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ABSTRACT The dependences of the steady-state critical concentration and average filament length of actin solutions, on the
filament branching and capping rates, are calculated using a rate methodology based on the total number of actin filaments. The
methodology generalizes calculations of the ‘‘treadmilling’’ actin concentration at which an average filament has net zero growth
rate. The predictions of the rate methodology are validated by comparison with stochastic-growth simulations that track the
positions of all filament subunits over time. For side branching, the critical concentration drops proportionally to the square root
of the branching rate; for end branching the drop is linear. The polymerization response to branching has a maximum as a
function of the capping-protein concentration. The average filament length drops with increasing branching, because the critical
concentration drops. Even small rates of filament uncapping have a large impact on the average filament length in vitro. The
potential significance of these phenomena for cell behavior is evaluated.

INTRODUCTION

The motility of cells, the formation of protrusions such as

filopodia and lamellipodia, and the motions of intracellular

pathogens, are strongly influenced by extracellular or intra-

cellular factors that stimulate actin polymerization (1,2).

One channel by which actin polymerization can be stim-

ulated is the activation of Arp2/3 complex, a seven-subunit

complex of actin-related proteins that can bind to an existing

filament and initiate a new branch at the binding site. The

newly generated filaments have ‘‘barbed’’ and ‘‘pointed’’

ends, with rapid growth taking place at the barbed ends. The

pointed ends are attached to Arp2/3 complex. Arp2/3 com-

plex is constitutively inactive, but can be activated by several

intracellular proteins. The activation path can be direct, as in

the case of the ActA bacterial surface protein, or proceed via

a signaling cascade ending in interactions between Arp2/3

complex and proteins such as those of the Wasp/Scar family

(2,3). Filament growth is limited, and an adequate supply of

free monomers maintained, by the presence of capping

proteins that block the filaments’ barbed ends from assembly

(4). Capping, however, can be suppressed by the presence

of membrane-bound phosphoinositides such as PIP2, which

thus act as polymerization stimulants. Arp2/3 complex also

caps pointed ends (5). At present there is no quantitative

understanding of the extent of polymerization or changes in

filament length caused by Arp2/3-complex-induced branch-

ing. Although there have been numerical modeling studies

of actin polymerization in vitro in the presence of Arp2/3

complex and capping protein (6,7), there is no straightforward

mathematical formula that gives the extent of polymerization

or the filament lengths in terms of the relevant protein con-

centrations, either in vitro or in vivo.

This article takes a first step toward a quantitative under-

standing of the polymerization response to branching by

calculating the critical concentration and average filament

length in a simple model of actin polymerizing in vitro. The

analysis treats steady-state properties, as might be obtained

by allowing a polymerization experiment to run for a long

time. Understanding the steady-state properties is a pre-

requisite for understanding the dynamics, and some of the

phenomena thus elucidated will also be present in the

dynamic behavior of cells. The model includes polymeriza-

tion/depolymerization, branching/debranching, and capping/

uncapping effects. It is based on a simple rate equation ex-

pressing the constancy of the number of filaments in steady

state.Within this framework, balancing filament ‘‘birth’’ rates

from branching and ‘‘death’’ rates from debranching and de-

polymerization fixes the critical concentration, which in turn

determines the average filament length. The filament length

enters the calculation self-consistently because it affects the

filament birth and death rates.

Using this model, we develop formulas for the critical

concentration and average filament length in terms of the

relevant rate parameters. The formulas are backed up by

stochastic growth simulations using rate parameters obtained

from recent fits to kinetic data. This work has three main

goals. First, to obtain a general understanding of branching

polymerization that may be transferable to cellular processes,

and may be used to make predictions that can be exper-

imentally tested. Second, to establish relationships between

the extent of polymerization and filament lengths on one

hand, and rate parameters on the other hand, which can be

used in combination with in vitro experiments to measure

or constrain the rate parameters. Third, to develop key inputs

for mathematical modeling of whole-cell behavior based on

spatially varying concentrations of actin and related proteins,

for example, as applied recently to keratocytes (8); if suchSubmitted February 21, 2005, and accepted for publication April 20, 2005.
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modeling studies incorporate the mechanical properties of the

actin network, the filament length is also an important input.

The organization of the remainder of the article is as

follows. The next section defines the model. Subsequently,

we derive the steady-state relation for the filament number,

calculate the average filament length in terms of the free-

actin concentration, and combine these results to obtain an

analytic expression for the critical concentration. We then

validate the analytic theory by comparing its predictions with

simulation results. Next we discuss the limits of the model

used. Finally, we conclude the article with a discussion of the

potential significance of the results for actin polymerization

in vitro and in vivo.

MODEL

Our model describes the structure of actin in solution with

activated Arp2/3 complex and capping protein, having

concentrations [Arp2/3] and [CP], respectively. A simplified

solution of this model has previously been used to study the

dynamics of actin filament cluster sizes (9). The processes

included in the model are filament polymerization/depoly-

merization, capping/uncapping, and branching/debranching.

