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ABSTRACT A formal approach to the routine analysis of kinetic data in terms
of linear compartmental systems is presented. The methods of analysis are gen-
eral in that they include much of the theory in common use, such as direct
solution of differential equations, integral equations, transfer functions, fitting
of data to sums of exponentials, matrix solutions, etc. The key to the formalism
presented lies in the fact that a basic operational unit-called "compartment"-
has been defined, in terms of which physical and mathematical models as well
as input and output functions can be expressed. Additional features for calculat-
ing linear combinations of functions and for setting linear dependence relations
between parameters add to the versatility of this method. The actual computa-
tions for the values of model parameters to yield a least squares fit of the data
are performed on a digital computer. A general computer program was de-
veloped that permits the routine fitting of data and the evolution of models.

I. INTRODUCTION

Considerable work has been done on the analysis and interpretation of kinetic data
in terms of linear compartmental systems,' the motivation for this being, in part,
the fact that small perturbations on higher order systems manifest themselves as
first order transients (e.g., tracer kinetics, relaxation phenomena, etc.). It is the
purpose of this paper to present a general framework within which the solution of
problems involving compartmental models may be executed routinely.
A linear compartmental system is usually specified by a number of compartments

and by transition probabilities between compartments, and may be represented
mathematically by a set of differential equations

n

Si(t)E XsAi(t) (i = I, . . . , n) 1

iComprehensive bibliographies appear in references (1, 8, 12), where basic assumptions and
definitions are discussed.
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where fi(t) represents a function, such as amount of material, specific activity etc.,
the xy are the transition probabilities per unit time (or turnover rates) from the jth
into the ith compartment, and xh is defined

n

Xii= E Xki [2]

,X represents "loss" from the ith compartment to the outside.
When the [xij] matrix has distinct eigenvalues, the solutions of equations [1], for

constant XA, are sums of exponentials:

fi (t) = iAie- at (i = 1, 2, n) [3]

where the (-aj) are the eigenvalues of the [xe] matrix and the A,j are elements of
the eigenvectors. In matrix notation

X = Aa A-' [4]

where a is a diagonal matrix of the ai elements.
Explicit solutions for the case of multiple roots and some time dependent XA; may

also be derived (17).
To derive a compartmental model the solution of which will agree with experi-

mental data that are measures of the f(t), the number of compartments and the
values for the Xij must be determined. Strictly speaking, there is no unique model
for a set of data since one can always expand any model by the introduction of
degeneracies or fine structure beyond the resolution possible from the data. In
practice, however, one usually seeks a model with a minimum number of compart-
ments, unless independent information is available to the contrary.

With the number of compartments set, a minimum number of measures of the
fi(t) is still required to determine values for the xij. When the data are fewer than the
required minimum, as is frequently the case, a unique set of values cannot be de-
fined.

Additional degrees of freedom in choosing a model arise when any of the meas-
ured quantities is a linear combination of the f(t) with unknown coefficients.

Statistical fluctuations in the data introduce further uncertainties in a model.
Apart from the intrinsic limitations in defining a model, the actual computations

may become quite complex. Several approaches are frequently used individually or
in combination in dealing with these problems:

(a) Special assumptions are postulated about the model (1-4, 4a). Such assump-
tions usually set some Xij = 0, restricting the possible compartmental interconnec-
tions so that a "simple" model results. This permits simplification of the computa-
tions and the definition of the unknown xjj.

(b) The model is not fully defined but certain hs or other parameters can be
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calculated using one or several of the differential equations. Special procedures,
such as the use of derivatives, times for the occurrence of extrema, mean times, etc.
are frequently invoked to accomplish this (14, 8).

(c) Mapping of models within a hyperspace may be possible when the models
are not too complex and the degrees of freedom are not too great (4, 4a, 5).

(d) Integral equations and/or transfer functions are employed to describe the
response of models or parts of models in terms of mathematical functions and to
predict their response to various input functions (6-9a).

Although the above procedures have been very successful for many special stud-
ies, they are neither general enough nor sufficiently practical to handle problems
routinely. They require computational simplicity and cannot always make full use
of all available information, especially when constraints within the model are spec-
ified a priori.
The treatment presented here is an attempt to develop a general formalism ap-

plicable routinely to all problems. The framework developed for this permits the
direct or indirect utilization of the various theoretical approaches already available.
The data are treated statistically and uncertainties for the parameters of the model
are derived (13).
Much of that which is presented here was made possible by the advent of high

speed digital computers, by some theoretical work developed in recent years (2, 4,
4a, 6, 6a, 8-12) and by special techniques introduced here. The actual solutions for
all the procedures proposed here can be performed on a computer using a general
program described separately (13) and do not require any further programming.
When discussing various methods for setting up models and solving them it is implied
that, using the computer program, it is possible to derive a set of values for the
parameters of the proposed model which yields a least squares fit of the data.

