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ABSTRACT Titin is the main determinant of passive muscle force. Physiological extension of titin derives largely from its PEVK
(Pro-Glu-Val-Lys) domain, which has a different length in different muscle types. Here we characterized the elasticity of the full-
length, human soleus PEVK domain by mechanically manipulating its contiguous, recombinant subdomain segments: an
N-terminal (PEVKI), a middle (PEVKII), and a C-terminal (PEVKIII) one third. Measurement of the apparent persistence lengths
revealed a hierarchical arrangement according to local flexibility: theN-terminal PEVKI is themost rigid and theC-terminal PEVKIII
is the most flexible segment within the domain. Immunoelectron microscopy supported the hierarchical extensibility within the
PEVK domain. The effective persistence lengths decreased as a function of ionic strength, as predicted by the Odijk-Skolnick-
Fixmanmodel of polyelectrolyte chains. The ionic strength dependenceof persistence lengthwassimilar in all segments, indicating
that the residual differences in the elasticity of the segments derive from nonelectrostatic mechanisms.

INTRODUCTION

One of the main determinants of muscle elasticity is the

filamentous intrasarcomeric protein titin ((1); also called

connectin (2)), a 3.0–3.7 MDa protein (for recent reviews,

see Tskhovrebova and Trinick, 2003 (3), Granzier and

Labeit, 2004 (4), and Miller et al., 2004 (5)) that spans the

half sarcomere. Titin is anchored to the Z- and M-lines and is

attached to the thick filaments of the A-band (6). The I-band

section of the molecule is constructed of serially linked im-

munoglobulin (Ig)-like domains (proximal and distal tandem

Ig regions) interspersed with unique sequences including

a proline (P)-, glutamate (E)-, valine (V)-, and lysine (K)-rich

PEVK domain (7). Upon stretching the sarcomere, passive

force is generated by the extension of the I-band segment of

titin. The extension of titin’s I-band section occurs as a series

of consecutive events (8): the extension of the tandem Ig

segment is followed by the extension of the PEVK domain

(9,10) and by the N2-B unique sequence in cardiac muscle

(11,12). In different muscle types, different length isoforms

of titin are expressed (7,13). Cardiac muscle contains the

shortest titin isoform (N2-B) with a ;180-residue-long

PEVK domain (7,13). By contrast, in soleus muscle the

PEVK segment is 2174 residues long (7,13).

The PEVK domain of titin has been suggested to acquire

a random structure due to the preponderance of prolines and

charged residues (7). Indeed, early immunoelectron micro-

scopic analysis has shown that the PEVK domain probably

behaves as a quasi-unfolded, random protein chain (10).

Recent structural experiments have suggested that the PEVK

domain may also contain left-handed polyproline helices

(14). Furthermore, a repetitive motif structure of PEVK has

been demonstrated based on sequence analysis (15). Two

main motifs were identified in the PEVK sequence: a),

PPAK motifs (or PEVK repeats (16)), and b), polyE motifs.

PPAK motifs are ;28-residue-long sequences which begin

most often with the amino acids PPAK. PolyE motifs contain

a preponderance of glutamate. Based on NMR and circular

dichroism spectroscopic data, Ma and Wang recently sug-

gested that the PEVK domain has a malleable structure

which is capable of transition between various conforma-

tional states: polyproline helix, b-turn, and unordered coil

(17). However, whether and how the local motif structure

influences local elasticity remained unresolved.

In this work, we explored the mechanical property along

skeletal PEVK by applying a multifaceted approach: het-

erologous expression of various skeletal PEVK segments,

single-molecule force spectroscopy experiments, and im-

munoelectron microscopy (IEM). We find that the PEVK

domain displays a spatially hierarchical arrangement of local

elasticity: the N-terminal region is the most rigid and the

C-terminal region is the most flexible.

MATERIALS AND METHODS

Cloning, expression, and purification of human
skeletal PEVK

The human skeletal-muscle cDNA library was a generous gift of Dr.

