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ABSTRACT A partially depolarized squid axon membrane is assumed to have a
quasi-steady state negative resistance, the membrane potential is clamped at
one point, and a distribution of potential along the axon is obtained from the
cable equation. Nominal experimental values of -2 ohm cm' for the membrane
and 6 ohm cm' for the internal and external current electrodes and the axoplasm
and sea water between them are used for illustration. The potential and current
may be uniform for an axon and electrode length less than 1.2 mm. For a long
axon the potential varies as the cosine of the distance within 0.8 mm of the
control point. Beyond this the potential variation is exponential and the entire
pattern is about 5 mm long. The average current density out to 0.3 mm from
the control point is within 10 per cent of the potential clamp value. These dis-
tributions are stable for control amplifications of about unity and more.

INTRODUCTION

The concept of control of the electrical potential difference across an excitable
membrane was developed and applied to the squid axon in the hope of measuring
the ionic membrane current without either the spatial variations of a propagating
impulse or the temporal instability which produced all-or-none excitation (Cole,
1949). Although this hope was more than realized in the original measurements,
the extensions and analyses of them made by Hodgkin, Huxley, and Katz (HHK,
1952) and Hodgkin and Huxley (HH, 1952a, b, c, d) were so important as to open
a new era of electrophysiology. But this progress brought with it an increased
weight of responsibility for the validity of the experimental data that was neither
anticipated nor even recognized for some time.

In such voltage clamp experiments the membrane potential of the axon is changed
and maintained, on command, by electronic control of the current flow between long
internal and external electrodes. The membrane current has been measured over a
more or less restricted length of axon in all the work while the length of the potential
electrode has been reduced at each stage of development. In our experimental work
the potential measurement has been restricted, as described by Cole and Moore
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(CM, 1960), to a small region called the control point and the present analysis is
developed for this arrangement.

It has been found (CM) that the membrane potential of most squid axons could
be adequately controlled over a considerable length with rather low resistance, or
good, current electrodes. But with mediocre and bad electrodes or with the most
powerful and interesting axons the control might become entirely inadequate at a
short distance from the control point (Taylor, Moore, and Cole (TMC, 1960)).
The distribution of membrane potential in the neighborhood of the point from
which it is controlled is thus quite important in the understanding, design, and in-
terpretation of voltage clamp experiments. The experimental results have so far
been too varied and complicated for a satisfactory empirical description, and al-
though they can neither guide nor indicate the validity of a theoretical approach,
the only recourse at present is to analysis.
The most complete and satisfactory answer to this problem would be in the form

of solutions of the cable and Hodgkin and Huxley equations for the membrane
potential and current as functions of both time and distance along the axon. There
is no apparent hope of solutions in analytical form for anything more complicated
than the perfect voltage clamp. Although the problem is well within the power and
capacity of present day digital computers, the cost in time, effort, and money has
prevented more than a cautious start in this important direction. Consequently far
more modest and directly understandable approaches have been made.
The steady state equations and the solutions for positive membrane conductances

have been evolved from cable theory and the space constants computed (CM, TMC)
to show the short lengths involved with low resistance current electrodes. There are
also many unpublished investigations of approximations to various experimental
conditions involving "resting" and "active" positive membrane conductances, mostly
by Dr. R. E. Taylor along with some resistor network analog solutions by Dr. J. W.
Moore. In most of these the conductances have been taken from the Hodgkin and
Huxley equations or from more recent data. The resting conductances have been
linear approximations to the low conductance found for steady hyperpolarization
and to the high conductance for steady depolarization at zero and positive mem-
brane potentials. The active positive conductance has been taken as a linear approxi-
mation to the early peak currents for depolarizations to -10 mv and more positive
potentials.