Polymerization is described by a net barbed end polymer-

ization rate kBon ¼ kB0 ð½G� � GB
c Þ and a net pointed-end

depolymerization rate kPoff ¼ kP0 ðGP
c � ½G�Þ (measured in

subunits per second), where kB0 and kP0 are concentration-

independent rate parameters, and [G] is the free-monomer

concentration. GB
c is the barbed-end critical concentration, at

which the barbed-end on- and off-rates cancel; GP
c is defined

similarly for the pointed end. Both kBon and kPoff are positive,
because GP

c is known to be larger than GB
c ; and [G] is

between GB
c and GP

c in steady state. Capping is described

by barbed- and pointed-end capping and uncapping rates

kBcap ¼ kBcap; 0½CP�; kBuncap; kPcap ¼ kPcap;0½Arp2=3�; and kPuncap;
where kBcap; 0 and k

P
cap; 0 are rate parameters. The effects of

capping are conveniently summarized by the parameters

hB ¼ kBuncap=ðkBcap1 kBuncapÞ and hP ¼ kPuncap=ðkPcap1 kPuncapÞ;
which give the equilibrium probabilities for the barbed and

pointed ends of a filament, respectively, to be uncapped; the

net steady-state growth and depolymerization rates are then

hBk
B
on and hPk

P
off :

Branching in vitro occurs mainly along filament sides, as

shown by several studies (7,10–12). Therefore, our calcu-

lations focus mainly on side branching, which is described

by a branching rate per filament subunit:

kbr ¼ kbr;0½Arp2=3� ½G� � GB

c

� �2
; (1)

where kbr, 0 is a rate parameter and the power of two is taken

from a recent kinetic analysis (7). Because branching in cells

is often restricted to regions very near the plasma membrane,

we also include calculations for end branching, in which

kbr is the branching rate per filament; it is taken to have the

same functional form as the side branching rate. Debranch-

ing, either spontaneous or induced by actin-severing proteins

such as ADF/cofilin, is described by the average time tdis
required for a branch to dissociate. Initiation of branching

polymerization requires the ‘‘de novo’’ nucleation of at least

one seed filament that does not grow from a preexisting

filament. However, in steady state such nucleation effects are

small in comparison with branching, because their rates are

very low. Therefore, we ignore de novo filament nucleation

processes. Severing, also ignored, is potentially more impor-

tant; this is discussed below under ‘‘Critique of model’’.

Analytic theory of critical concentration and
filament lengths

The extent of polymerization in steady state is determined by

the critical concentration Gc, which is the maximum con-

centration of free actin that can remain unpolymerized in-

definitely. In the absence of rapid filament nucleation, Gc is

nearly equal to the ‘‘treadmilling’’ concentration Gtr at

which polymerization of barbed ends is precisely balanced

by depolymerization of pointed ends, both in their equi-

librium capping states. Balancing these rates at [G] ¼ Gtr,

one obtains

hBk
B

0 Gtr � G
B

c

� �
¼ hPk

P

0 G
P

c � Gtr

� �
; (2)

so that

Gtr ¼
hBk

B

0G
B

c 1hPk
P

0G
P

c

hBk
B

0 1hPk
P

0

: (3)

When [G] ¼ Gtr, the change in a filament’s length over

time is parallel to that of an unbiased random walker moving

in one dimension with an absorbing boundary. The random

walker is unbiased because forward (increasing length) steps

are as likely as backward (decreasing length) steps, and the

absorbing boundary corresponds to filaments disappearing

when they reach a very short length corresponding to the

critical nucleus size. The average displacement for such

a walker, before being absorbed, is infinite (13). Therefore,

in the absence of severing, the steady-state average filament

length will be infinite when [G] ¼ Gtr.

However, in the presence of rapid filament nucleation

caused by branching, the time-averaged capping states of the

filament ends will differ from the equilibrium values. When

a filament is ‘‘born’’, for example, it is capped at the pointed

end and uncapped at the barbed end. If the time for it to reach

the equilibrium capping state is a sizeable fraction of the

filament lifetime, the critical concentration will differ no-

ticeably from Gtr. We account for this effect by balancing

filament creation and destruction rather than polymerization

and depolymerization of single filaments. We envisage the

following filament ‘‘life cycle’’: a daughter filament is

created as a branch on a mother filament. Its barbed end then

becomes capped. Next, the daughter filament dissociates

from the Arp2/3 complex on the mother filament. Finally, it

depolymerizes.
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The steady-state properties implied by this life cycle can

be obtained by writing the time rate of change of the total

number of filaments N as a sum of creation and destruction

terms (9):

dN=dt ¼ kbr�llN � N=ðtdis 1 tdepolÞ; (4)

where �ll is the average number of subunits per filament. The

first term on the right-hand side follows from the definition

of kbr as a branching rate per filament subunit. The second

term states that the destruction of a filament involves first

dissociation from the mother filament, which takes time tdis,

and subsequently depolymerization, which takes time tdepol.

Thus, the steady-state condition for Gc, dN/dt ¼ 0, implies

that

kbr�ll ¼ 1=ðtdis 1 tdepolÞ: (5)

This result uniquely determines Gc. The left-hand side

increases with [G], because kbr increases according to Eq. 1,

and �ll will be enhanced by the increasing on-rate. The right-

hand side decreases with increasing [G], because the

increasing value of �ll and decreasing off-rate cause tdepol to

increase. Therefore, there is only one value of [G] at which

the right- and left-hand sides are equal.

One might ask whether or not this analysis gives a constant

number of subunits in filaments (the total number of poly-

merized subunits), as it must for a system in steady state. In

fact, both the number of subunits in filaments and the num-

ber of filaments are constant. The method underlying the

analysis is the calculation of a steady-state filament length

distribution, in which both of these quantities are constant.

We employ the state-state condition for the number of fila-

ments because it gives the simplest mathematical formu-

lation.

Of the four variables in Eq. 5, the [G]-dependence of kbr
is given by Eq. 1, and tdis is taken to be independent of

[G]. However, the [G]-dependences of �ll and tdepol are more

complex, and are calculated in the next subsection.

Dependence of �II and tdepol on [G]

In the presence of barbed- and pointed-end capping, there are

four species of filaments: uncapped, barbed-end capped,

pointed-end capped, and capped at both ends. A previous

analysis of the filament length distribution of uncapped

filaments (14) showed that this distribution decays expo-

nentially as a function of length, and the average filament

length is inversely proportional to the difference between the

on- and off-rates. Here, we generalize this analysis by cal-

culating �ll with a kinetic model containing transitions be-

tween both different filament lengths and different capping

states. To keep the subsequent calculation of Gc from be-

coming too complicated, we treat only the two barbed-end

capping states explicitly; the pointed end is taken to be in an

average capping state defined by hP, the probability of its

being uncapped.