Siegfried Labeit. The entire skeletal PEVK domain (largest, m. soleus

isoform) was expressed in three contiguous segments (18), each corre-

sponding to ;1/3 (;700 residues) of the PEVK length: N-terminal

(PEVKI), middle (PEVKII), and C-terminal (PEVKIII). The nucleotide

sequence boundaries of the PEVK segments, based on GenBank accession

No. X90569 (version X90569.1; Labeit and Kolmerer (7)) are as follows:

PEVKI 16852-19074 (AA: 5618-6358), PEVKII 19075-21192 (AA: 6359-

7064), and PEVKIII 21193-23373 (AA: 7065-7791). The arrangement of

PEVK segments along skeletal PEVK is shown in Fig. 1 a. Each of the

segments was cloned into pET-28a vector (Novagen, Darmstadt, Germany)
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between NheI and XhoI sites introduced independently with polymerase

chain reaction (PCR) by using specific oligonucleotides. To the C-terminus

of the recombinant proteins, two vicinal cysteins were added for subsequent

single-molecule manipulation. Proteins were expressed in Escherichia coli
(BL21(DE3)pLysS). His6-tagged (on N-terminus) proteins were purified on

Ni21-NTA columns under native conditions following manufacturer’s

instructions (Qiagen, Hilden, Germany) and further purified on a Sephadex

G-25 column (Sigma-Aldrich, St. Louis, MO). The His6-tag was sub-

sequently used for capturing the PEVK segment’s end specifically. The

electrophoretogram of the purified PEVK segments is shown in Fig. 1 b. As

evidenced by the gel profile, the protein samples were of high purity and

devoid of degradation products.

Preparation of chemically modified glass slides
for single-molecule manipulation

For specific handling of the N-terminal, His6-tagged end of the PEVK seg-

ments we used glass slides covered with Ni-NTA (19). Briefly, microscope

slides (J. Melvin Freed Brand, Sigma-Aldrich) were cleaned by sonication in

ethanol and then in acetone for 20 min and by a subsequent incubation for 20

min in concentrated HNO3 and then in 6N KOH. Between each step, the

slides were rinsed three times with MilliQ water (0.2 mm filtered, .18.2

Mohm 3 cm). Before further use, the slides were dried in a stream of clean

N2 gas. For chemical activation, the slides were first incubated for 12 h in

toluene vapor containing 2% Glymo (3-glycidiloxypropyl-trimethoxisylane;

Sigma-Aldrich), then washed with distilled water and dried. Second, the

glymo-covered slides were incubated in 0.01MNa2CO3 (pH 10), containing

2% (wt/vol) N-(5-amino 1-carboxypenthyl)-iminodiacetic acid (NTA;

Dojindo, Tokyo, Japan) for 16 h at 60�C, then washed with distillated

water and dried. For activation with Ni, the slides were incubated in assay

buffer (AB) buffer (25 mM imidazole-HCl, pH 7.4, 0.2 M KCl, 4 mM

MgCl2, 1 mM EGTA, 0.01% NaN3, 1 mM DL-Dithiothreitol, 20 mg/ml

leupeptin, 10 mM E-64) containing 10 mM NiCl2 and 5 mM glycine (pH

8.0) for 2 h at room temperature. The slides were washed and stored in

distilled water until further use.

Single-molecule force spectroscopy

PEVK segments, held specifically at their ends via genetically engineered

His6-tag and vicinal-cysteine handles, were mechanically stretched by using

an atomic force microscope (AFM) dedicated for molecular manipulation

(MFP1D; Asylum Research, Santa Barbara, CA). The AFMwas mounted on

a custom-built, low-profile inverted light microscope. PEVK segments,

diluted in AB buffer were allowed to bind to the tip of a gold-coated AFM

cantilever (Bio-lever; Olympus, Tokyo, Japan) for 10 min. To avoid

aggregation, the buffer contained 0.2% Tween-20. Unbound molecules were

washed away with AB buffer. The PEVK-coated cantilever was brought

gently near the Ni-NTA-coated glass slide. The cantilever approach to the

surface was monitored by following the amplitude of the thermally driven

cantilever oscillation. Once a contact, via the PEVK segment, was made

between the surface and the tip, the cantilever was pulled away from the

surface at a constant rate (;500 nm/s typical cantilever base velocity) to

stretch the captured molecule. Previously, the elasticity of the cardiac PEVK

was measured (20) by mechanically manipulating a recombinant polyprotein

composed of tandemly arranged titin I27 (7) and PEVK domains. Although

the polyprotein approach is often considered superior to the direct

manipulation of individual molecules (21), identical results were obtained

with these two methods in a recent work on a skeletal PEVK fragment (22).