There were, however, no more than superficial attempts to analyze the variations
of the membrane potential and current in the vicinity of the control point for the all
important range of potentials between -40 mv and -20 mv in which the peak
inward membrane current increases rapidly. In this paper at least initial steps are
taken to fill in this gap in an understanding of the technical requirements for an ade-
quate implementation of the voltage clamp concept. Even a highly simplified and
elementary approach to the general problem can be rather involved, but such results
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have been found a very useful guide towards obtaining adequate control of the
membrane potential.
The first and natural step was to approximate the early peak inward currents

after depolarizations to potentials between -40 mv and -20 mv by a steady state
negative conductance, as shown in Fig. 1. An alternative has been to similarly
approximate the "isochronal" curves for the currents at a constant time after the
application of potential change into this range. The steepest slopes-the maximum
absolute values of the negative conductance-in each case have usually been nearly

-40 mv -20 0

Ma
cm2

-5

57-63

FIGURE 1 Peak inward current after depolarizations from -65 mv to potentials given
as abscissae, heavy curve, and as approximated for analysis by three linear segments.

equal to each other. Stated in resistance terms the Hodgkin and Huxley membrane
is about -25 ohm cm2, normally, and about -13 ohm cm2, when previously hyper-
polarized by 20 mv. In a more recent set of experiments the resistances ranged
from -1.6 ohm cm2 to -8 ohm cm2 with an average of -3.4 ohm cm2, and a
value of -2 ohm cm2 has been taken to represent the most powerful axons in this
"excitation" or "excited" range.

Such values of negative resistance or conductance have proved a very useful
guide to the understanding of instability and the setting of requirements for the
resistance of the current electrodes (CM, TMC). They have, however, been used
with very considerable misgivings. They are not steady state characteristics and
there was no reason to do more than hope that they were even in a quasi-steady
state category. Furthermore, there was no real basis to expect that stability or insta-
bility was any more than remotely related to this value.

It was thus necessary to investigate the behavior of a patch of membrane, over
which the potential and current were uniform, with some series resistance. By ana-
log computation Moore and FitzHugh found a gross instability after the application
of a constant depolarization to the Hodgkin and Huxley membrane and 50 ohm
cm2 in series. By analog computations also, Taylor and FitzHugh showed that
although a single hyperpolarized Hodgkin and Huxley patch was easily controlled
by feedback through a 10 ohm cm2 resistance, an identical parallel, but uncon-
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trolled, patch and resistance would show an occasional marked distortion in the
time course of the current (TMC).

This problem has been investigated more thoroughly by Chandler (1961) with
detailed digital calculations of the critical series resistance at the boundary between
stability and instability for a Hodgkin and Huxley membrane initially hyperpolarized
by 20 mv. It was found that the minimum value of this resistance, 12 ohm cm2, was
reached at nearly the same time and potential and was within 10 per cent of the
negative resistances obtained from both the peak and the isochronal current versus
potential relationships. There is thus a basis to believe that such a membrane will
be stable for a smaller series resistance and to fear instability for a larger value. It
is then possible to make the next step with rather more confidence and so to assume
that for the more recent axons an estimate of -2 ohm cm2 may be used as a quasi-
steady state value to describe and predict the performance of such an axon. Al-
though the correspondence may be somewhat less satisfactory it has been convenient
for some purposes to further assume that the entire peak or isochronal currents as a
function of potential represent the steady state characteristic of the membrane.

ASSUMPTIONS AND APPROXIMATIONS

The axon and electrodes are assumed to be the same everywhere in both geom-
etry and electrical properties. The electrodes, axoplasm, and sea water are repre-
sented by pure, ohmic resistances. The ionic current through the membrane is an
approximation to the early component of the voltage clamp current. It is, however,
considered to be in a steady state. The value at each potential is at the time of the
peak value as given by recent experiments and as suggested by the calculations of
the stability of the hyperpolarized HH axon and the accompanying anomalous
reactance is not otherwise taken into account. The ionic path is considered to be
in shunt with a static membrane capacity of 1 ,uf/cm2. The model for an axon with
an internal, axial electrode and the corresponding cable equations (CM, Fig. 7 and
equation (3); TMC, Fig. 17 and equation (1)) have been simplified as before when
it was found that the external longitudinal variations of potential were negligible
(TMC, equation (9)).
At this stage of approximation the problem is considerably less formidable and