The two filament populations are FB
uncapðlÞ and FB

capðlÞ;
which describe the numbers of filaments of length l, un-
capped and capped at the barbed end, respectively. The

critical nucleus size of actin is several subunits (15,16), and

in principle only l-values greater than or equal to this critical

size should be included. However, because actin filament

lengths are typically 100 subunits or more, the results are not

changed substantially if l-values down to 1 are allowed; this

simplifies the calculations. At first, we ignore the time tdis
during which the filament is attached to its mother filament.

The rate equations correspond to the flow chart in Fig. 1:

Here hPk
P
off is the average off-rate at a filament pointed

end, and kBon � hPk
P
off is the average net on rate for a filament

whose barbed end is uncapped. By treating only barbed-end

polymerization and pointed-end depolymerization, these

equations ignore fluctuations resulting from cancellation of

polymerization with depolymerization at each end. The very

high affinities of capping proteins (17) imply that in most

cases hB , hP, so [G] will not be too close to GB
c ; this im-

plies that the barbed-end fluctuations will be small. The

dF
B

uncapðlÞ
dt

¼ k
B

on � hPk
P

off

� ��
F

B

uncapðl� 1Þ � F
B

uncapðlÞ
�
1 k

B

uncapF
B

capðlÞ � k
B

capF
B

uncapðlÞ ¼ 0

dF
B

capðlÞ
dt

¼ hPk
P

off

�
F

B

capðl1 1Þ � F
B

capðlÞ
�
1 k

B

capF
B

uncapðlÞ � k
B

uncapF
B

capðlÞ ¼ 0: (6)

FIGURE 1 Schematic of rate equation model for two capping-state

system (Eq. 6). Uncapped filaments ðFB
uncapÞ enter at the point labeled I and

grow at a rate kBon � hPk
P
off ; until they become capped. Capped filaments

ðFB
capÞ shrink at a rate hPk

P
off or become capped. Capping and uncapping

rates are kBcap and kBuncap; respectively.
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pointed-end fluctuations are less important because the

filament length is set during the extension phase, when

barbed-end growth dominates.

The rate equations are difference equations with constant

coefficients. Because there are two first-order equations,

there are two linearly independent solutions. The standard ap-

proach to solving such equations is to search for solutions of

the form

F
B

uncapðlÞ ¼ F
B

uncapð1Þa
l�1

FB

capðlÞ ¼ FB

capð1Þa
l�1
; (7)

where a is a constant. If two distinct values are obtained for

a that lead to solutions of the difference equations, then these

are the only solutions (18). Inserting Eq. 7 into Eq. 6, and

dividing by al�1, gives

k
B

on � hPk
P

off

� �
ð1=a� 1ÞFB

uncapð1Þ1 k
B

uncapF
B

capð1Þ
� k

B

capF
B

uncapð1Þ ¼ 0

hPk
P

offða� 1ÞFB

capð1Þ1 k
B

capF
B

uncapð1Þ � k
B

uncapF
B

capð1Þ ¼ 0: (8)

Because the average filament contains many subunits, the

filament populations will decay slowly with l, which means

that a is close to unity. Therefore, we assume that 1 � a [

d � 1, and thus 1=a ’ 11 d; so that

�
k
B

on � hPk
P

off

� �
d� k

B

cap

�
F

B

uncapð1Þ1 k
B

uncapF
B

capð1Þ ¼ 0

k
B

capF
B

uncapð1Þ �
�
hPk

P

offd1 k
B

uncap

�
F

B

capð1Þ ¼ 0: (9)

This system of equations will have nonzero solutions

for FB
uncapð1Þ and FB

capð1Þ only if the determinant of the

matrix

���� k
B

on � hPk
P

off

� �
d� k

B

cap k
B

uncap

k
B

cap �hPk
P

offd� k
B

uncap

����; (10)

vanishes. The solutions are readily seen to be d ¼ 0 and

d ¼ k
B

cap= k
B

on � hPk
P

off

� �
� k

B

uncap=hPk
P

off : (11)

Because they are distinct, we have found all of the

solutions of the problem. The d ¼ 0 solution is unphysical

because it leads to an infinite number of filaments.

For the average filament length, we then obtain:

�ll0 ¼
+

l
l
�
FB

uncapðlÞ1FB

capðlÞ
�

+
l

�
F

B

uncapðlÞ1F
B

capðlÞ
�

¼
�
F

B

uncapð1Þ1F
B

capð1Þ
�
=ð1� aÞ2�

FB

uncapð1Þ1FB

capð1Þ
�
=ð1� aÞ

¼ 1

d

¼ 1

k
B

cap= k
B

on � hPk
P

off

� �
� k

B

uncap=hPk
P

off

(12)

¼ k
B

on � hPk
P

off

� �
hPk

P

off�
kBcap 1 kBuncap

�
hPk

P

off � hBk
B

on

� � (13)