Considering the added difficulties in expressing a polyprotein containing

modules as large as the PEVK segments studied here, in this work we

preferred the direct manipulation of individual molecules. To ensure that

only single strands were considered in our analysis, we employed the

following experimental strategies: a), protein concentration was kept low

(10–100 mg/ml) during incubation on the gold-coated cantilever tip, b),

0.2% Tween-20 was added in the buffer to reduce aggregation and

nonspecific surface-protein interaction, c), data displaying sudden force

drops back to the baseline were omitted, and d) only data that displayed the

expected contour length in repeated mechanical cycles were considered.

Force versus displacement curves were collected in repeated stretch and

release cycles. Force was obtained from the bending and the stiffness of the

cantilever. Cantilever stiffness (k) was obtained by calibration with the

thermal method (23). Typical cantilever stiffness was ;6 pN/nm. The force

versus displacement curves were corrected for several factors to obtain

force versus molecular end-to-end length (24): 1), the zero-length, zero-force

data point was obtained from the force response that corresponded to the

cantilever tip reaching (or departing from) the substrate surface; 2), forces

(F) were corrected for baseline slope obtained from the force response of the

displaced but unloaded cantilever; and 3), the end-to-end length (z) of the

tethered molecule was calculated by correcting the cantilever base dis-

placement (s) with cantilever bending as

z ¼ s� F

k
: (1)

Analysis of force data

Force data were compared with the wormlike chain (WLC) equation (25,26)

FLP

kBT
¼ z

LC

1
1

4ð1� z=LCÞ2
� 1

4
; (2)

where LP and LC are the effective persistence length and the contour length

of the tethered molecule, respectively. The experimental curves were fitted

with the WLC equation by using a nonlinear least squares fit (Marquardt-

Levenberg). Nonspecifically captured short tethers were excluded from the

analysis based on a comparison of Lc with the contour length predicted from

sequence. Typical force range for the WLC fit was 0–50 pN.

IEM

IEM methods were published earlier (10,27–29). Briefly, skinned fibers

were stretched, held at fixed length (as above), then, after a predetermined

hold period, they were fixed for 20 min by replacing the relaxing solution

with freshly prepared 3% para-formaldehyde in PBS (phosphate-buffered

saline). Fibers were then washed, blocked with BSA (bovine serum

albumin), and washed and incubated for ;24 h with anti-titin antibodies in

PBS/BSA. The following antibodies were used (see also Fig. 5 a): anti-I2/I3

FIGURE 1 (a) Motif layout of the skeletal-muscle titin PEVK domain

(15). White rectangles refer to PPAK motifs and shaded ones to polyE

motifs. The boundaries of the PEVK segments expressed and studied in this

work are indicated by lines with arrows on both ends. (b) SDS-PAGE pattern

of the expressed and purified PEVK segments and fragments. Lanes (a)
molecular weight standard, (b) PEVKI, (c) PEVKII, and (d) PEVKIII.
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(T12), anti-I80/I81 (N2A), anti-C-terminal PEVK residues (4596–4606 of

human cardiac titin; 514), and anti-I111/I112 (Ti-102). For additional

information on T12, see Fürst et al., 1988 (6) and Sebestyen et al., 1995 (30);

for 514 and Ti-102, see Trombitás et al., 1998 (10); and for all other anti-

bodies, see Bang et al. (16). Fibers were then washed, labeled with

secondary antibody, washed, fixed with glutaraldehyde/tannic acid, stained

with OsO4, and embedded in araldite. Ultrathin sections were stained with

potassium permanganate and lead citrate and observed with a JEOL 1200

electron microscope (JEOL, Tokyo, Japan). Mid-Z-line to midepitope

distances were measured from electron micrographs after high-resolution

scanning and digital image processing using custom-written macros for the

image analysis program NIH image (v. 1.6, Wayne Rasband, National

Institutes of Health). For spatial calibration, the electron microscope’s

magnification was used.