the straightforward solution given by equation (2) seems reasonably possible for
numerical or analog calculation. Also an expression for the membrane current-
potential characteristic might be found that would permit an analytical solution.
Nevertheless the problem has been further idealized by approximating the assumed
steady state characterisic by the three linear segments as shown in Figs. 1 and 3.
The three segments I, II, III are taken to have steady state or "slope" resistances

of 1000 ohm cm2, -2 ohm cm2, and 6 ohm cm2 and may be called the resting,
excited, and active regions respectively. The corresponding conductances for a 480
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M axon are then about 1.4x10-5 mho/mm, -7x10-3 mho/mm, and 2.3-10-3
mho/mm respectively.' The longitudinal resistance of the axoplasm is taken to be
1.5 104 ohm/cm and the corresponding conductance is 7 -10- mho mm. The
electrodes, axoplasm, and sea water are given the nominal resistance value of 6
ohms for a cm2 of axon membrane corresponding to about 2.3 10-8 mho/mm.

Further, for most present purposes and by comparison with these other conduct-
ances, the effect of the resting membrane is negligible and is assumed to be zero.
Similarly, region III will be found to contribute more to confusion than to clarity
and it will not be considered in any detail.

ANALYSIS

The usual procedures and the assumptions stated give the cable equation in a
convenient form for the analysis as

a2 v
ax2 = (is - il)/g2 (1)

As shown in Fig. 2, V is the membrane potential relative to the outside which is at
zero potential, i3 and il are the outward radial current densities in the membrane and

E Vc -

-93 i3

-- --~~~~~~~0

FIGURE 2 Equivalent circuit for an analysis of the squid axon membrane potential
under point control. V is the potential of the membrane with a negative conductance
-g8 and a current density i,. g2 is the longitudinal conductance of the axoplasm. The
radial conductance, g1, includes the contributions of the axial and external electrodes,
the axoplasm, and sea water. The control amplifier, ,u, produces the potential of the
axial electrode, VA, to bring the potential of the control point, V0, close to the com-
mand, E.

axoplasm, respectively, for a millimeter length of axon, and g2 is the internal longi-
tudinal conductance of the axoplasm in mho mm.

This equation may be solved formally in steady state, by integration with the
factor 2 dV/dx

Pd2VVdV 2 . dV
2 d 2 dX dX = gJ(i3 - ii).-j=.dx + K

IThe millimeter is the most convenient unit for the axon lengths involved.
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or

)= 2 (i3 i) dV + K

and for dV/dx = 0, V = VA, and i3 = il at x = oo

dxV 2 (is - i) d V. (2)

When i3- i is given analytically or numerically a second integration gives V(x).
For an electrolyte and electrode conductance of g1 mho/mm and an axial electrode

or "wire" potential VA

il = g1(VA - V) (3)
while in the steady state we have first assumed

iB = g3( VB - V) (4)
in which g3 > 0 is the numerical value of the negative conductance in mho/mm
for the linear approximation to region II of the quasi-steady state characteristic for
V > VB, the "break point" between regions I and II. Then in steady state

d V 9g3 -g1 V g3 VB -g VA
dx g2 g2

For a symmetrical solution about x = O in which dV/dx = 0 at x = 0 and + oo,
we have for x > 0 in regions I or III

V = A exp (-ax) + B (5)
with a2 = (g1 + g3)/g2 using the value of g3 for the region and

V= Ccos wx + D (6)

with W2 = (g3 - gl)/g2 for V in region II and g3 > g1 > 0.
Confining our attention to regions I and II as shown in Fig. 4, the evaluation of

the constants A, B, C, D, with the added conditions that V and dV/dx are con-
tinuous at VB, and when needed that

