
Large-Scale Quantitative Analysis of Sources of Variation in the Actin
Polymerization-Based Movement of Listeria monocytogenes

Frederick S. Soo* and Julie A. Therioty

*Department of Physiology and Biophysics, University of Washington, Seattle, Washington; and yDepartment of Biochemistry,
Stanford University, Stanford, California

ABSTRACT During the actin polymerization-based movement of Listeria monocytogenes, individual bacteria are rapidly
propelled through the host cell cytoplasm by the growth of a filamentous actin tail. The rate of propulsion varies significantly
among individuals and over time. To study this variation, we used a high-throughput tracking technique to record the movement
of a large number (;7900) of bacteria in Xenopus frog egg extract. Most bacteria (70%) appeared to maintain an individual
characteristic speed over several minutes, suggesting that the major source of variation in average speed is intrinsic to the
bacterium. Thirty percent of bacteria had significant changes in speed over time spans of a few minutes, including 17% that
appeared to collide with obstacles and 13% that moved with a significant periodic component. For the latter, the peak frequency
was proportional to speed, suggesting a mechanism with a fixed spatial scale of ;0.6 bacterial length. Near the rear of the
bacterium, temporal fluctuations in actin density were positively correlated with fluctuations in speed, whereas near the front the
correlation was negative. A comparison of the performance of linear models that predict motion given actin density suggests
that the mechanism has a history of 5–10 s, and that fluctuations in actin density near the front of the bacteria contain more
predictive information than the rear. Our results are consistent with physical models where bacterial speed is governed by the
rate of dissociation of bonds between the bacterial surface and the actin tail, and individual variation is determined by long-lived
intrinsic variability in bacterial surface properties.

INTRODUCTION

In this work, we examine how the intracellular bacterial

pathogen Listeria monocytogenes moves during actin

polymerization-based motility, in which bacteria are pro-

pelled through the host cell cytoplasm by the assembly of

densely cross-linked comet tails made of host cell actin

(reviewed in Refs. 1–3). Within living host cells, the clonal

descendants of a single infecting bacterium may display

a broad range of behaviors, moving quickly, slowly or with

varying speed and orientation over time (4–6). Bacterial

actin-based motility can be reconstituted in cytoplasmic

extracts from Xenopus laevis eggs, human platelets, mouse

brain tissue (7–9) or even in an appropriate mixture of

purified proteins (10), and the heterogeneity in bacterial

speed and trajectory remain comparable to that observed in

living cells. In vitro, the average movement speed of a

population of bacteria can be altered by changing the con-

centration of several of the host protein components involved

in actin-based motility (10) or by changing the effective

viscosity by the addition of agents such as methylcellulose

(11). However, these effects on the population average speed

cannot address the sources of persistent, intrinsic variation

around the average among a population of genetically iden-

tical bacteria moving in a consistent biochemical environ-

ment.

The source of variability among individual bacteria has

not been identified, and has been neglected in biochemical

analyses and theoretical models. In existing measurements

it is difficult to distinguish between biological sources of

variation, and variation due to limited experimental

sampling. To solve this sampling problem, we developed a

method of making high-resolution measurements of the

movements of many (.103) individual bacteria undergoing

actin polymerization-based movement under controlled

experimental conditions. This technique also allows us to

simultaneously record the dynamics of the actin cloud

surrounding each bacterium as it moves, making possible

direct correlation between actin dynamics and bacterial

movement.

We use this method to resolve whether variation in bac-

terial movement has biological, rather than experimental

origins. We examine whether small differences in surface

geometry among bacteria (12,13) could account for the

natural variation in bacterial speed in a population. We track

individual bacteria over long periods of time, and examine

whether variations in measured average speed arise from

undersampling of a slowly but randomly varying ensemble,

a genuine difference in the characteristic speed of individual

bacteria (6,14), or systematic sampling bias introduced by

slow changes in the state of the extract over time (15). We

also systematically examine how the shape and density of the

actin cloud surrounding the bacterium varies among bacteria

and over time, measuring the strength of the correlation

between fluctuations in actin cloud density and bacterial

speed over time.

In addition to testing specific hypotheses, our measure-

ments form an important empirical basis for future theories of

Submitted August 17, 2004, and accepted for publication April 25, 2005.