II. OPERATIONAL UNITS

For the purposes of simplicity in the subsequent discussions it is convenient to de-
fine certain operational units. These are based on features that are already integral
parts of the computational formalism. The units defined are: compartment, sum-
mer, function generator, and transfer function.

1. Compartment. A compartment is an entity that operates on a function
in accord with the differential equations given by [5] below. For any arbitrary input
rate g(t), compartment i may be described by fi(t):

df.(t) = Xi,ij(t) + g(t). [5]dt

Here xi may represent an irreversible loss (-Am) from compartment i or the nega-
tive sum of a number of component Xjj which serve as "outputs" to other compart-
ments (j # 0).
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Physiologically, a compartment symbolizes a totality of particles within the sys-
tem that are operationally indistinguishable from each other as judged by the avail-
able data. This may or may not correspond to an identifiable physiological entity.
A circle will be used to represent a compartment schematically. The xq will be

represented by arrows with a direction from j to i. An example for a 3 compartment
model is shown in Fig. 1.

2. Summer. As the name implies, a summer is an operational unit that

N 12FIGURE 1 Special 3 compartment model.

represents a linear combination of compartments and is expressed mathematically
by the relation

n

qi = E¢ikfk
k-1
kp'j

[6]

where qj is the function describing the summer j, fk are the functions for compart-
ments k, and jk are the summing coefficients.
When only one compartment is involved,

[7]qi ai tfi

and a summer may be eliminated by use of a proportionality constant, ,c

qi = Kji. [8]

A summer is represented schematically by a triangle, and lines (without arrows)
between summers and compartments represent the ak. This is shown in Fig. 2 where
1, 2, and 3 are compartments and 4 and 5 are summers.

3. Function Generator. A function generator is a device which generates
a desired function, that may then serve as an input to a system of compartments
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FIGURE 2 A 3 compartment model with summers. Summer 4 represents linear com-
bination of compartments 2 and 3; summer 5 represents linear combination of com-
partments 1, 2 and 3.

without being affected by changes in the system or in its degree of coupling to the
system. The generated functions are limited to sums of exponentials, and are ob-
tained by the use of compartments. The independence of a function generator from
the system is obtained by making use of linear dependence relations of the type:

Xii = E aili ^Xlm
I .m

[9]

where the atam are constant coefficients.
The utility of these concepts is seen as follows. Assume a compartment i with a

rate of loss, ai, and initial conditions ft(O). Its response as a function of time is

fi(t) = fi(0)e-'"'. [10]

This is shown schematically in Fig. 3 where *fj(O) indicates the initial conditions for
compartment i.
When compartment i serves as an input to another compartment, Fig. 4, at a rate
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I A01 w

49f FIGURE 3 Schematic representation for compartment.

e|, b FIGuRE 4 Compartment converted to function
generator by use of dependence X04 = a,- X,.

Xji, its response fi(t) is

f =(t) ft(O)e-(XoI+XI)tt
To maintain fi(t) in the form given by [10], and independent of A,x, the following
dependence relation is specified

)Oi = ai - X [11]

When compartment i serves an input to several compartments, the dependence
relation is extended to include the other Xkk:

XO0i= C Zi Xki. [12]
k-I
k#i

When a linear combination of exponentials is desired for an input function, sepa-
rate compartments are used for each of the exponentials, with each having its own
dependence relations to ensure independence of coupling to the system. Thus, for
example, a function which is a sum of 3 exponentials,

Aealt + A2e-a't + A4e-ai,
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feeding into compartments i and j may be set up as shown in Fig. 5, with the fol-
lowing dependence relations

01= a1 -Xi- Xi
X02 =22-Xj2- Xi2t [13]

X03 = a3 - Xj3 JXi3
and

XI3= X=2= i 1 [14]

Xi3 Xi2 = ilJ
Equations [14] arise because the same fraction of each exponential component

must feed into compartments i, or j. Again, *Ai is used to specify initial conditions
for compartment i.
A function generator will be represented schematically by a square having a sin-

gle designation. An arrow to a compartment represents an input to that compart-
ment. If a number appears in the upper left-hand corner of the square, it designates
the number of exponentials involved. All the necessary compartments, initial condi-

*AI 1

FIGURE 5 Function generator with 3 exponentials Ae- aeI + A2e a.I + Ase- at serving
as input to compartments i and j.
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tions, decay constants and dependence relations for the function generator wirl be
implied by this notation. This is shown in Fig. 6, which is formally equivalent to
Fig. 5.
A summer can add the responses of the individual compartments of a function

generator to obtain the entire function, Fig. 7. A single line between the function
generator and the summer will imply the presence of all the necessary summing
coefficients, alk.

3

i

FIGURE 6 Schematic representation for function
generator.

FIGURE 7 Summer used to represent output of function generator.