(i3- i) dx = 0

gives the solution

V= VA -(VA- VB) exp [-a(x XB)], V < VB, (7)

V= V- ( VA - VB) COScoX, V . VB, (8)
where

- g3 VB -g1 VA
g3 -
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is the potential at which d2V/dx2 = 0 and the point XB, the boundary between
regions I and II where V = VB, is given by

COS COXB = V'/73
The most important present conclusion to be reached is the variation of the mem-

brane current density in the neighborhood of the central point. From equations (3),
(4), and (8) the difference of the current densities, ia and i, at the center and at a
distance x from it is

iC-i 1 4 3/? (1 - cosCox)

A difference of 20 per cent from the central point current then appears at 0.3 mm
on each side of it as mentioned by CM and shown in Fig. 5. This corresponds
to an error of less than 10 per cent in the average current density measured over
this length but any separation of an external current measuring electrode, 0.6 mm
long, away from the membrane will again increase the error of the average. On the
other hand the distribution will probably give considerably less than 5 per cent error
in the current density measured by differential electrodes with a resolution of 0.3
mm (cf. TMC).

PHASE PLANE SOLUTIONS

It has been found relatively simple and particularly Muminating to adapt the
topological techniques widely used in non-linear mechanics (Minorsky, 1947) to
the analysis of equation (1). The steady state solutions are here represented as
lines on a phase plane with the coordinate axes V and y = dV/dx rather than the
more usual one on which y = dV/dt.

With

d2 V dy dy
dx2 dx Y dV

equation (1) becomes

dy (i3- i1)/g2 (9)

dV y

and, with is and il known functions of V, lines called trajectories can be drawn with
this slope at each point to represent solutions of the original equation. Solutions
for non-linear functions, such as shown in Fig. 1, may be obtained in this way.
The linear segment approximation gives solutions on this plane in which exp ax is
a straight line, cos cwx an ellipse, and cosh ax a hyperbola, and the considerable
confusing detail of an analytical solution is not apparent.
Some solutions of equation (9) are given for one value of V in Figs. 3 and 4.

Here the upper half plane is for x < 0 and the lower half for x > 0. The solution
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FiGuRE 3 V versus i characteristics for membrane current, i,, with linear regions I,
II, M, and for series current, i1, with axial electrode potential VA (upper). Steady
state solutions of cable equation on phase plane, V versus dV/dx, for several bound-
ary conditions (lower).

corresponding to equation (5) and (6) is the heavier trajectory of Fig. 4. As can
be shown directly from equation (9) it is the two straight lines in region I, two
circular arcs (obtained by proper scaling) in region II, and also a hyperbola for
region III in Fig. 3. The other trajectories, hyperbolas in regions I and III and
circles in region II, satisfy other boundary conditions.

In particular in Fig. 3 it is seen that the exponential solutions to the point (VE, 0)
continue to diverge with indefinitely increasing y as V becomes less than VA and
thus are not found to represent a plausible physical situation. On the other hand
beyond a definite more negative value for VA the situation is reversed and a closed
finite solution is found terminating for a value of V in region I. This is quite similar
to the previous analytical solution and considerable unrewarding complication will
be avoided by ignoring region III and considering region II to extend as far as
necessary. This solution, shown in Figs. 4 and 5, is informative and useful and will
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FIGURE 4 V versus i characteristics for membrane with negative conductance, -g,
in region II and for series conductance g, with axial electrode potential V, (upper).
Steady state solutions of cable equation on phase plane, V versus dV/dx (lower).
Outer trajectory is for infinite axon and electrodes and V. is the potential of center
point. Successive inner trajectories are for decreasing axon and electrode lengths. The
two inner circles are full wave solutions at the critical length and the center at V is
solution for shorter lengths.