Theory and calculations

Considering that the PEVK domain contains charged residues and therefore

behaves as a polyelectrolyte chain, its effective persistence length (LP)
is influenced by electrostatic interactions between the chain-associated

charges. Accordingly, based on the Odijk-Skolnick-Fixman (OSF) theory

(31), like charge interactions tend to increase LP by limiting the thermally

driven bending motions. LP is the sum of a purely elastic (L0) and an elec-

trostatic (Le) term

LP ¼ L0 1 Le: (3)

The electrostatic term (Le) is given by

Le ¼ lBk
�2
t
2
=4; (4)

where lB is the Bjerrum length (distance at which the charges have an

interaction energy equivalent to the thermal energy, kBT; lB ¼ 0.7 nm in

water at room temperature), t is line charge density (inverse of mean inter-

charge distance along the chain), and k�1 is the Debye screening length:

k
�1 ¼ ð4plBIÞ�1=2

; (5)

where I is ionic strength of the solution. To obtain L0 and t, the LP versus

k�1 data were fitted with Eq. 4. t was also estimated for the stretched limit

by calculating the glutamate-glutamate and lysine-lysine mean nearest

neighbor distances (dr) along the PEVK sequence as

dr ¼ Nrsr; (6)

where Nr is the distance between nearest neighbors of corresponding

glutamates or lysines along the sequence expressed in number of residues,

and sr is residue spacing (0.38 nm (32)). The relative fractional extension of

the tandem Ig region and the PEVKI, PEVKII, and PEVKIII segments were

calculated based on the principle of equivalence of forces within a serially

linked mechanical system derived from the WLC equation (Eq. 2):

ExtP
AP

1
1

4APð1� ExtPÞ2
1

1

4AP

¼ ExtIg
AIg

1
1

4AIgð1� ExtIgÞ2
1

1

4AIg

; (7)

where ExtP and ExtIg are the fractional extensions, and Ap and AIg are the

persistence lengths of the given PEVK segment and the tandem Ig region,

respectively. For the persistence length of the tandem Ig region, we used

15 nm (33). The length of a simulated relaxed sarcomere (SL) was calcu-

lated from the relative end-to-end distances of the various titin regions as

SL ¼ 2T121 2ExtIgLIg 1 2ExtPILPI 1 2ExtPIILPII

1 2ExtPIIILPIII 1A; (8)

where T12 is the inextensible Z-line to T12 epitope distance (0.1 mm (34)),

A is the A-band width (1.6 mm), and Ext and L are the fractional extension

and contour length of the respective regions (Ig ¼ tandem Ig, P1 ¼ PEVKI

segment, PII ¼ PEVKII segment, and PIII ¼ PEVKIII segment). The

contour length of the tandem Ig region (combined proximal and distal

tandem Ig regions) was 0.465 mm (93 Ig domains3 5 nm domain spacing).

The contour lengths of the PEVK segments were calculated from their se-

quence (PEVKI¼ 0.281mm,PEVKII¼0.268mm,andPEVKIII¼0.276mm).