¼ k
B

on � hPk
P

off

� �
hPk

P

off�
k
B

cap 1 k
B

uncap

�
hPk

P

0 1hBk
B

0

� �
DG

’ k
B

onhPk
P

off

k
B

cap hPk
P

0 1hBk
B

0

� �
DG

¼ G0

DG
; (14)

where �ll0 is the value of �ll for vanishing tdis,

G0 ¼ kBonhPk
P

off=k
B

cap hPk
P

0 1hBk
B

0

� �
; (15)

and DG¼Gtr� [G] is the deviation of [G] fromGtr, which is

caused by branching. The approximations made in the last

equation, ignoring hPk
P
off relative to k

B
on; and k

B
uncap relative to

kBcap; are justified because the high affinity of capping

proteins ensures that kBcap � kBuncap; as mentioned above, Gc is

not too close to GB
c ; which implies that kBon � hPk

P
off . The

1/DG dependence of �ll0 is consistent with the previous result

(14) that �ll0 } 1=ðkPoff � kBonÞ for uncapped filaments, because

kPoff � kBon } DG.
Increasing the branching rate will stimulate polymeriza-

tion, thereby increasing DG and decreasing �ll0. Thus, the
effect of branching on �ll is mediated by its effect on DG,
rather than being direct. Under Discussion, we will show that
�ll0 } 1=½Arp2=3�1=2 for side branching and �ll0 } 1=½Arp2=3�
for end branching, and evaluate the consequences of these

dependences.

The average filament lifetime after debranching, tdepol,

can be obtained from the same rate equations (still taking

tdis ¼ 0). We envisage a flow I of newly created filaments

with free barbed ends entering at the point FB
uncap(1); defining

tdepol by dN/dt ¼ I � N/tdepol, we have tdepol ¼ N/I in the

steady state. Balancing the currents coming in and out of the

entry point FB
uncap(1) (cf. Fig. 1) gives

I1 k
B

uncapF
B

capð1Þ ¼
�
k
B

on � hPk
P

off 1 k
B

cap

�
F

B

uncapð1Þ: (16)

This equation can be solved for FB
uncap(1) by noting that

the ratio FB
capð1Þ=FB

uncap(1) is fixed by the eigenvector of

the matrix (10) corresponding to the nonzero solution for d.

Straightforward calculation shows that this eigenvector

satisfies

FB

capð1Þ ¼ kBon � hPk
P

off

� �
=hPk

P

off

� �
FB

uncapð1Þ: (17)

Thus

F
B

uncapð1Þ ¼
I

kBon � hPk
P

off 1 kBcap � kBuncap kBon � hPk
P

off

� �
=hPk

P

off

;

(18)

so that
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where the last step holds because d � 1. Then

tdepol ’ �ll0 1=hPk
P

off 1 1= k
B

on � hPk
P

off

� �� �
: (20)

Again using the fact that kBon � hPk
P
off in most cases, we

have

tdepol ’ �ll0=hPk
P

off ¼ G0=hPk
P

0 G
P

c � ½G�
� �

DG: (21)

For tdis 6¼ 0, �ll increases by an amount D�ll equal to the

number of subunits that are added to the filament’s barbed

end before it detaches from the mother filament:

�ll ¼ �ll0 1D�ll; (22)

where

D�ll ¼ hBk
B

ontdis; (23)

and tdepol does not change with tdis, because it describes the

lifetime after dissociation.

Self-consistent calculation of Gc

We now solve Eq. 5 using the [G]-dependences derived

above, at first ignoring tdis. We express Gc in terms of DG:
Gc ¼ Gtr � DG. Inserting Eqs. 1, 14, 15, and 21 into Eq. 5

yields

kbr;0½Arp2=3� Gtr � DG� G
B

c

� �2
¼

1=hPk
P

0

� ��
k
B

cap=k
B

0

�2
hPk

P

0 1hBk
B

0

� �2
DG

2

GP

c � Gtr 1DG
� �

Gtr � DG� GB

c

� �2 : (24)

This equation gives rise to a fifth-order polynomial equa-

tion for DG, which can be solved numerically. However, our

main purpose is to obtain an analytic result that can be

readily interpreted. For this reason, we develop a simplified

expression valid for low branching rates, by ignoring DG in

comparison with ðGtr � GB
c Þ and ðGtr � GP

c Þ in the terms

where they appear together. This yields

DG ¼ k
B

0

k
B

cap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbr;0½Arp2=3�hPk

P

0 Gtr � GB

c

� �4
GP

c � Gtr

� �q
hPk

P

0 1hBk
B

0

¼ k
B

on

k
B

cap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbrhPk

P

off

q
hPk

P

0 1hBk
B

0

; (25)

where kbr, k
B
on; and kPoff are evaluated at [G] ¼ Gtr.

The main feature of this result is that DG is proportional

to
ffiffiffiffiffiffi
kbr

p
; and thus to [Arp2/3]1/2 for small [Arp2/3]. This

dependence results from the combination of the �ll0 factor

in the denominator of the left-hand side of Eq. 5, and the

proportionality of tdepol on its right-hand side to �ll0. It is thus
robust to deviations from the assumed [G]-dependence of

kbr. The physical origin of the
ffiffiffiffiffiffi
kbr

p
dependence is as follows.

For the number of filaments to be constant, each filament

must on the average generate one daughter filament before

being depolymerized. A doubling of DG would correspond

to halving the filament length, according to Eq. 14; this

would in turn halve the filament lifetime according to Eq. 21.

Because the number of daughter filaments formed by a given

filament is proportional to its length and its lifetime, a four-

fold increase in kbr would be required to keep this number

constant. The same argument predicts a linear dependence of

DG on kbr for end branching, because the factor of �ll on the

left-hand side of Eq. 5 would be absent.