not differ in any important way from that in which region I is allowed to be slightly
conductive or from that for the less idealized characteristic of Fig. 1. From equation
(8) the membrane potential V<> at x = 0 is

VC 93= -\99 VB - gi+A9 3VA.
93 -g1 g3 -g1

The dependence of V at other points upon VA is somewhat more involved but it can
be shown directly by elimination of (VA - VB) between V and y in equations (7)
and (8) that, at each x, y = m (V - VB). The slopes on the phase plane are as
shown by the dashed lines in Fig. 6 and m depends only upon gl, g2, and g3 in each
region in addition to x. Thus the transition from one steady state solution to another
is continuous and relatively simple.
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FIGuRE 5 Membrane potential V, versus distance from center point, x, for axial
electrode potential VA and four of the axon and electrode lengths of Fig. 4. The largest
amplitude is for the infinite length, the next is for 3.08 mm, the third is a full wave
solution at the critical length, 2.36 mm. The solutions for shorter lengths are constant
at V.

These solutions for an infinite axon are, however, somewhat unsatisfactory in
that they contain no condition to require that Vc be at the position chosen for x = 0
and either might be anywhere along the axon.
The solution can be fixed in position by the more realistic assumption restricting

the electrode region to - L < x < L. The solution with an indefinite length of
axon beyond each end of the axial electrode presents some difficulties that have not
yet been overcome. It seems necessary to return to the complication of including
region III and a satisfactory solution has not been found for V > VB at the end
of the axial electrode. It seems probable that in this situation the real axon starts a
propagating impulse to solve its considerably more complicated problem.
The problem is now again made somewhat less practical by assuming non-con-

FIGuRE 6 Phase plane, V versus dV/dx, solutions for infinite axon and electrodes
for several values of the axial electrode potential. Each straight line from (VB, 0) is
the path of the solution at one position on the axon as V, is changed.
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ducting boundaries at x = + L. This might be approached by external vaseline
seals and probably well realized by perhaps hazardous external sucrose or internal
oil seals. The condition is then dV/dx = 0 for x = + L and this is fulfilled by the
trajectories within the solution given, Figs. 4 and 5, which are hyperbolic for
V < VB and are symmetrical about x = 0. As the electrode length is reduced the
appropriate trajectory is continuously contracted until it reaches the limiting circle
tangent to V = VB. Here the membrane is excited over the entire length, 2L =
2w/ro. For even shorter lengths no symmetrical solution has been found to satisfy
the conditions except the point on the axis where V = V and the potential becomes
uniform. With the assumed axon and electrode characteristics this critical length

2L = 2wr /g2/(gg3-g) = 2.36 mm.

Consequently in such an axon perfect spatial control can only be expected with seals
at less than 1.2 mm from the central point although this distance is sufficiently near
an axon diameter to suggest an examination of the validity of the approximations
used.

Although the minimum wave length is 2L = 2wr/co, a half wave length also satis-
fies the boundary condition that dV/dx = 0 at both ends and the maximum length
of a uniform patch is then 2L = r/co or about 1.2 mm for the axon and electrode
characteristics assumed.
As the axon and electrode length is increased with the linear membrane charac-

teristic the half plane trajectory expands abruptly from a point to the peak to valley
amplitude of 2(V -VB). But if the conductance-g3 in region II gradually be-
comes less negative nearer regions I or III, as in Fig. 1, the peak to valley amplitude
increases continuously for increases of length beyond the critical one.
As the length is increased, with the linear segments for I and II, more of it has the

hyperbolic cosine variation of potential until the full wave critical length is reached,
when both half and whole plane solutions become possible. Further length increase
expands both of these into the hyperbolic cosine region until, at 2L = 3r/co, the
new, wave length and a half, antisymmetrical, pattern also becomes a possibility.
For considerable lengths of terminated axon and electrode everything is then pos-
sible from the largest integral number of minimum half wave lengths wr/, in the
total length down to the symmetrical pattern with near exponential ends given by
equations (7) and (8) but only this latter solution has been considered further.
An approximate calculation shows that, for large values of L, none of the per-

tinent quantities x1B, VC, or VL depart by more than a few per cent from their values
for indefinitely large L when L = XB + 3/a. The nominal values of the axon and
electrode properties then give