RESULTS

Regional elasticity within the PEVK domain of the largest,

soleus isoform of titin was explored by mechanically manip-

ulating its recombinant subsegments (PEVKI, II, and III)

using single-molecule force spectroscopy (Fig. 2 a). Repre-
sentative force versus extension curves of the PEVK seg-

ments, measured at a stretch rate of;500 nm/s, are shown in

Fig. 2, b–d. The force data obtained during the stretch (blue)
and release (red) phase of the mechanical cycle overlapped

for a wide range (100–1000 nm/s) of stretch rate (except for

the initial part of stretch where tip-surface interactions

occur). The nonlinear release force curves were fitted with

the WLC model, based on which the effective persistence

length (LP) and the contour length (LC) of the chain were

FIGURE 2 (a) Layout of the molecular mechanics experiment. (b–d)
Examples of force-extension curves for PEVKI (b), PEVKII (c), and

PEVKIII (d) segments at 167 mM ionic strength. Stretch data are indicated

in blue and release data in red. The force curves were acquired at a stretch

rate of 500 nm/s. Overlap of stretch and relaxation force data indicates

purely elastic (reversible) behavior. (b–d insets) Contour length histograms

derived from the force data considered in this work. Mean contour lengths at

167 mM ionic strength were 262.66 nm (63.97 mean 6 SE), 280.99 nm

(62.46 mean6 SE), and 269.48 nm (61.91 mean6 SE) for PEVKI, II, and

III, respectively.
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obtained. The histograms of LC are shown in the insets of

Fig. 2, b–d. The LP distribution of the PEVK segments at an

ionic strength of 167 mM, obtained from many stretch and

release experiments, is shown in Fig. 3. From the distribution,

it can be observed that the mean LP of the PEVK segments

are different. PEVKI has the longest LP (1.43 nm 6 0.19

mean6 SE), followed by PEVKII (1.01 nm6 0.08 mean6

SE) and PEVKIII (0.71 nm 6 0.05 mean 6 SE). Unpaired

t-tests revealed that the differences between the mean

persistence lengths are significant (PEVKI and PEVKII

p ¼ 0.05, PEVKII and PEVKIII p ¼ 0.002).

To explore the mechanisms behind the elasticity of the

PEVK domain, the PEVK segments were stretched in buffer

solutions of different ionic strengths. LP as a function of ionic
strength for the different segments is shown in Fig. 4. LP
decreases nonlinearly as a function of ionic strength. The

decrease of LP with increasing ionic strength is quite large.

As an example, LP of PEVKI drops from 2.39 nm (6 0.13

mean 6 SE) at 42 mM ionic strength to 0.86 nm (6 0.06

mean 6 SE) at 317 mM ionic strength. The order of LP
among the PEVK segments is unchanged across the entire

ionic strength range studied. The difference between the LP
of the PEVK segments is relatively constant throughout the

entire ionic strength range and persists even at high ionic

strength (317 mM; Fig. 4, inset).
To investigate the in situ extensibility within the PEVK

domain, relaxed soleus muscle fibers stretched to different

lengths were analyzed with IEM. The N- and C-terminal

ends of the PEVK segment were demarcated by the N2A and

514 antibodies, respectively (10). In preparations labeled

with only the 514 antibody, we observed a relatively weak

but consistently present epitope located in approximately the

middle of the PEVK domain in long sarcomeres (Fig. 5 a,
lower panel). We named this epitope PEVKm (m for

middle). In the 514-labeled fibers, sometimes an additional

epitope between PEVKm and N2A also appeared (Fig. 5 a,
upper panel), but this was too weak for reliable positional

analysis. A representative immunoelectron microscopic image

of a sarcomere labeled with the cocktail of antibodies is

shown in Fig. 5 a, upper panel. The Z-line to epitope dis-

tances as a function of sarcomere length are shown in Fig. 5

b, and the deduced PEVK intradomain extensibilities as a

function of SL in Fig. 5 c. As evidenced by the measure-

ments, upon stretching the sarcomere the extension of the

N-terminal region of the PEVK domain dominates first.

Then, at higher SLs, extension of the C-terminal PEVK

region becomes dominant. The observation supports the

prediction of spatially hierarchical PEVK extensibility made

based on the single-molecule force spectroscopy results.

The origin of the observed effective persistence length

differences observed was investigated by comparing the data

FIGURE 3 Effective persistence length distribution of PEVK segments at

167 mM ionic strength. Data are shown for PEVKI (a), PEVKII (b), and

PEVKIII (c) segments.