4. Transfer Function. A transfer function is an operational definition of
a black box necessary to convert a given input into a specified output. Formally, it
is defined as the ratio of the Laplace transform of the output function to the Laplace
transform of the input function. When the input function is a unit impulse, its
Laplace transform is unity and the transfer function equals the Laplace transform
of the output function.

In the real time domain, if f(t) is the output for a unit impulse input, the output
r(t) for any other input, g(t), may be obtained by the convolution of the two func-
tions:

r(t) = m(t) + J f(E)g(t - E3) d( [15]
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where m(t) is the output resulting from initial conditions already present in the
system. The Laplace transform of [15] is

R(P) = M(P) + F(P).G(P) [16]

where R(P), M(P), F(P) and G(P) are the Laplace transforms of r(t), m(t),
f(t), and g(t), respectively.

For compartmental systems, the output for a unit impulse input may be expressed
as a sum of exponentials, f(t) = X Aieait. Thus, regardless of how the system is
interconnected it may be represented operationally by a number of compartments
having decay constants ai and initial conditions Ai, Fig. 8.

*A,
I a

. . .

I
= 1

FIGURE 8 Operational arrangement for transfer function.

When the input to the system is g(t), the output, r(t), appears in the summer k
for the scheme shown in Fig. 9. To see that this is in fact so, the response q,(t) for
any compartment i (i = 1, . . . , n) may be calculated directly as

dqi(t) = -a,qi + Aig(t).dt [17]
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. 0 *

Pt

FIGURE 9 General input g(t) to system having transfer function En_- A,e a".i Note that
rate constants Xi0 take on values of initial conditions A, in Fig. 8.

Using Laplace transform notation:

pQ5(p) - qi(O) = -aiQi(p) + AjG(p)

WA = -qi(O) +[ A
G(P)

+a L± jG(i

Qj(p) = Mj(p) + Fi(P).G(P) [18]
Finally, considering the total output as the sum of the individual outputs, R(p)

= EQ (p), we get
R(P) = M(P) + F(P).G(P) [19]

which agrees with [16], and its inverse transform is [15] with f(t) = X Aie-a,t.
A transfer function will be represented schematically by a diamond, Fig. 10. Ar-

rows indicate inputs or outputs. This representation will imply the existence of all
the necessary compartments and rate constants discussed above. A number in the
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FIGURE 10 Schematic representation of transfer function i. Function generator g
represents input and summer k represents output.

upper corner of the diamond designates the number of compartments necessary to
represent the transfer function.
The total response of a transfer function may be obtained by summing the re-

sponses of the individual compartments within it. A single line will show the coupling
of a transfer function to a summer.
The output from a transfer function may be used as inputs to other parts of the

system, in which case the transfer function response may be maintained independent
of variations in the values of the output parameters, xA, by use of dependence rela-
tions as was done in the case of the function generator. This will be discussed later.

III. SOLUTION OF MODELS

In setting up a model some a priori knowledge about the system may be available,
but more frequently one has to be guided by the data. The most useful clue is the
fact that the data must be linear combinations of exponentials, to agree with the
solutions of the differential equations, and that the same set of exponentials must
apply to all compartments (except for degeneracies). This suggests that the data be
fitted first to linear combinations of exponentials, and that a number of compart-
ments for a model be chosen to equal the number of exponentials in the fit (4).
Various methods may be employed subsequently in going from a sum of expon-
entials fit to the parameters of a physical model.
When it is not possible to fit the data to sums of exponentials, the initial selection

of the number of compartments for a model must be made on the basis of previous
knowledge or by trial and error. The computations for the values of the model
parameters may be carried out by using the differential equations directly.

Various approaches for the use of sums of exponentials, for the direct model
solution and for combinations of the two will be discussed in what follows.

1. Solution Involving Model Parameters Directly. The most direct method
of solving for a model is to set it up in terms of the differential equations directly,
and let the values of the variable parameters be adjusted until a least squares fit of
the data is obtained, a numerical chore performed on the computer. This method is
highly desirable because it calculates the final values directly, yields measures for
their uncertainties, can accept data in "raw" form and requires no intermediate
calculations. Furthermore, known constraints on the model (e.g., kj = 0) can be
incorporated directly in the differential equations.
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The disadvantages of the method are: (a) it is difficult to decide on the number
of compartments for the model, (b) it may be difficult to assign initial estimates for
the values of the parameters (a requirement of the numerical procedure) and, (c)
convergence may be slow due to interdependence of parameters in the fitting of the
data.