2L = - cos-' (- g/g3) + 6 N/g2/(gl + g3)

= 1.63 + 3.16 = 4.8 mm
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as an axon and electrode length which will be practically indistinguishable from an
axon and electrode of infinite extent but for which V will be a maximum at x = 0
and symmetrical about this point.
We will now only consider the solution for the infinite axon and electrode as the

convenient and reasonable approximation to a practical arrangement with a length
of more than about 5 mm.

STABILITY, ACCURACY, AND SPEED

The solutions thus far obtained have been assumed to be steady states without
consideration of their stability. The simplest situation, that of uniform membrane
potential and current density over less than the critical axon and electrode length,
may be shown to be unstable for g3 > g1 by qualitative considerations of the effect
of small fluctuations (CM). This system is, however, made stable by the feedback
correction for such fluctuations. The current, for V > VB and a membrane capacity,
C, is i = g1 (VA- V) = g3(VB- V) + C dV/dt and, introducing the control
VA- (E-V),

C dV
V Ag1E -g,3VB(I0

( + 1)g - g3 dt (A + 1) g1-8 (10)
where is the amplification factor of the perfect control amplifier.

Displacements of SE and SVB produce the steady state change of V

a V= Ai -5E - V
!;V=(A + 1)gi _ AE (A + 1)gi- gaV

while at the time SE and SV,B occur

dV Ag~BEi g3 5V
dt C SE--CaB

The potential may be expected to be stable if it changes initially in the direction of
its final value and for dV/dt to be of the same sign as SV it is necessary that y > (g3/
gl) - 1 = 2. This condition is also found to be sufficient for stability by direct
integration of equation (10). The fractional error in the membrane current, i3,
resulting from imperfect potential control is (g3 - gl) / [Ag1 - (g3- gl))] and the
time constant for the control is C/ug1 - (g3- g)]. These are then usually of the
order of 1/z and C/zgl respectively.

For an axon and electrode of more than critical length it is necessary to return
to the spatial conditions,

a2 V
aX2 = (13 - 0/92

av v1
= [g3(VB -V) + C --gl( VA- V)]/2

or
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dX2 (V VA) = CO* VB 2 V 2 VA (11)
Ox g~~~~~~~2493t '~

j+2V 2(V - C ; V V>2VB (12)

It will again be assumed that the axon is bounded but long enough for the steady
state solution of equations (7) and (8) to be adequate approximations. The steady
state change for displacements SVA and 8VB is

aV g= g/919 Co Coa VA + g3+N'~3COS Cox,SVB
g3- g1 g3 - g1

and, initially,

At C VACaVB
aV/at is thus of opposite sign from SV, for g3 > g, and all values of x < XB, and
this system is expected to be unstable without feedback control. It has not been pos-
sible to establish the general validity of this conclusion without a solution of the
partial differential equations (11) and ( 12).

Since the system seems unstable without feedback control, the situation is yet
more complicated. Without loss of generality we may place the control point at
x = 0 so that Va is the control potential. For VA = I (E - V0) equations (11) and
(12) become

a2V 2( _-AE) = C V+ (13)
92 at g2

92V+2( 93VB - glE' COaV+ A ()(14

aX ( g3-gc / g2 at g2 (14)

In the steady state

V = Is(E - VC) - [Iu(E - VC) - VB] exp [-a(x - XB)], V < VB , (15)

g3 VB -,Ug1(E- VC)
g3 -

-
93 [i(E - VC) - VB] cos cx, V. VB. (16)