FIGURE 4 Effective persistence length of PEVK segments as a function

of ionic strength. Ionic strength was adjusted by changing the KCl con-

centration in the solution. (Inset) Differences in the effective persistence

lengths of PEVKI and PEVKII, and PEVKII and PEVKIII as a function of

ionic strength.

332 Nagy et al.

Biophysical Journal 89(1) 329–336



with the predictions of the OSF theory of polyelectrolyte

chains ((31); see Materials and Methods). Fig. 6 a compares

the experimentally obtained and theoretically predicted LP
as a function of the electrostatic (Debye) screening length.

The OSF theory fit the data well in the case of each PEVK

segment (PEVKI r ¼ 0.96, PEVKII r ¼ 0.94, and PEVKIII

r¼ 0.96). Based on the OSF fits, the mean line charge density

(inverse of the average distance along the chain between

FIGURE 5 IEM of soleus muscle using different anti-titin antibodies.

(a, upper panel) Immunoelectron microscopic image of a soleus muscle

sarcomere stretched to an SL of 3.8 mm. Scale bar 1 mm. The fiber was

labeled with a cocktail of T12, N2A, 514, and Ti102 antibodies (indicated

above the figure). PEVKm indicates the extra epitope labeled with the 514

antibody. The additional 514-labeled weak epitope is labeled with a

diamond. (Lower panel) Immunoelectron microscopic image of a soleus

muscle sarcomere labeled with the 514 antibody only. Scale bar 1 mm. (b)
Z-line to epitope distance as a function of SL. (c) Segmental extensibility

within the PEVK domain (as deduced from the epitope to epitope distances

as indicated) as a function of SL.

FIGURE 6 (a) Comparison of PEVK’s persistence length with predic-

tions of the OSF theory of polyelectrolyte chains. (b) Glutamate-glutamate

(E-E) and lysine-lysine (K-K) average neighbor distance along the PEVK

segment. (c) PEVK segment extensibility and passive force as a function of

SL. Fractional extension of the PEVK segments was calculated based on the

experimentally derived persistence lengths at 167 mM ionic strength.
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charges (31)) of the PEVK segments were the following:

PEVKI 1.42 nm�1 (6 0.12 mean6 SE), PEVKII 1.27 nm�1

(6 0.13 mean 6 SE), and PEVKIII 1.23 nm�1 (6 0.10

mean 6 SE). The residual, purely elastic persistence

lengths (L0) of the PEVK segments were PEVKI 0.88 nm

(6 0.14 mean 6 SE), PEVII 0.67 (6 0.13 mean 6 SE), and

PEVKIII 0.42 nm (6 0.10 mean 6 SE).

DISCUSSION

In this work, we investigated the elasticity of the PEVK

domain of full-length skeletal-muscle titin by using single-

molecule mechanics and immunoelectron microscopic meth-

ods. The PEVK domain of the full-length soleus isoform of

human titin was expressed in three contiguous, approxi-

mately equal-length portions: an N-terminal (PEVKI), a mid-

dle (PEVKII), and a C-terminal (PEVKIII) segment (Fig. 1).

This approach allowed us not only to describe for the first

time, to our knowledge, the elasticity of the entire PEVK do-

main of skeletal muscle, but also to explore regional differ-

ences in the domain’s mechanical behavior.

The force versus extension curves for each PEVK segment

revealed nonlinear elasticity that could be well described

with the WLC model (35; Fig. 2). The WLC model describes

the polymer chain as a bendable continuum in which ther-

mally excited bending motions evoke the contraction of the

chain (reduction of its end-to-end distance) and increase the

chain’s conformational entropy. The equilibrium conforma-

tion depends on the chain’s contour length and bending

rigidity expressed in terms of persistence length, which is a

distance across which the thermally driven bending motions

are correlated. The longer the persistence length, the more

rigid the chain and the smaller the force required to stretch it

to a given relative extension. The contour lengths deduced

from the force curves (Fig. 2, b–d insets) indicate that we

indeed captured the ends of the PEVK segments. The good

fits with the WLC model support previous notions that

the PEVK domain can be described as an entropic chain

(10,20,36–38). Although in some cases the stretch force data

were above the release force data during the nonlinearly

rising phase of the curves, a comparison of the persistence

lengths obtained from fits to the stretch and release data

revealed no significant differences. Such a lack of hysteresis

in the force data (Fig. 2, b–d) indicates that the molecular

system traverses identical conformational states at each force

level during stretch and release, therefore thermodynamic

equilibrium is established throughout the mechanical cycle.