Address reprint requests to F. S. Soo, Tel.: 206-616-2510; E-mail: fsoo@u.

washington.edu.

� 2005 by the Biophysical Society

0006-3495/05/07/703/21 $2.00 doi: 10.1529/biophysj.104.051219

Biophysical Journal Volume 89 July 2005 703–723 703



actin polymerization-based movement. Brownian ratchet

models (16,17), elastic gel models (18), and biochemical

models (3) describe the steady-state behavior of a canonical

individual bacterium in terms of average biochemical and

physical properties. Although the elastic gel model does

propose a mechanism for periodic variations in speed over

time (18), and molecular models such as the Brownian ratchet

model include a stochastic component which could explain

nanometer steplike motion of individual bacteria (11,19),

the accounting of variability in these models is restricted to

specific situations and does not in general explain the intrinsic

variability seen among wild-type bacteria. We present here

a unified description of the experimental variability in bac-

terial motion and the actin tail. Future models will have to

account for not only the average rate of bacterial movement,

but the observed distribution of bacterial speeds, the measured

stochastic and periodic variations in individual bacterial

speed over time, dynamic fluctuations in actin tail shape over

time, and how these variables change with experimental per-

turbations such as genetic mutations or biochemical manip-

ulations.

MATERIALS AND METHODS

Bacterial culture and slide preparation

Listeria monocytogenes in vitro motility assays were performed as described

in Theriot and Fung (20). Bacteria were grown overnight at 37�C in brain-

heart infusion medium or Luria broth, centrifuged and resuspended in

Xenopus extract buffer (21), and added to Xenopus laevis egg cytoplasmic

extract containing trace amounts of tetramethylrhodamine-labeled actin and

an enzymatic ATP regenerating system (20). All experiments were per-

formed with a hyperhemolytic isolate of L. monocytogenes, strain SLCC-

5764 (22). In some cases, bacteria were transformed with a plasmid ex-

pressing green fluorescent protein under a constitutive promoter and selected

under chloramphenicol resistance (23). A small amount (0.75–2 ml) of

extract suspension containing bacteria was sandwiched between a glass slide

and a coverslip (22 3 22 mm, No. 1) and sealed with a 1:1:1 mixture of

Vaseline, lanolin, and paraffin and placed on the microscope stage for

imaging. For some experiments, 0.9-mm diameter silica beads were added to

the extract and the slide preparation was compressed by a 1.6-kg weight for

2 min to establish an even spacing between slide and coverslip. In some

cases, untreated glass coverslips and slides were used, whereas in others

glass slides and coverslips were precleaned or coated with bovine serum

albumin (BSA). There were no major changes in bacterial movement asso-

ciated with either treatment. To preclean slides, slides were immersed in a

freshly mixed, hot solution of 80% sulfuric acid and 20% hydrogen peroxide

(Piranha) for 15 min, washed, dried at 60�C for 1 h, and stored in dust-free

containers. Stainless steel slide carriers and ceramic coverslip holders were

used during cleaning. For experiments using BSA-coated coverslips and

slides, glass was cleaned in Piranha solution, washed, and then immersed for

15 min in a freshly made, filter-sterilized solution of 2 mg/ml BSA. The

glass was then washed, dried, and stored for later use.

Epifluorescence video microscopy

All imaging was performed on an inverted Nikon TE 300 microscope

(Nikon, Tokyo, Japan) equipped with standard phase-contrast and epi-

fluorescence optics using a 603 oil immersion objective (N.A. 1.3). For

GFP-expressing bacteria, a dual-wavelength filter set was used to visualize

the GFP and rhodamine-actin signals (Chroma Technology, Brattleboro,

VT). Filter wheels and illumination shutters were controlled by MetaMorph

software (Universal Imaging, Downingtown, PA). Bacteria not expressing

GFP were visualized by phase-contrast. A single wavelength tetrameth-

ylrhodamine filter set was used for the actin channel. As there appeared to be

no significant difference between GFP fluorescence or transmitted light

techniques in visualizing the bacterial position, we refer to the GFP and

phase-contrast channels in all cases as the tracking channel.
Images were captured by a 12-bit cooled CCD camera (Princeton

Instruments, Princeton, NJ). Pairs (tracking channel and image channel) of

512 3 512 pixel images were taken at 2-s intervals, at 200 ms of exposure

per frame; the order of exposure did not appear to affect any subsequent

analysis. The imaging area was 40 mm across and was chosen to include

7–12 bacteria on average. Dark noise and camera offset were subtracted

from every movie. Movies were typically 256 frames long, and were saved

to hard disk for offline analysis. Each movie required on the order of 0.5

GB of raw storage space. Dedicated workstations, each with several large

hard disk drives (40–120 GB each), were used for image processing and

analysis.