Then

=cA=(g + E-)E-(g3 + vlg3&) VB
14g1 + '13) - (g3 - )

and the error

E - (g3 + Vgg3) VB - (g3 - g)E
IA(g1 + -3)-(g3 -g)

The transient solution for equations (13) and (14) has not been found but we may
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proceed as before and see whether it starts in the right direction. The final effect of
displacements SE and SVB at the control point is

a vc = (g1 + Vg,g3) 5E - g3 + V\g1g3 VB
A(9l + l913) - (93 91) A(91 + '\~193) -(93 - 1)

while the initial effect is
-Ve =g' BE - g a VB

For these to be in the same direction it is necessary that M. > (g3 - g1) / (g1 +
V/9193) = 0.733 and it will be assumed that this condition is also sufficient.
At the control point, the fractional error in i3 is now (g3 - g1)/[ (g1 + Vg\g3)

- (g3- gl)] and the initial time constant is C(gl + V\g1g3) / g91[(g1 + Vg1g3)
- (g3- g1)] These are again usually of the order of 1/M and C/I g1 respectively.
The most important conclusions are obtained from equations (15) and (16) and

it is correspondingly important to find a better basis for expecting them to be stable
solutions of equations (13) and (14) as well as more satisfactory to have some un-
derstanding of the nature of the transient solution. The only rapid and practical
procedure found was the manual numerical integration by conventional methods
(Milne, 1953).

First a solution of equations ( 11 ) and ( 12) for the uncontrolled axon was started
at a displacement of VA. The potential moved away from the appropriate steady
state and with no indication of return for as long as the integration was continued.
Then for the controlled axon of equations (13) and (14) the value of E was
decreased by a small amount at t = 0 to give the error SV (x, 0) derived from equa-
tions (7) and (8) shown in Fig. 7. For A = (g3 - g1)/(g1 + V\/gg3) = 0.733,
a (8V)/at was zero at all points and the error remained without change. With A =

1 the error decreased, but too slowly for convenience with the units used, and the
integration shown in Fig. 7 was finally carried out with A = 10.5. The error poten-
tial over the whole membrane was first made more negative as the capacity was dis-
charged with a time constant of approximately C/l gl. As the error at the control
point came to zero, the more remote points began to return towards the steady
state and were later assisted to do so by a slightly negative control point error as all
potentials moved more and more slowly toward the new steady state distribution.
On the phase plane, the original steady state trajectory was initially translated
almost unchanged to lower potentials until Vc was near its new value and then the
rest of the trajectory expanded to its new steady state. In this process the axial wire
potential changed by 10.5 times the control point error at all times.

This integration shows that the transient process is rather complicated and al-
though the control point moves towards its new value with considerable speed, other
points not far away will take on larger errors which are only corrected quite slowly.
More importantly, the integration gives additional reason to believe that for present
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purposes the steady state solutions such as equations (15) and (16) are indeed
stable and with but little control.

1.0

6V

0.5

0

-0.5

-1.0

FiGuRE 7 Numerical solutions of equations (13) and (14) for the change of mem-
brane potential, 5V, ordinates, versus distance at indicated times after a change of the
control command, 8E. The distribution at t = 0 is the difference between the initial
and final steady states. The intermediate times are in units of 0.141 ,u sec., the control
amplification, u, is 10.5, and the control point is at x = 0. The control point is brought
rapidly to near its final value and the more distant points are corrected more slowly.

COMMENTS AND CONCLUSIONS

This analysis had been confined to the point control system in part because it has
not appeared particularly easy to formulate the problem for extended potential
electrodes, but largely for other practical reasons. The present experimental evi-
dence leads to the conclusion that with a potential control near the axis of a good
axon the added axoplasm resistance might be too much for stability, and certainly
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would be for accuracy. In addition to their unreliability the extended internal poten-
tial electrodes that have been used have not been placed close enough to the mem-
brane to give some promise of stability and accuracy with even a rather uniform
axon (CM).
The entire analysis has been based on the assumption that the membrane poten-