2. Fitting of Data to Sums of Exponentials. The method for the fitting of
the data to linear combinations of exponentials is shown in Fig. 11. Each compart-

I*1 a*1 I1

*t, P

FlouRE 11 Arrangement for fitting r-n sets of data to sums of n exponentials each,
with common exponential constants (X04).

ment i (i = 1, . . . , n) generates an exponential e->tit (a constant is generated by
a compartment having a AN = 0), and each summer (n+1) to r represents a best
linear combination ('"+;,) of the same exponentials to fit each of the available
sets2 of data:

[20]
n

qn+j(t) = o.+i,i f,(t).
i-1

2 set of data consists of all measures for a single compartment or for any linear combination
of compartments.
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Certain constraints may sometimes be imposed when fitting data to sums of ex-
ponentials. For example, if initial conditions, qi(O), are given, it is necessary that

n

ai=is qi(°) (i = n + 1, n + 2, * ,r)
j-1
i-S.

be satisfied. This may be entered as a dependence relation in the computations.
Other constraints may arise as a result of functional relations between compart-

ments. For example, the rate of accumulation of radioactivity in the urine, dqu/dt, is
frequently proportional to the amount of radioactivity in the plasma, qp(t):

dq,(t) Kz()[1
di = Kq,(t) [21]

where K is a proportionality constant.
If qp(t) has the form

q =)t

then

q(t) = J Kq, dr + q.(O) = KJ ,.ie- dr + q.(O)
O ~~~~~~~~~iO

qu(t) =E ,i Ke' dir + qu(O). [22]

Thus, the constraint of [21] is equivalent to that of [22] and may be incorporated
in the fitting procedure. The format of [22] corresponds to the operational arrange-
ment shown in Fig. 12.
Compartments I to n generate the exponentials ea4 (i = 1, ... , n). Compart-

ments (n+1) to (2n) generate the functions

J Xn+i.,e- cr dr.

Summer u represents

qu(t) = i-i + i | ,+i.ie dr. [23]

Equation [22] is satisfied if the following dependence relations are specified:

Xn+ i,; = K (i= ,* ,n) [24]

'u.n+i = av $

Similar procedures may be applied to other functional relations between compart-
ments.
To fit data to sums of exponentials, initial estimates for the Xoi only are necessary.

These may be obtained by the "peeling" technique (15), or other available methods.
The basic problem as to how many exponentials are necessary to fit a set of data has
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FiGuRE 12 Compartment arrangement for fitting two sets of data (q, and q.) to
sums of exponentials with the constraint that

dq.(t) Kq(t)

not been fully resolved. One usually chooses the minimum number necessary to
yield a random scatter of the experimental points about a fit. The use of a reference
fit (13, 16) is helpful.
The procedure for fitting data to sums of exponentials may cause some difficulty

when the system has multiple or "near multiple" roots. Functions for the case of
multiple roots can be obtained directly by setting up compartments in series with
unidirectional flow rates (Xj+1,) from the it" to the (i+1) St compartment. The
Xi+,, have the same values for all i and the number of compartments in series equals
the multiplicity of a root. This method is equivalent to the use of a Jordan canonical
form ofamatrix (17).

3. Model Determination from Sums of Exponentials Fit. If n exponential
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terms are necessary to fit the data, a proposed model to explain the data must have
at least n compartments. To determine uniquely the values for all the xjj, measures
must be available for all compartments (4). Thus, if n2 aj and n aj can be deter-
mined from the sums of exponentials fit, the values for the xy may be calculated
from the matrix relation:

-o1 [25]

where the a matrix is equivalent to the A matrix in [4].
This procedure is simple and straightforward. Its application, however, may be

limited due to the following: (a) Uncertainties for the values of the xj, are not ob-
tained directly. (b) Known constraints on xij cannot be imposed on the solution.
(c) Data that are linear combinations of compartments require further mappings
to obtain the final solution.

Even if the direct application of [25] is limited it may still serve a useful purpose
in providing initial estimates for the xij which may then be calculated by the direct
method discussed previously or by other methods to be discussed.
When all the aij cannot be determined from the sums of exponentials fit but a

sufficient number of Akl are known so that a unique solution of a model exists, sev-
eral approaches-some of which are discussed in other sections of this paper-may
be followed. It is worth pointing out that usually, when calculating values for the
are, constraints that may arise as a result of known Ak are not considered. Thus, the
given afj and Akl may be mutually incompatible.
One approach is to rewrite the set of differential equations [1] to include the in-

formation on the known Xkl. If the fitted curves are good enough approximations to
the true curves, the values of f (t) and dfi(t) /dt for every known i and time t may
be determined analytically from the sums of exponentials fit:

fi = E ie i
[26]

dfi(t) E iaie
dt

With the unknown AH1 designated as A-,', the original differential equations [1]
may be rewritten in terms of the fitted fi(t) and dfh(t)/dt values (from equations
[26]) and the unknown exponentials A,;'e-ia:

=f(t)-E Asfft)= Xifj(t) + ,X ,
E AikPeaIt (i = 1 * * n) [27]dt i k

Since the functions e-akt are known, [27] represents a set of linear algebraic equa-
tions in variables that are functions of the Xj and Ajk'. Subsequent decoupling of the
xy and Ajk' is necessary.