Automated tracking

Custom software written in the C11 programming language (Visual C11,

Microsoft, Seattle, WA) was used to track bacteria in the image files.

Standard thresholding, centroid tracking, and axis of symmetry algorithms

(24) were applied to the tracking channel to define the position and heading

of candidate objects in each frame. Objects too close to the edge of the frame

(typically 32 pixels) were rejected, to prevent edge artifacts in later analysis

which calculate values in a 64 3 64 region around the bacterium. A frame-

to-frame nearest-neighbor rule was used to construct tracks of bacteria

moving over several frames. Tracks under 64 frames in length were auto-

matically rejected. Tracking data for each bacterium were saved, along with

image data and experimental parameters, in custom-written data files.

Data analysis

Tracking files and ancillary information were entered into a relational data-

base (Microsoft Access, Microsoft). Every tracked bacterium was identified

by a unique serial number, and associated with original image data and

experimental parameters such as date and time of acquisition. Several

statistics were automatically calculated and entered into the database,

including average speed, velocity power spectra, fluorescence intensity time

series, and average path curvature. Numerical calculations used algorithms

and source code from standard texts (24); public domain numerical libraries

were used for fast-Fourier transform calculations. All algorithms were

implemented in the C11 programming language.

Speed fluctuations were analyzed using standard power spectral tech-

niques (24). Because samples were approximately but not exactly evenly

spaced, a Lomb normalized periodogram algorithm (24) was used to

calculate the estimated power spectral content. Probability values for peaks

in the observed power spectra were calculated from the null hypothesis that

velocity variations are independent in time and thus generate white noise

power spectra. As derived in Press et al. (24), in such a case, p; Ne�z where

N is the number of independent samples and z is the power of the peak

normalized by the total variance.

Linear models of the relationship between actin density fluctuations and

speed fluctuations were compared by calculating the least-squares error of

a prediction generated by an optimized linear kernel. The values of the

kernel were calculated from fluorescence and instantaneous speed time

series using a modified singular value decomposition algorithm (24). Given

actin density data dactin and velocity data vactual(1. . .N) for N frames, the

algorithm calculates the coefficients rj of the function npredictedðiÞ ¼
+nr�1

j¼0
rjdactinði� jÞ, that minimize the least-squares error between vpredicted

and vactual. Typically a fraction (0.5) of the data set was used to calculate the

kernel, and the remaining fraction was used to measure the error in
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prediction, but the results did not strongly depend upon the fraction used.

The least-squares error x2 ¼ ð1=s2
actualÞ+

N

i¼1
ðnpredictedðiÞ � nactualðiÞ2Þ was

divided by the number of data points to generate a raw normalized least-

squares error. To account for a decrease in the least-squares error due to the

increased number of free parameters, the normalized least-squares error for

points far in front of the bacterium were subtracted. The typical magnitude of

this correction was ,0.25 of the total drop in normalized least-squares error,

and does not significantly affect the interpretation.

RESULTS

Performance of the tracking system

In previous reports, experimental sources of variability are

co-mingled with true biological variation. Sampling error,

the age of the preparation, variation within a preparation,

daily variation, and variations in the choice of threshold for

movement all contribute to the total measured variability in

speed of movement among bacteria. Sample sizes in ;30

existing reports range from n ¼ 3 (25) to n ¼ 276 (26) with

most measurements per condition averaging speeds of 10–30

individuals, enough to estimate mean speeds but not higher

order moments or to reliably compare differences among

populations. Average speeds of wild-type L. monocytogenes
in Xenopus frog egg cytoplasmic extracts of 80–100 nm/s