We now include the effects of nonzero tdis, but assume that

tdis� tdepol. In Eq. 5, tdis appears directly, and also indirectly

through the dependence of �ll (and thus tdepol) on tdis. Including
D�ll (cf. Eq. 22) in Eq. 5, together with Eq. 21, gives

1=kbrð�ll0 1D�llÞ ¼ ð�ll0 1D�llÞ=hPk
P

off 1 tdis: (26)

Using Eq. 14 to express �ll0 in terms of DG, letting kbr and
kPoff take their values for [G] ¼ Gtr, expanding both sides of

Eq. 26 to first order in tdis (recalling that D�ll is linearly

proportional to tdis), and multiplying both sides by DG, we
obtain

DG
2

kbrG0

1� hBk
B

ontdisDG

G0

� �
¼ G0

hPk
P

off

1 11
hBk

B

on

hPk
P

off

� �
tdisDG:

(27)

Solving this equation to first order in tdis, and using

Eq. 15, gives

DG¼ k
B

on

k
B

cap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbrhPk

P

off

q
hPk

P

0 1hBk
B

0

11

ffiffiffiffiffiffiffiffiffiffiffi
kbr

hPk
P

off

s
hBk

B

on1
hPk

P

off

2

� �
tdis

 !
:

(28)

Thus, increasing tdis increases DG, because a filament’s

pointed end remains capped until it dissociates, and this

lowers Gc.

We now analyze the end-branching case briefly. Using

Eq. 21, Eq. 5 with tdis ¼ 0 becomes

kbr ¼hPk
P

off=
�ll0; (29)

where kbr is the branching rate per filament. Following the

same approach as above for small DG, Eq. 25 becomes

N ¼ +
n

�
F

B

uncapðlÞ1F
B

capðlÞ
�
¼
�
F

B

uncapð1Þ1F
B

capð1Þ
�
=ð1� aÞ ¼

�
F

B

uncapð1Þ1F
B

capð1Þ
�
=d

¼ I�ll0k
B

on=hPk
P

off

k
B

on � hPk
P

off 1 k
B

cap � k
B

uncap k
B

on � hPk
P

off

� �
=hPk

P

off

¼ I�ll0k
B

on=hPk
P

off

k
B

on � hPk
P

off

� �
ð11 dÞ

’ I�ll0 1=hPk
P

off 1 1= k
B

on � hPk
P

off

� �� �
; (19)
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DG ¼ k
B

0

k
B

cap

kbr;0½Arp2=3� Gtr � GB

c

� �3
hPk

P

0 1hBk
B

0

� � ¼ k
B

onkbr

k
B

cap hPk
P

0 1hBk
B

0

� �;
(30)

where kbr and kBon are again evaluated at [G] ¼ Gtr. As

expected, DG varies linearly with kbr instead of as
ffiffiffiffiffiffi
kbr

p
; at

small [Arp2/3], this gives DG } [Arp2/3].
Inclusion of a nonzero tdis in a fashion parallel to that for

side branching yields

DG ¼ k
B

onkbr

k
B

cap hPk
P

0 1hBk
B

0

� � 11 11
hBk

B

on

hPk
P

off

� �
kbrtdis

� �
: (31)

Comparison of analytic theory with
stochastic-simulation results for side branching

The stochastic simulations use a methodology used pre-

viously to treat actin filament clusters in solution (9). The

coordinates of all filament subunits are stored over time.

Isolated filaments nucleate slowly in random directions at

random points in space, and subsequent growth, depolymer-

ization, capping, uncapping, branching, and debranching

events are treated stochastically. New branches appear on

randomly chosen filament subunits, at an angle of 70� to the

mother filament (although in bulk polymerization the branch

geometry does not affect the filament length or critical

concentration). Interactions between subunits on distinct

filaments, corresponding to steric exclusion, are ignored

because of the low volume fraction of actin at typical in vitro

concentrations. Polymerization removes free monomers

from solution, and depolymerization replaces them. The

simulations treat cubic regions of edge length 5 mm,

containing up to ;150,000 actin monomers. The rate

parameters are obtained from previous kinetic fits (7), and

are given in Table 1.

To evaluate Gc, one could gradually ramp up the total

actin concentration (the free-actin concentration at the

beginning of the simulations) until polymerization begins.

However, this procedure gives a very slow convergence of

the concentration to Gc, and also gives noisy �ll results,

because of the small number of filaments present. For this

reason, we instead treat a system of 2 mM total actin, in

which [CP] and [Arp2/3] have values scaled up by a factor of

100, and their corresponding on-rates kBcap and k
P
cap are scaled

down by a factor of 100. This results in a ‘‘linearized’’

calculation, in which [CP] and [Arp2/3] are effectively

constant during the polymerization runs despite most of the

actin being polymerized. Gc and �ll are then obtained as time

averages over the last half of each run, and the runs are taken

long enough that both properties have stabilized at that point.

Additional statistical averaging is performed by repeating

each run 10 times, with different starting seeds for the

random-number generator. This leads to statistical uncer-

tainties of ;0.002 mM in Gc and 2% in �ll. This procedure

gives the same Gc and �ll results as the ramping-up procedure,

but is more computationally convenient.

Figs. 2 and 3 show the dependence of Gc on [Arp2/3] for

[CP] ¼ 2 nM. Because kPcap;0 is not precisely known, we

perform runs for both kPcap;0 ¼ 0 and the value from Table 1,

which is plausible but not quantitatively accurate. The results

for kPcap;0 ¼ 0 (Fig. 2) are shown for both instantaneous

debranching (solid circles) and an in vitro debranching rate

of 0.0018 s�1 (open circles) derived (7) from fitting

microscopy data for debranching (19). For both cases, the

agreement between the analytic result of Eq. 28 and the

numerical results is excellent. The full numerical solution of

Eq. 24 (dotted lines) gives still closer agreement with the

simulations. Fig. 3 shows corresponding results using kPcap;0
from Table 1; the dashed line denotes Gtr. Again, the results

for small [Arp2/3] are quite accurate. At larger [Arp2/3], DG
(the difference between the dashed line and the simulation

points) is overestimated by ;40%, because the decrease in

kbr due to decreasing [G] is not included in our approximate

solution of Eq. 24.