Limitations of this method are: (a) it may be difficult to decouple the k; from
the A,k'; (b) poor choice of exponentials in the fit may influence calculations; (c)
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The variables of the algebraic equation may not be independent, resulting in singular
equations.

4. Combined Integral-Differential Solution. In principle, this method
combines the sums of exponentials approach with the direct model solution ap-
proach. Information or constraints on the exponentials can be specified indepen-
dently of and jointly with information or constraints about the model. This method
does not require that all ar or aj of the exponentials fit be known, provided suf-
ficient xkl are known to ensure a unique solution.

Integration of equations [1] yields the following

fi(t) = f Xif(T) dr + fi(O) = i fi(r) dT + fi(O) [28]

The fi(t) are thus expressed as linear combinations of the integrals

fff, dr.

If the data are measures of the f,(t) and are fitted to sums of exponentials, we
may write

fj(t) = i Ai,ke a'
k

and substitution into [28] yields

fi(t) = E Xii £ Ak f e-ab dT + f,(o). [291
i k o

Equation [29] lends itself directly to a solution by the scheme shown in Fig. 13. The
top row represents function generators, e-akt. The compartments in the second row
represent the functions

ff,(r) dT = z A,. f e dr.

The rate constants feeding into them are the appropriate Ajk. Summers in the third
row represent the f4(t) in accord with [29], where the summing coefficients cor-
respond to the Xj of the model. The function generator at the right provides a con-
stant to supply the fi(O) terms in [29].

This method requires that the data be fitted first to sums of exponentials. The
values of the fit are used to specify the function generators in row 1. Ajk and ak that
cannot be determined by the fit become variables of the system and initial estimates
for their values are required. No initial estimates are required for the unknown xi;.
The calculated fi(t) appear in the summers and these are fitted to the experimental
data. The final solution yields both the unknown A, and Xij.
When a certain compartment, say, 1, cannot be measured, a modification of the

scheme shown in Fig. 13 may be used. In this case the quantity X x1Ik f fkdt must be
identical to AkeICe-akt. This can be accomplished by setting
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FiouRE 13 Integral-differential method for solution of model.

fi~- 2XzX j f dr A -ak' [30]
*-1 0 ~~~k-I

and by considering "zero"s as data for compartment 1.
Figure 14 shows such an arrangement for summer I only. This procedure can be

further extended to data for which some Ask cannot be resolved. Each such term
may be subtracted in the summer and the fit determined for the remaining data.

Although the method has been described in terms of compartments, the function
generators of Fig. 13 can represent more complex subsystems: special models, etc.
Some advantages of the integral-differential solution are: (a) Use of the integral

of the fitted data makes the method relatively insensitive to the actual number of
exponentials in the original fit or to the correctness of the Ai, and aj values, provided
the theoretical curves fit the data. (b) Solutions for f fi(t)dt and ft(t) can be ob-
tained analytically. (c) Constraints on the data fitting and on the model can be im-
posed simultaneously in the solution.

Disadvantages of the method are: (a) Initial estimates for unknown Aik are re-
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FIGURE 14 Extension of integral-differential method for case of incomplete data.

quired and may be hard to obtain. (b) The method is not convenient for data that
are measures of linear combinations of compartments.

5. Use of Function Generators. When data are insufficient to determine
a model uniquely, it may still be possible to obtain a partial solution or to describe
the model operationally so that its response to various inputs may be predicted.
Function generators and transfer functions may be used for this purpose. They can
also be used to assist in the convergence to a least squares solution. This is accom-
plished in several ways: (a) The system is broken down into relatively independent
subsystems resulting in independent subsets of variables. (b) Primary3 variables
Ass, that are in general non-linear with respect to the responses are replaced by sec-
ondary4 variables aij, that are linearly related to the responses. (c) Variables are

3 Primary variables are those that require iterative adjustments to reach a least squares solution.
The x., are primary variables.
4 Secondary variables are dependent on primary variables and can be determined by solution
of linear algebraic equations.
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decoupled in such a way as to permit time sequential solution of independent blocks
of variables. These features will be demonstrated in the following example.
Assume the 3 compartment system shown in Fig. 15. The initial conditions of

the experiment are q1(O) = 1, and q2(0) = q3(0) = 0. Measures are available for
q1(t) and q2(t) + q3(t). It is desired to solve for all the j.
A direct procedure for solving this problem is shown in Fig. 16. Summer 4 repre-

sents q4(t) = q2(t) + q3(t). Given initial estimates for the h>, a least squares fit

!±

FIGURE 15 A 3 compartment model used as an example to show application of func-
tion generators.

= 1

FIGuRE 16 Compartmental and summer arrangement for the direct solution of
model.

for q1 (t) and q4 (t) can be obtained. The ky, however, are interdependent in ad-
justing to a least squares fit and convergence may be slow.
A function generator may be introduced as follows:
The data for compartment 1, q1 (t), are first fitted to a sum of exponentials. A

function generator having the identical exponentials is introduced in place of com-
partment I as indicated by function generator 5 in Fig. 17. A12 and A02 are combined
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into a single rate constant, A22, and similarly A33 = A03 + A13, since no return to the
function generator is desired. The response in each of the compartments in Fig. 17
is indistinguishable from the original system, and some decoupling of variables (A21
and X22 from A31 and A33) has been achieved.