Similar observations were made on the short (167-residue-

long) cardiac PEVK isoform (20,38) and a skeletal PEVK

fragment (22). Altogether the entire PEVK domain can be

considered an ideal elastic spring that completely recovers

the mechanical energy invested in it during stretch.

Although the overall elastic mechanisms appear similar

along the PEVK domain, there are regional differences. A

comparison of the PEVK segments’ persistence lengths

reveals a spatial hierarchy of elastic behavior: the N-terminal

PEVK segment is the stiffest (longest LP), whereas the

C-terminal segment is themost compliant region in the domain

(shortest LP). Thus, it is expected that upon stretching the

PEVK domain, its N-terminal region extends first, followed

by its C-terminal region. We tested this prediction with IEM

by following the position of a 514-antibody-based epitope

that fortuitously appeared near the middle of the PEVK

domain (Fig. 5). Appearance of extra epitopes within the

PEVK domain has been shown before (29) and can be

attributed to the repetitive motif structure of the domain (15).

The extra epitopes are stable as evidenced by the uniform

cross-striation appearance of the immunolabel across a wide

range of SLs. The IEM experiments confirmed the prediction

and revealed that under in situ conditions during sarcomere

stretch it is indeed the N-terminal region of the PEVK

domain that dominates extensibility initially, followed by the

domain’s C-terminal region.

A comparison of the ionic strength dependence (in the

47–317 mM range) of LP with the predictions of the OSF

theory (31) of polyelectrolyte chains gave good fits for each

PEVK fragment. The OSF theory predicts that the interac-

tion between like charges along the polyelectrolyte chain

contributes to the polymer’s elastic properties by stiffening

the chain. These interactions, however, are reduced if the

solution ionic strength is increased, due to electrostatic

screening. Electrostatic stiffening has previously been

hypothesized for the PEVK domain of rabbit psoas muscle

using myofibril mechanics experiments (36). Furthermore,

recently it was reported that the persistence length of a

recombinant skeletal PEVK fragment decreased in the pres-

ence of increased calcium concentrations (22), further

supporting the idea that interactions between relatively closely

spaced like charges significantly influence the elasticity of

the PEVK domain. Our results herein provide direct evi-

dence for the polyelectrolyte behavior of the PEVK domain,

in which like charge interactions contribute to the effective

elastic response. The line charge densities calculated from

the OSF fits correspond to average intercharge distances of

0.71 nm (6 0.06 mean6 SE), 0.79 nm (6 0.08 mean6 SE),

and 0.81 nm (6 0.07 mean 6 SE) for PEVKI, II, and III,

respectively. These average distances are comparable to each

other, suggesting that the electrostatic contribution to the

persistence length of the different PEVK segments is similar.

The average intercharge distances calculated from the

OSF fits are also comparable to the mean nearest neighbor

glutamate-glutamate (E-E) and lysine-lysine (K-K) distances

of 0.97 nm (60.04 mean6 SE) and 1.16 nm (60.06 mean6

SE), respectively, calculated for a completely stretched chain

from the PEVK sequence. The E-E and K-K distances are

not uniform along the PEVK sequence, however. The mean

E-E and K-K neighbor distance versus PEVK sequence

position plot (Fig. 6 b) reveals that islands of short distances,
corresponding to polyE and PPAK motifs, respectively (15),

are interrupted with regions of long distances. The modular
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arrangement of high like charge densities adds a complexity

to the polyelectrolyte behavior of PEVK, which is why a

slight systematic deviation from the OSF fit may be observed

despite the good fit (Fig. 6 a). In contrast to our observations,
a recent work, in which native titin and a PEVK fragment

were manipulated with optical tweezers using microbeads

coated with sequence-specific antibodies, reported that the

LP of the PEVK domain increased, rather than decreased,

with increasing ionic strength (39). It is conceivable that in

these experiments, interactions between opposite charges

farther apart along the PEVK sequence dominated the

mechanics results. These attractive interactions connect points

along the chain, thereby shortening the effective contour

length (40). During stretch, the interconnections are peeled

apart and the contour length is continuously increased.