Figs. 4 and 5 compare the analytic theory with simulation

results for the dependence of �ll0 on [Arp2/3], again using

kPcap;0 ¼ 0 as well as the value from Table 1. To correspond

as closely as possible to an experiment in which Gc is

TABLE 1 Parameter values

Parameter Value Source

GB
c 0.07 mM (7)

GP
c 0.69 mM (7)

kB0 8.7 mM�1s�1 (25)

kP0 1.3 mM�1s�1 (26)

kBcap;0 8.0 mM�1s�1 (7)

kPcap;0 0.80 mM�1s�1 (7)

kBuncap 4.2 3 10�4 s�1 (7)

kPuncap 0.0018 s�1 (7)

kbr,0 5.4 3 10�4 mM�3s�1 (7)

FIGURE 2 Effect of increasing Arp2/3 complex concentration [Arp2/3]

on critical concentration Gc of actin solution. Capping protein concentration

[CP] ¼ 2 nM. Pointed-end capping effects are ignored. (d) Simulation

results for tdis ¼ 0. (s) Simulation results for tdis ¼ 0.177 s�1. (Solid lines)

Analytic theory (Eq. 28) for tdis ¼ 0 and tdis ¼ 0.177 s�1, respectively.

(Dotted lines) Numerical solution of Eq. 28 for tdis¼ 0 and tdis¼ 0.177 s�1.
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measured, at each value of [Arp2/3] we use the simulation

value of Gc when calculating the on and off rates entering �ll0.
It is seen that the agreement between the theory and

simulations is close for both values of kPcap;0; with errors of

,25%. The squares in Figs. 4 and 5 give the values of �ll0 that
are obtained in the absence of uncapping effects. The

significance of the uncapping effects for filament lengths is

treated more fully under Discussion.

Critique of model

Here, we discuss the significance of the main approximations

made in our model, namely the neglect of filament severing

and the possibility that kbr, 0 decays over time as filaments age.

Severing

Severing is closely analogous to side branching, in that new

filaments are generated from an existing filament at a rate

proportional to the filaments’ length; the rates are thus both

defined per filament subunit per second. The spontaneous

severing rate is believed to be ;1028 s21 (20). A rough

estimate of the relative importance of severing can be

obtained by evaluating the value of [Arp2/3] at which the

severing rate equals the value of kbr. If we take a typical value
of [G] to be 0.4 mM, roughly halfway between GB

c and GP
c ;

straightforward calculations based on Eq. 1 and the rate

constant in Table 1 show that [Arp2/3] 5 0.17 nM when

kbr 5 1028 s21. On the scale of Figs. 2–5, this value is

essentially at the origin. Therefore, spontaneous severing

may safely be ignored. However, several actin-binding

proteins, such as ADF/cofilin, are known to accelerate

filament severing. Their effects will be significant if the rate

of generation of new filaments by severing is comparable to

that from branching. In cells, the severing rate is probably

less than the branching rate at the cell membrane. If it were

not, filaments would sever in the time it takes them to move

a branch spacing, and the cortical actin network would

contain only one layer of branches; observed cortical actin

networks contain many layers. Thus, the effects of severing

should not greatly affect our subsequent discussion of

branching at membranes.

Nonuniformity of branch distribution

Recent real-time fluorescence-microscopy studies of branch-

ing (10,11) have shown that although branches can occur

everywhere along a filament, they are more frequent near the

barbed end. To account for this, a modification of the side-

branching model, in which the capacity of filament subunits

to form new side branches diminishes as filaments age, has

been proposed (10,11). This suggestion has been supported

by an analysis of polymerization data by kinetic simulations

(7), which gave an aging time of;110 s. We have not found

a simple way of including this effect in our analytic theory.

FIGURE 3 Effect of increasing [Arp2/3] on critical concentration of actin

solution with pointed-end capping. [CP] ¼ 2 nM. (d) Simulation results.

(Solid line) Analytic theory (Eq. 28) for tdis ¼ 0. (Dashed line) Treadmilling

concentration Gtr.

FIGURE 4 Effect of increasing [Arp2/3] on average filament length of

actin solutions without pointed-end capping. (d) Simulation results. (s)

Analytic theory (Eq. 13) using critical concentrations obtained from simu-

lations. (h) Average filament length lcap (Eq. 37) in absence of uncapping.

FIGURE 5 Effect of increasing [Arp2/3] on average filament length of

actin solutions, with pointed-end capping. (d) Simulation results. (s) Ana-

lytic theory (Eq. 13) using critical concentrations obtained from simulations.

(h) Average filament length lcap (Eq. 37) in absence of uncapping.
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However, we have performed a few simulation runs using

a parameter set in which kbr,0 decays with filament age, and

a correspondingly larger starting value of kbr,0 is used to

compensate for the reduced branching of older filaments.

The calculated Gc values are within 0.02 mM of those ob-

tained without aging. This suggests that increasing the

starting kbr,0 accounts fairly accurately for the effects of

aging in vitro. If branching were highly localized near the

barbed end, terms treating the interaction of Arp2/3 complex

and capping protein would be needed in the model.

However, the real-time branching studies do not provide

evidence for such a high degree of localization.

In cells, aging at the in vitro rate would not affect

branching significantly, because filament subunits branch

mainly when they are in close proximity to the cell mem-

brane. At typical intracellular on-rates (21), a subunit will

remain in such close proximity for ,1 s, much less than the

in vitro aging time. However, if aging is greatly accelerated

by actin-binding proteins such as ADF/cofilin, the effects

could be important.

We also note that the calculation of the filament length at

a given value of [G] is not affected by the aging, because the

length depends only on the on- and off-rates.

DISCUSSION

The main results of our analysis are Eqs. 14, 28, and 31. Here

we use these results to propose experiments to validate the

model treated here, to develop hypotheses regarding actin

polymerization in cells, and to design in vitro experiments

that shed light on the branching process and allow the mea-

surement of key parameters.