It can be shown (4, 4a) that for the arrangement in Fig. 17 the response in com-
partment 2 is proportional to the magnitude of A21 and that this contribution to the
response in summer 4 is proportional to the product 042 *A21. Since 042 = 1, it is
possible to set A21 = 1 and make a42 variable, without affecting the contribution to
summer 4. The advantage of this is that A21 is a primary variable whereas the a42 is
a secondary variable, and a reduction in the number of primary variables contrib-
utes to faster convergence. By a similar interchange between X3i and -43, it is pos-
sible to eliminate another primary variable and the model reduces to that shown in

4Z

FIGURE 17 Introduction of function generator in 3 compartment model of Fig. 15.

FIGURE 18 Interchange of X1 and o4 (xn and a"r) in Fig. 17.
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Fig. 18. This model may be fitted to the data q4(t), and a solution for A22, X33, a42
(= A21) andr32 (= A31) obtained.
The next step in the solution of the remaining parameters is shown in Fig. 19.

The as in parentheses indicate parameters determined in the previous step. Com-
partment I [with initial conditions qj(0)] and the rate constants, All, A12, and A13
have been reintroduced. The proper response for compartments 2 and 3 is main-
tained by the function generator and the known xj. If the following dependence
relations are specified x12 and A13 will not affect q2(t) and q3(t):

02= (X22) - X12 [31]

X03 = (X33) - X13.

Thus, in effect, compartments 2 and 3 act as function generators feeding into com-

I I

%13

FIGURE 19 Resynthesis of compartment I for model in Fig. 15.
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partment 1. A solution for A12, A13 and xi, can be obtained directly from the scheme
in Fig. 19, by fitting ql(t). Alternatively, it is possible to decouple the remaining
variables further if compartment 1 is represented by 3 compartments, 6, 7, and 8,
and a summer, as shown in Fig. 20. The turnover rates of these compartments are
set to a common value by the dependence relations

X08 = \7=0 06 = X11. [32]
Summer I is equivalent in its response to the original compartment 1.

FIGURE 20 Breakdown of compartment 1, Fig. 19, into 3 compartments.
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Compartment 7 represents the response of compartment I due to an input from
compartment 2 only. Since the response in compartment 2 is fixed, the response of
compartment 7 is directly proportional to 12. Summer I cannot resolve the product
A12 * a17 and we can therefore fiX A12 = 1 and make gl7 variable. The same argu-
ment also holds for compartment 8 in relation to compartment 3 and summer 1.
Compartment 6 is the response of compartment 1 due to its initial conditions only.

This final arrangement where XoI (= i,,) is the only primary variable, is shown
in Fig. 21. The final solution yields X06 (= xll), a17 (= A12) and a18 (= A13).
To show the use of a function generator to represent a system that cannot be re-

solved, consider the following situation. Data are available on blood plasma which
show that it must interact with a number of other compartments. Measures for
only one other compartment, say, k, are available, and it is known that it interacts
with plasma only. The available data cannot resolve the entire system. The plasma
data, however, may be represented by a function generator, i, feeding into compart-
ment k having a loss xOk. The values of xk and kk can be determined directly from
this, if sufficient data are available for the 2 compartments.

In general, a function generator need not be restricted to a sum of several in-
dependent compartments. In fact, any part of a system can be converted to serve as
a function generator by introducing proper dependence relations, as was done for
compartments 2 and 3 in the example.
A function generator may also be interpreted as an input function to a system. If

the input function is known, the values of the parameters of the function generator
are fixed. When the input function is not known, but can be determined from in-
formation about the system and its response, the parameters of the function gen-
erator become the variables in the least squares fitting of the data.

6. Use of Transfer Function. When the response of a system, or any part
of it, to some input function is known, but the information is inadequate to permit
the definition of a specific model (or a model is not desired), a transfer function
may be introduced to simulate the system response. This permits the incorporation
of an unresolved subsystem into a larger system and its description in terms of a
minimal number of variables. The following example, based on a study of metab-
olism of glucose (18) will illustrate the use of a transfer function.
The disappearance of glucose C14-1 and glucose C14-6 from the plasma of a

normal human after a single injection may be described by a function f(t):

f(t) = Aeale + A2eaS + A3ea[33]
The bicarbonate radioactivity in plasma resulting from a single injection of

labelled bicarbonate may be approximated by a sum of 2 exponentials
g(t) = Ble- t + B2e-t. [34]

Part of the glucose C14-1 in the plasma is converted to plasma bicarbonate by
way of a hexose monophosphate pathway. This may be represented schematically
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X2YL) I I < (33)