have been reported (7,27) with a typical population standard

deviation of 10–15 nm/s, but it is unclear whether the

differences in average speeds are due to experimental

or biological differences among preparations. Objects were

tracked sequentially in a single preparation as the preparation

aged (15) or at a fixed time-point relative to the preparation

of a sample (28), but the distinction was not always made,

and the daily variation between preparations was not

generally reported. Bacteria were tracked manually or

semi-automatically at varying sampling intervals (usually

5–20 s per interval, for a total elapsed time of 3–10 min), and

nonmoving bacteria were visually excluded from the

analysis either because they were below the threshold of

tracking accuracy, or to simplify later analysis; the choice of

threshold affects estimates of the population mean by

eliminating stationary bacteria, which often comprise a

significant fraction of the population.

We sought to separate experimental sources of variation

from genuine biological variation by standardizing the re-

cording procedure so that it could be repeated many times,

standardizing the sampling interval to remove sample-

interval dependent variation, and tracking all bacteria in

the field of view, including stationary bacteria to remove

biases due to choice of movement threshold. Under these

conditions we were able to track several bacteria in a single

microscope field for several minutes at a time, to record for

up to 3 h from individual slides, and to record from three to

four slides in one day, reliably generating .500 trajectories

per day. There was some daily variation in the average speed

(data not shown) but this variation appeared to be random.

Within each day average speeds on each slide also appeared

to vary randomly. In general bacteria slowed down when the

age of the slide exceeded 3 h, as detailed below.

Using this method we were able to compile a population of

;7900 bacteria recorded over the course of two years,

representing ;30 days of actual recording. This represents

an increase in number of two-to-three orders of magnitude

over other published reports and an increase in temporal

resolution of approximately fivefold, as all trajectories were

sampled at 2-s intervals, versus 10–30 s for typical record-

ings in the literature. More importantly, this method is largely

automatic, requiring little operator intervention besides the

initial setup of the bacterial suspension and activation of the

acquisition software. Separate measurements of bacteria

nonspecifically adsorbed to cover glasses showed that the

positional noise in these measurements was normally dis-

tributed with standard deviation between 0.1 and 1 camera

pixel, or 10–100 nm, and that the microscope field drift over

an entire recording (typically 512 s) was uncorrelated, and

had the same order of magnitude (data not shown).

Typical data generated using the automated
tracking technique

In existing reports, the number of actin tails and trajectories

which could be examined are limited by the labor-intensive

nature of the manual or semi-automated tracking and image

analysis techniques used (12,29–31). Typically, the actin

density is measured as a function of time at a single point on

the object surface (12) and the cross-correlation with the

instantaneous velocity is calculated, minimizing the amount

of additional tracking needed but also limiting the measure-

ment to one area of the bacterial surface. Alternatively, a

derived parameter, such as the overall length of the actin tail,

is compared to a movement parameter, such as the average

speed of the bacterium. Parametric measurements of this

type (29) provide a more in-depth accounting of actin tail

dynamics, but are also correspondingly more labor intensive,

as multiple points in the actin tail profile must be located and

tracked by hand over many frames.

To overcome these limitations, we developed custom

tracking software to automatically track bacteria, store tra-

jectory and image data, and immediately calculate several

quantities, including speed, average actin density, and

average path curvature. A typical bacterial trajectory tracked

using this system is shown in Fig. 1 A. The centroid position

of the bacterium for every frame in the movie (Movie 1 in

Supplementary Material), is superimposed on a single

pseudo-colored fluorescence image of the GFP-expressing

bacterium and the rhodamine-actin-containing comet tail.

The actin comet-tail behind the bacterium lies along the

previously traversed path, and fluorescence intensity de-

creases with distance from the end of the bacterium. Because

the elapsed time interval between frames is approximately

constant, the distance between tracked points is proportional

to the speed of the bacterium.
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To compare the actin distribution in tails with different

amounts of curvature, we used the previous trajectory of the

bacterium to define the central axis of the comet tail for a

series of cross-sections (Fig. 1 B) along the tail to math-

ematically straighten the tail. The two-dimensional tail cross-

section data were reduced to a one-dimensional, extended

longitudinal tail profile by integrating the fluorescence signal

across each cross-section (Fig. 1 C). This approach may

slightly overestimate the cross-sectional area if the section is

not perfectly normal to the axis of the tail, but it provides an

estimate for actin fluorescence intensity as a function of

position in the tail that is independent of lateral movement or

buckling of the tail with respect to the bacterial path.