Validation of model

Direct validation of the model, for example, by measuring

the extent of polymerization as a function of [Arp2/3], is

difficult because of the dual functions of Arp2/3 complex in

capping pointed ends and generating new branches, and also

because of uncertainties in several key rate parameters.

However, the dependence of �ll on [Arp2/3] and [CP], for

large [CP], can be obtained in a form simple enough to be

tested by biochemical measurements. Our calculations show

that the criterion of large [CP] is fulfilled if [CP]. 2 nM and

[CP] . 4[Arp2/3]. Under these conditions, hB and thus D�ll
(cf. Eq. 23) are small, so we take �ll5�ll0. Combining Eqs. 14,

15, and 25, we then obtain

�ll5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hPk

P

off=kbr

q
: (32)

To calculate kPoff ; we note that according to Eq.3, GP
c2

Gtr5ðGP
c2GB

c ÞhBk
B
0 =ðhBk

B
01hPk

P
0 Þ; if [CP] is large,

hB ’ kBuncap=k
B
cap;0½CP� and the hBk

B
0 term in the denomina-

tor can be ignored, so hPk
P
off5hPk

P
0 ðGP

c2GtrÞ ’
ðGP

c2GB
c ÞkB0 kBuncap=kBcap;0½CP�. To calculate kbr, we note that

for large [CP], Gtr is close toG
P
c ; and we thus take ½G�5GP

c in

Eq. 1. Inserting these results into Eq. 32, we obtain

�ll5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
B

0 k
B

uncap

k
B

cap;0kbr;0 G
P

c2G
B

c

� �
½Arp2=3�½CP�

s
: (33)

This result has a simple dependence on [Arp2/3] and [CP].

Although the values of the rate parameters entering Eq. 33

are uncertain, the form of this dependence can be compared

directly with experiment. For example, if both [Arp2/3] and

[CP] are doubled, the measured filament length should

decrease by 50%. If either one or the other is doubled, the

length should decrease by 30%.

Effect of [CP] on response to Arp2/3 activation

The strength of the response of an actin solution or cell to

Arp2/3 complex activation depends on [CP] in a way that

can be estimated from the above results. Considering first the

effect of pointed-end capping, the response of the cell

(assuming that Arp2/3 complex activation enhances pointed-

end capping) can be described by the function dGtr/dhP. This

quantity is positive, because an increase in hP will lead to

depolymerization and thus increased Gtr. Using Eq. 3 shows

that

dGtr

dhP

5
kB0 k

P

0hB GP

c2GB

c

� �
hPk

P

01hBk
B

0

� �2 : (34)

This function has a maximum at hB 5 hPk
P
0=k

B
0 ; because

hB 5 kBuncap=ðkBcap;0½CP�1kBuncapÞ; this corresponds to an op-

timal value of [CP]. To understand the origin of this effect, we

note that for very large values of [CP], capping pointed ends

causes little incremental polymerization because there are few

free barbed ends. For very small values of [CP], somuch of the

actin is already polymerized that capping pointed ends has

little further effect.

The response to branching along filament sides in vitro

behaves similarly. For small values of [Arp2/3], using the

proportionalities ðGtr2GB
c Þ} 1=ðhPk

P
0=k

B
01hBÞ and ðGP

c2

GtrÞ}hB=ðhPk
P
0=k

B
01hBÞ in Eq. 28 yields DG}ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Arp2=3�
p

hB
3=2=ðhPk

P
0=k

B
01hBÞ

7=2ð12hBÞ; taking hB � 1

in view of the high [CP] binding affinity gives

DG}
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Arp2=3�

p
h

3=2

B = hPk
P

0=k
B

01hB

� �7=2
; (35)

which has a maximum at hB53hPk
P
0=4k

B
0 : This phenomenon

is illustrated in Fig. 6, which shows the change in the

polymerized-actin concentration (the opposite of the change

inGc) induced in our side-branching model with pointed-end

capping by 0.005 mMArp2/3 complex, as a function of [CP].

The well-defined maximum at [CP] 5 0.0008 mM is con-

sistent with the above expectations. Thus, the response of an

actin solution to Arp2/3 complex activation is strongest at an

optimal value of [CP].
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This phenomenon should also occur in cells. The

stimulation received by a cell is not constant over time.

But the characteristic timescale of the polymerization-

depolymerization processes is probably not much greater

than the filament lifetime tdis 1 tdepol, which turnover

measurements (22) suggest to be ;20 s. If a stimulus is

applied for this length of time or longer, our steady-state

analysis may be relevant. New branch formation occurs

mainly near filament ends at the cell membrane. Thus, the

end branching analysis is appropriate. Eq. 31 yields, in

analogy with Eq. 35,

DG} ½Arp2=3�hB= hPk
P

0=k
B

01hB

� �4
: (36)

This has a maximum at hB5hPk
P
0=3k

B
0 :When the pointed-

end capping effect is added to branching, we expect the

optimal value of hB;h
opt
B ; to be between the values obtained

for branching and pointed-end capping: 1/3 , h
opt
B kB0 =hPk

P
0

, 1; using kB0 and kP0 from Table 1 gives 0.05 ,

h
opt
B =hP , 0:15: To compare this prediction with cellular

values of hB andhP; we note that the capping and uncapping
rate parameters in Table 1 give binding affinities of 2 nM for

Arp2/3 complex at pointed ends, and 0.05 nM for CP at

barbed ends. If we assume that [CP] is a few times smaller

than [Arp2/3] in cells (21), we obtain hB ’ 0:1hP; consistent
with the above range. Thus, it is possible that the values of

[CP] in cells are influenced by their need to respond strongly

to Arp2/3 complex stimulation.