6

07 06 08 0

FIGURE 21 Final stage in the solution of 3 compartment model, Fig. 15, using func-
tion generator.

by function generator 1 for plasma glucose C14-1 and transfer function 2 for
plasma bicarbonate, as shown in Fig. 22. Part of glucose C14-1 also appears as

bicarbonate by another pathway. The transfer function for this pathway may be
determined, from a glucose C14-6 label, all of which is assumed to metabolize by
way of this pathway. The total bicarbonate resulting from glucose C14-1 (summer 4)
is thus a linear combination of the two pathways: a fraction k goes by way of the
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FiGuRE 22 Operational representation for use of transfer function in solving for
glucose metabolic pathways.

hexose monophosphate shunt and a fraction (1-k) by way of the other pathway.
The variable of the system is k.
When the output of a system is given for a known input, the transfer function

can be determined by letting the parameters of the transfer function become the
variables of the system.

Frequently, several transfer functions may be known for a system, but they may
still not be sufficient to define a model. One could generate each transfer function
separately and use it independently of the others, with a common input. It is not
necessary to restrict oneself, however, to isolated compartments for transfer func-
tions. Models with interacting compartments may also be used as transfer functions,
in which case the same model may generate a number of transfer functions simul-
taneously.
A model to generate several transfer functions may be obtained as follows. The

general solution of a model in terms of the exponential components in the data was
given by [4]:

= A -A'.

A transfer function is equivalent to a single row in the A matrix. When some of the
Aij are unknown, a unique solution of a model is not possible. But as pointed out
in reference (4, 4a) any arbitrary set of values for the unknown A0j that will be
compatible with the initial conditions of the experiment and that will not result in
a singular matrix A will yield a model that will be compatible with all the known
Aij. Such a model may have negative values for the xj, which are not acceptable as
solutions for a real physical model, but are of no concern when the model is to serve
only as a transfer function.
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The use of a general model for all transfer functions has the further advantage
that it is closely linked to a physical model and can readily be transformed into one
when desired.

The disadvantage of a general model as a transfer function is that it cannot be
recognized readily in its simplest mathematical form. As a result of this, a general
model cannot be used to derive a transfer function because it has too many degrees
of freedom, and thus the solution is not unique.

IV. DISCUSSION

A number of methods have been presented for the analysis of data in terms of physi-
cal or mathematical models. All these methods are treated by a common formalism,
the fundamental operational unit of which is a "compartment," with the additional
features of "dependence" of parameters and "summers." With this in mind, the
various methods are not really different but rather special variations of a common
approach. Similarities between the methods presented are therefore to be expected.
A good example of this is the use of transfer functions as input functions, output
functions and as operational representations of the system. In fact, the separation
of all these is really arbitrary.

The choice of a method for a specific problem depends on the kind of data avail-
able, on the purpose of the analysis and on the computational procedures involved.
In general, the fitting of data to sums of exponentials is helpful in guiding subse-
quent choices. Some of the advantages and disadvantages of the individual methods
have been discussed in the text.
The present paper deals with the fitting of data to a model. Problems connected

with criteria for accepting a fitted model, non-unique solutions and inconsistent
solutions have not been considered here. Some discussion of this has been presented
elsewhere (13) and a more complete treatment of this will be forthcoming (19).
When a physical model is desired for a set of data it is important that the values

of the parameters in the final fit do not violate the physical realizability of the
model. Although this has not been discussed in this paper, the computer program
makes it possible to preset upper and lower limits for the variable parameters and,
thus, can guarantee physical realizability of a model.
The computational tasks involved in the various schemes presented can be per-

formed by the digital computer program described separately (13). It is worth
mentioning that many of the operations described here can also be performed on
an analog computer. The disadvantages of a conventional analog computer are that
(a) it does not provide a measure for a "good" fit, (b) it does not provide a sys-
tematic way for adjusting parameter values to improve a fit, and (c) it has no provi-
sion for indicating uniqueness of fit or uncertainties in the values of the parameters.
These disadvantages, however, are not inherent in the analog computer and some
efforts to overcome them have been made (20).
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The treatment presented here deals chiefly with the X4j of a model. There are
other parameters that may also be of concern in a compartmental system; the sizes
of the compartments, the amount of steady-state material entering or leaving com-
partments, etc. A solution for these parameters may be obtained from the matrix
relation S = x-1 I where S and I are column matrices of the compartment sizes and
inflow rates, respectively. Neither the Si nor Ih, however, can at present be readily
used as independent variables in fitting the data. Given a set of AXe, however, either
the Si or It can be calculated from the above relation.

In addition to the studies already mentioned on glucose metabolism (18) and
iodine kinetics (16), the methods described have been applied to problems dealing
with kinetics of cholesterol (21), aldosterone (22), citrate (23), and others.

Received for publication, January 14, 1962.

