
The aim of the present study was to investigate whether

the haematological toxicity of ZDV was related to high
concentrations of the drug in plasma, and if so, whether
this increase was due to a reduced ability to conjugate
ZDV in patients with toxicity. Apart from the hereditary
hyperbilirubinaemias (Gilbert's Syndrome and Crigler-
Najjar Syndrome) in which the uridine diphosphate
glucuronosyl transferase (UGT) responsible for bilirubin
conjugation is absent or has much reduced activity [22],
there has been little evidence for polymorphism in
glucuronidation activity. ZDV is glucuronidated in
human liver microsomes from patients suffering Crigler-
Najjar Syndrome [23] indicating that the UGT responsible
for ZDV glucuronidation is not related to that responsible
for bilirubin glucuronidation.
Polymorphism in the ester glucuronidation of fenofibric

acid has recently been suggested [24], administration of
the drug to patients yielding a bimodal distribution of
urinary fenofibric acid: fenofibryl glucuronide. However
ethinyloestradiol glucuronidation, whilst exhibiting great
inter-individual variability in rate, was unimodally
distributed in 110 patients [25]. Since ethinyloestradiol
competitively inhibits the hepatic glucuronidation of
ZDV in vitro [23, 26] this indicates the possible involve-
ment of the same UGT isozyme in the metabolism of the
two drugs and, therefore, it is unlikely that a marked
polymorphism of ZDV glucuronidation exists. Indeed
under conditions in which ZDV concentration approxi-
mated to the Km for glucuronidation, polymorphism was
not observed in 29 livers in which the glucuronidation of
ZDV by microsomal fractions was studied [27], an
observation supported by a normal distribution of the
AUC(GZDV)/AUC(ZDV) ratio in 62 HIV-positive
asymptomatic patients administered ZDV [14].
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Figure 1 Kinetic parameters for ZDV and GZDV. Each patient with bone marrow toxicity is matched to the corresponding
control patient. a) ZDV AUC normalised to a 250 mg dose, b) GZDV AUC normalised to a 250 mg dose, c) ZDV tl,
d) urinary [GZDV]/[ZDV].

The results of the present study would indicate that
there is no difference in rate of glucuronidation ofZDV
between control patients and those with bone marrow
toxicity as ZDV pharmacokinetic parameters were
similar in both groups. However, the relatively low
power of the study reflects the small population of
patients with zidovudine-induced bone marrow aplasia/
hypoplasia and the significant intersubject variability in
zidovudine, pharmacokinetics. The monoexponential
decline in plasma concentration observed in the patients
studied agreed with previous studies [28-30] although
some groups have reported biexponential declines [6, 9,
31] or even triexponential declines in some patients [32].
The mechanism of ZDV myelosuppression is unclear

and several mechanisms have been proposed, for example
the incorporation of ZDV triphosphate into the DNA of
human bone marrow cells [33]. Haem synthesis, which
occurs in the mitochondria of bone marrow cells may
also be affected by ZDV through its inhibitory effects

on mitochondrial DNA polymerase y [34]. This inhibi-
tion occurs by competition with endogenous thymidine
triphosphate rather than through incorporation into
DNA [35]. The depletion of endogenous phosphorylated
nucleotides may also contribute to ZDV-induced
myelosuppression [36]. Decreased thymidine salvage
resulting in decreased intracellular accumulation of
thymidine nucleotides has been observed in thymidine-
exposed H9 cells when compared with unexposed cells
[37]. Zidovudine-5'-monophosphate has also been shown
to be inhibitory to thymidylate kinase with a resulting
decrease in thymidine phosphate levels [38]. The active
metabolite of ZDV against HIV, the 5'-triphosphate
[38], is formed in human bone marrow CFU-GM [33].
Should the triphosphate be involved in toxicity, the
kinetics of its formation would be important. The
relationship of intracellular ZDV phosphate formation
to plasma concentrations of the parent drug remains
unclear, having been determined to be loosely correlated
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with AUC in a small group of patients [39], but not to
single measurements of plasma drug concentration [40].

Recent in vitro studies suggest that two previously
unidentified ZDV catabolites, 3'-amino-3'deoxythymi-
dine (AMT) and its glucuronide (GAMT) are formed in
isolated hepatocytes and human liver microsomes [41,
42] and that AMT may play a significant role in ZDV-
induced myelosuppression, being more toxic for CFU-
GM and BFU-E than the parent compound, ZDV [41].
In addition both AMT and ZDV have been shown to
decrease the rate of globin gene transcription in K-562
leukaemia cells with a corresponding decrease in haemo-
globin synthesis [43]. Although AMT has been measured
in patient plasma following the administration of radio-
labelled ZDV (AUC approximately five times less than

that of ZDV) [44] we were unable to measure AMT in
the present study owing to chromatographic interference
from endogenous compounds. The relationship of AMT
to plasma concentrations of ZDV and to toxicity in
patients remains to be established.

Several mechanisms appear to be involved in ZDV-
induced myelosuppression. Despite the fact that ZDV
toxicity to haematopoietic progenitor cells in vitro has
been determined to be concentration-related [20], there
was no indication from this study that it is directly
related to plasma concentrations of ZDV.

This work was supported by a project grant from the Medical
Research Council.
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