tial is constant around any circumference of the axon. As has been pointed out
(CM) such results should not be accepted without reservation when significant
distances along the axon are comparable to its diameter. Furthermore it should
be remembered from CM and TMC that there is still some experimental uncertainty
in the values of the electrode resistances and those of the axoplasm and sea water
between them and the potential electrodes and also for the resistance between the
potential electrodes and the capacity and conductance of the membrane.
The electrode and electrolyte characteristics that have been assumed give not the

worst possible situation but one that is not far from it. As the electrode and electro-
lyte conductance, g,, becomes so small as to be negligible, the frequency parameter,
w, only increases from 2.7 mm-' to 3.2 mm-'. Conversely, as this conductance and
the negative membrane conductance approach each other numerically, w decreases
to broaden the current density pattern as it approaches uniformity and stability.
With the practically perfect electrodes used recently the clamp is stable and the
potential uniform for more of the better axons including those with negative mem-
brane resistances down to -4 ohm cm2. Nonetheless the axoplasm and sea water
still produce an w of 2.3 mm-' for the nearly best of the axons so far encountered.
The assumptions used are also quite conservative in another respect as shown

by Chandler (1961). The linear negative membrane conductance-g3 has been
taken throughout region II as that of maximum slope in this region. The membrane
is thus expected to be inherently stable at potentials and distances that are somewhat
less removed from those of the maximum instability that have been given here.
Consequently the experimental requirements ought not to exceed the predictions
in this respect at least.
An unexpected development is the appearance of a uniform potential over a

sufficiently short length of axon. This behavior is similar and perhaps closely analo-
gous to that of a longitudinally compressed column fixed at both ends. The column
is completely stable for a particular load up to a critical length but beyond this
length it will buckle. It may well be that such a solution has already been presented
by the single node and somewhat spherical cells, and something similar can be
expected as a necessary condition for successful clamping with virtual internal poten-
tial electrodes.
The complex of possibilities for longer axon and electrode lengths might explain

the considerable variety of potential and current distributions that have appeared
(TMC), but there is probably a stability condition to determine which of all these
patterns will remain after transients have died out. There are also many assump-
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tions and approximations between these possibilities and reality while the two patch
experiments (TMC) further suggest that non-uniformity is of particular importance.
But there is also the principle of parsimony and on the strength of it we have con-
fined our attention to the already tedious solution given by equations (7) and (8).

With a finite length of axon and electrodes the maximum of potential for this
solution is at the center. If the control is not at this point it is to be expected that
VA will decrease and the entire pattern will enlarge to bring the control point
appropriately close to the command. These situations have not been investigated
but it is seen that in spite of a high gradient, the average potential over a short
length might actually be more adequate than for the control point at the center.
A definite shortcoming at the present work is the lack of an analytical expression

for the transient characteristics or a general criterion of stability for the problem and
without these any intuitive and numerical approaches are of limited value. There
are as yet no apparent hazards in the immediate vicinity of the calculations made
and since these are on the dangerous side of the axon characteristics to be expected,
it is felt that the predictions are conservative.
Two factors that had certainly been no more than vaguely realized in the course

of a considerable experimental experience are the almost insignificant control ampli-
fication requirements for stability at the control point and the extreme rapidity of
error corrections at that point with perfect amplification. Although some of the
implications seem rather obvious, the extent to which these observations may be
found a useful guide to equipment and experiment design and operation is far
from certain!

It seems reasonable to conclude:
that the membrane potential can be well controlled at the control point;
that, with the present experimental arrangement, instability and a consequent

considerable variation of membrane potential are to be expected away from
this point;

but that under even rather conservative assumptions reasonably accurate current
measurements can be made within a few tenths of a millimeter of the control
point.

The suggestions, criticisms, and assistance of Dr. W. K. Chandler, Dr. R. E. Taylor, Dr. J. M.
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are gratefully acknowledged.
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