REFERENCES

1. ROBERTSON, J. S., Theory and use of tracers in determining transfer rates in biological sys-
tems. Physiol. Rev., 1957, 37, 133.

2. SHEPPARD, C. W., and HOUSEHOLDER, A. S., Mathematical basis of interpretation of tracer
experiments in closed steady-state systems, J. Appl. Physics, 1951, 22, 510.

3. SOLOMON, A. K., Compartmental methods of kinetic analysis, in Mineral Metabolism,
(C. L. Comar and F. Bronner, editors) New York, Academic Press, Inc., 1961, 1, pt. A.

4. BERMAN, M., and SCHOENFELD, R., Invariants in experimental data on linear kinetics and
the formulation of models, J. Appl. Physics, 1956, 27, 1361.

4a. BERMAN M., and SCHOENFELD, R., A note on unique models in tracer kinetics, Exp. Cell
Research, 1960, 20, 574.

5. LEWALLEN, C. G., BERMAN, M., and RALL, J. E., Studies of iodoalbumin metabolism. I. A
mathematical approach to the kinetics. J. Clin. Invest., 1959, 38, No. 1, 66.

6. BRANSON, H., A mathematical description of metabolizing systems; I., Bull. Math.
Biophysics, 1946, 8, 159.

6a. BRANSON, H., A mathematical description of metabolizing systems: II., Bull. Math. Bio-
physics, 1947, 9, 93.

7. SCHOENFELD, R. L., and BERMAN, M., An electrical network analogy for isotope kinetics,
New York, IRE, 1957 IRE Convention Record, pt. 4, 84.

8. RESCIGNO, A., and SEGRE, G., La Cinetica Dei Traccianti Radioattivi. Edizioni Universitarie,
Turin, Boringhieri, 1961.

9. STEPHENSON, JoHN L., Theory of transport in linear biological systems: I. Fundamental
integral equation, Bull. Math. Biophysics, 1960, 22, 1.

9a. STEPHENSON, JoHN L., Theory of transport in linear biological systems: II. Multiflux prob-
lems, Bull. Math. Biophysics, 1960, 22, 113.

10. HEARON, J. Z., Rate behavior of metabolic systems, Physiol. Rev., 1952, 32, No. 4, 499.
lOa. HEARON, J. Z., A note on the integral equation description of metabolizing systems, Bull.

Math. Biophysics, 1953, 15, 269.
11. HART, H. E., Analysis of tracer experiments in nonconservative steady-state systems, Bull.

Math. Biophysics, June, 1955, 17, No. 2.
12. SHEPPARD, C. W., Basic Principles of the Tracer Method, New York, John Wiley and Sons,

Inc., 1962.
13. BERMAN, M., SHAHN, E., and WEISS, M. F., The routine fitting of kinetic data to models:

A mathematical formalism for digital computers, Biophysic. J., 1962, 2, 275.
14. ZILVERSMrrH, D. B., ENTENMAN, C., and FISHLER, M. C., Calculation of 'turnover time'

M. BERMAN, M. F. WEISS, AND E. SHAHN Analysis of Data 315



and 'turnover rate' from experiments involving the use of labeling agents, J. Gen. Physiol.,
1943, 26, 325.

15. SIu, W. E., Theory of tracer methods, in Isotopic Tracers and Nuclear Radiations, New
York, McGraw-Hill Book Co., Inc., 1949, chapter 15.

16. BERMAN, M., Application of differential equations to the study of the thyroid system, Proc.
4th Berkeley Symp. Mathematical Statistics, July, 1960, 4, 87.

17. BELLMAN, RICHARD, Stability Theory of Differential Equations, New York, McGraw-Hill
Book Co., Inc., 1953.

18. SEGAL, S., BERMAN, M., and BLAR, A., The metabolism of variously C1' labeled glucose in
man and an estimation of the extent of glucose metabolism by the hexose monophosphate
pathway. J. Clin. Invest., 1961, 40, 1263.

19. BERMAN, M., and WEIss, M. F., unpublished data.
20. CLYMER, A. B., Direct system synthesis by means of computers, Tr. Am. Inst. Elec.

Eng., 1959, 798.
21. AVIGAN, J., STEINBERG, D., and BERMAN, M., Distribution of labeled cholesterol in animal

tissues, J. Lipid Research, 1962, 3, 216.
22. AYERS, C., DAVIS, J. O., LIEBERMAN, F., CARPENTER, C. C. J., and BERMAN, M., The ef-

fects of chronic hepatic venous congestion on the metabolism of D,L-Aldosterone and
D-Aldosterone. J. Clin. Invest., 1962, 41, 884.

23. TASHJIAN, A. H., JR., and WHEDON, G. D., Citrate kinetics in human bone disease, 46th
Ann. Meeting Fed. Am. Soc. Exp. Biol., 1962, (abstract).

316 BIOPHYSICAL JOURNAL VOLUME 2 1962