The existence of an optimal [CP] value for response to

branching stimulation may be related to measurements of the

motion of Listeria bacteria in pure-protein media (23). These

bacteria are partly coated with the ActA protein, which

stimulates actin filament branching by activating Arp2/3

complex. The measurements show a velocity maximum as

a function of [CP]. Insofar as the motion of the bacterium

involves a polymerization response to the branching

stimulus provided by activating Arp2/3 complex, the

maximum of our calculated polymerization response to

Arp2/3 complex activation could be connected with the

maximum of the Listeria velocity. Because these experi-

ments used solutions containing ADF/cofilin, we are not able

to estimate the optimal value of [CP] for their conditions.

The magnitude of DG at cell membranes

The value of kbr to use when applying Eq. 31 to cells is not

known. However, the formation of branches roughly every

20 subunits in typical lamellipodial networks (24) suggests

that kbr=k
B
on ’ 1=20. Concentration estimates available for

cells (21) suggest that [G] ’ 100 mM and [CP] ’ 1 mM.

Using the rate parameters in Table 1, we ob-

tain kBon ’ 100 mM 3 8:7 mM21s21 ’ 1000 s21 and

kBcap51 mM 3 8:0 mM21s21 ’ 10 s21. A lower bound

for DG is obtained if we take hB 5 1. In the absence of tdis,

Eq. 31 then yields DG ’ 20 mM; inclusion of the tdis term

and a more realistic value of hB would further increase DG.
The value 20 mM is too large for this theory to accurately

predict, but the calculation shows that the effect of branching

on Gc is very large. Thus, the branching in the immediate

vicinity of the membrane leads to a much lower critical

concentration than in the cell interior.

End versus side branching in vitro

The dependence of the filament length on [Arp2/3] provides

a direct comparison between the predictions of end and side

branching. For side branching, combining Eqs. 14, 22, and

28 shows that for sufficiently small [Arp2/3] (where the tdis
terms in Eqs. 22 and 28 are small by comparison with the

other terms), �ll} 1=½Arp2=3�1=2. A similar argument shows

that �ll} 1=½Arp2=3� for end branching. Measurements of the

dependence of �ll on [Arp2/3] could thus provide useful

information with regard to the geometry of new branch

formation, supplementing existing analysis based on poly-

merization kinetics and direct observation of branch

formation.

Effect of uncapping on filament lengths

In the absence of barbed-end uncapping effects

(kBuncap5hB50Þ; Eq. 13 reduces to

�ll0 ’ k
B

on=k
B

cap [ lcap; (37)

where we ignore the hPk
P
off term in comparison with kBon. This

is the relation resulting from a simple picture in which

a filament grows until it is capped, and then depolymerizes.

Dividing the numerator and denominator of Eq. 13 by hPk
P
off

gives

�ll0 ’ lcap= 12hBk
B

on=hPk
P

off

� �
; (38)

FIGURE 6 Effect of [CP] on response of Gc to [Arp2/3], defined as

Gc([Arp2/3] ¼ 0) � Gc([Arp2/3] ¼ 0.005 mM). Pointed-end capping is

included.
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so that the denominator captures the corrections from uncap-

ping effects. Figs. 4 and 5 compare �ll0 with lcap, and show that

even for the rate of only 0.0004 s21 used here, uncapping can

increase �ll0 under in vitro conditions by a factor of three or

more. The increase in �ll0 results from intermittent uncapping

of filaments, which has been observed in fluorescence

microscopy studies of filament growth in vitro (5). The

effect on filament lengths seen in these experiments was

smaller than that predicted here, probably because the

timescale of the experiments was too short for steady state to

be reached.

We do not have enough information about rate parameters

to evaluate the extent of the uncapping corrections in vivo.

However, we can estimate the critical value of kBuncap required
to cause a substantial increase in �ll0; which from Eq. 38

(taking hB � 1) is kB;crituncap5kBcaphPk
P
off=k

B
on: The values of hP

and kPoff in the cellular environment are not known. However,

Eq. 21 implies that kB;crituncap5kBcap
�ll= tdepolk

B
on: Typical filament

lengths in branched networks near cell membranes are a few

tenths of a micron, which corresponds to �ll ’ 100; as

mentioned above, the filament lifetime is ;20 s, which

implies that tdepol, 20 s. Thus, using the above values of kBon
and kBcap; we obtain kB;crituncap . 0:05 s21: This is much faster

than the spontaneous uncapping rate of 0.0004 s21 given

above, consistent with the general expectation that sponta-

neous uncapping is unimportant in cells. However, cell

membranes contain uncapping agents, such PIP2, which

might uncap at such high rates.

Evaluation of filament end binding properties from
measured filament lengths

Equations 22 and 38 show that the filament length is

determined by the on- and off-rate parameters, the ‘‘open’’

fractions hB and hP, and tdis. For small [Arp2/3], DG is

small, so that �ll0 � D�ll; and one can take �ll5�ll0. The rate

parameters entering Eq. 38 are known. Therefore, measure-

ments of �ll could be used to determine the ratio hB=hP in

vitro. Rough estimates of hB exist, and these could be used to

determine hP, and thus give a new way to evaluate the

binding affinity of Arp2/3 complex to pointed ends. With the

ratio hB=hP established, one can also evaluate Gtr from Eq.

3, which will be useful below.

Evaluation of branching rate parameter from
measured DG

With Gtr determined as above, DG can be obtained from

measured values of Gc. If [Arp2/3] is sufficiently small, then

hP in Eq. 28 can be replaced by unity, and the tdis term can

be ignored. Further, hB can be obtained from the above-

described measurement of hB=hP; so all of the terms

entering DG are known except for kbr,0. Therefore, this

parameter could be evaluated from the measured DG.
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