Because of the continuous peeling transition, a reduced LP is
observed (40,41), explaining why Leake et al. may have

observed short LP at low ionic strength (39). In support of the

idea, Leake et al. also observed force hysteresis, indicating

that the effective contour length of the PEVK fragment was

indeed reduced at the beginning of stretch (39). Thus, the

discrepancies between PEVK’s ionic strength-dependent

persistence lengths observed by Leake et al. and us may be

explained with attractive versus repulsive electrostatic inter-

actions, respectively. It is possible that under physiological

conditions in the sarcomere, both types of interactions

contribute to the mechanical behavior of the PEVK domain.

Chain-shortening attractive interactions may be important in

the contracted state of the domain at low SLs and may be

responsible for the stress relaxation of passive muscle force

(40,42). By contrast, repulsive interactions may be more

relevant in the partially extended state of the PEVK domain

by stiffening its molecular architecture.

The overall line charge densities of the different PEVK

segments are comparable, suggesting that the differences

between their persistence lengths (Fig. 4) are not of elec-

trostatic origin. Furthermore, there is a more or less constant

difference between the LP of the different PEVK segments

across the entire ionic strength range studied (Fig. 4, inset)
that persists even at high ionic strength, where the charge-

charge interactions are efficiently screened. The result in-

dicates that the source of the LP differences is indeed

nonelectrostatic. Currently we can only speculate as to what

the source of the elasticity difference might be. A possible

explanation is that polyproline helices are formed within the

PEVK domain, but the density of these helices differs along

the PEVK sequence. During stretch, the chain, shortened

initially by the presence of the helices, may go through a

reversible transition that results in a reduction of apparent

persistence length (in a mechanism similar to attractive

interactions discussed above). The density of potentially

helix-forming prolines along the PEVK sequence is greatest

toward the C-terminus, lending support to the idea that

prolines might be involved in modulating the local elasticity

of the domain.

Based on the experimentally derived persistence lengths

of the contiguous segments of the PEVK domain, the elastic

response of the entire domain can be calculated, considering

that the segments are serially linked. Furthermore, the local

extensibilities of the PEVK segments as a function of sar-

comere stretch can be predicted (Fig. 6 c). The extension of

the PEVK domain is most prevalent in soleus muscle across

an SL range of ;2.5–4.5 mm. In this range, forces up to 20

pN per single titin molecule are generated. The hierarchical

extension of the PEVK segments persists across the entire SL

range of 2–4 mm. As an example, between;2.5 and 4.0 mm,

the N-terminal half of the PEVK is;1.5-fold more extended

than the C-terminal half (Fig. 5 c). What could be a phy-

siological role of the hierarchical intradomain extensibility of

PEVK? It is conceivable that the hierarchical PEVK exten-

sibility has a purely mechanical role by providing a unique

passive force SL relationship, and the spatial arrangement in

the hierarchy is merely coincidental. An intriguing possibil-

ity, however, is that the PEVK domain might act as a con-

tinuous stretch sensor. Stretch sensing is thought to be a very

important but little understood process. Recently it has been

suggested that several different regions of titin might play

a role in the sensing of stretch in muscle by binding various

ligands (4). A simple binding/dissociation may provide only

a discrete force-sensing mechanism that reports the absence

or presence of a force of a given magnitude. If, however,

ligands (e.g., calcium) bound to a long stretch of the titin

domain dissociate gradually driven by the domains hierar-

chical extension, then the state of sarcomeric may be moni-

tored continuously across a wide range of SL. Further

research may fully elucidate the functional significance of

this spatially hierarchical PEVK extensibility.
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