The estimated instantaneous speed of the bacterium (Fig. 1

D) was calculated by dividing the observed distance traveled

between two frames by the time between frames. For critical

estimates of average velocity, we used a linear regression

method detailed below to ameliorate the effects of high-

frequency positional noise.

Variation in the two-dimensional trajectories of
bacterial movement

One of the most striking features of bacterial trajectories is

the wide variation in curvature over time and among bac-

teria. In both wild-type bacteria (5,29,32) and bacteria

expressing various mutated forms of ActA (26,33,34) bac-

teria move in circles, weaving S-curves, straight lines,

crooked random walks, and in the case of some mutants,

seemingly random ‘‘dances’’ punctuated by frequent, sharp

changes in direction. This is also true for bacteria moving in

a reconstituted system of purified proteins (10) and for ActA-

coated latex beads in a cytoplasmic extract (28).

Our system allows us to record a large number of bacterial

trajectories and systematically search for patterns in

movement among bacteria. The trajectories of 100 randomly

chosen bacteria out of the total population of 7900 bacteria

are shown in Fig. 2 A, with six representative trajectories

highlighted in color. The great variation in trajectories

among bacteria can clearly be seen, as well as variations in

individual trajectories over time. Table 1 describes the

characteristics of each representative bacterium. The typical

persistence length, which is the path-length over which the

autocorrelation of the angular velocity decreases to zero,

varied between 2 and 5 mm. Some individual trajectories

curved with nearly constant angular velocity for consider-

ably longer distances, resulting in nearly circular paths with

varying radii. Other paths were nearly straight or approxi-

mated a persistent random walk.

We cannot tell what causes an individual bacterium to

move in a particular trajectory, but can make inferences

about how the actin tail might be growing to cause path

curvature. If the actin tail is fixed in space and actin filament

growth only occurs near the bacterial surface (29,32), curva-

ture in the bacterial trajectory arises from the differential

actin growth rates on the inside and outside of the curve (35).

According to this model, the radius of curvature is therefore

a measure of the difference in growth rates between the

inside and outside of the curve. The angular displacement as

a function of time for the 100 bacterial trajectories is shown

in Fig. 2 B, and cumulative path-length is plotted as

a function of time in Fig. 2 C. Given the radius of curvature

implied by these curves and a bacterial diameter of ;0.7 mm,

the typical difference in growth rate between the inside and

FIGURE 1 A representative example of bacterial movement in Xenopus
egg cytoplasmic extract. (A) False-color map of GFP (blue) and rhodamine-

actin (red) fluorescence signals in the 100th frame of a 250-frame movie,

with derived bacterial path over all frames in the movie superimposed with

hash marks positioned at 2-s intervals (black). Inset shows entire frame

visible to microscope with several tracked paths. Each point indicates

position of bacterial centroid (dot) and orientation of long axis of the

bacterium (perpendicular line). (B) Instantaneous fluorescence cross-

sections along the path of the bacterium, for the 100th frame. Each cross-

section is centered on the bacterium and oriented perpendicular to the

direction of motion at that point, generating a computationally straightened

actin comet tail. (C) Integrated fluorescence across GFP (blue) and

rhodamine-actin (red) cross-sections, for the image shown in B. (D) Point-

by-point estimated instantaneous speed as a function of time throughout the

recording.
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outside of the curved trajectories is on the order of a few

percent. In many cases, this slight implied difference in

growth rate is maintained over a minimum of several

minutes.

Persistent differences in forward speed among bacteria

also appear to be maintained over time and were not cor-

related with differences in bacterial geometry or position.

Individual average speeds were roughly constant, as demo-

nstrated by the linear increase in cumulative path-length with

time. Speed variation within each track was generally

smaller than speed variation in the whole population (i.e.,

the cumulative path-length curves tended not to overlap) on

the timescale of the recording (tens of seconds to several

minutes). Some bacteria exhibited regular periodic fluctua-

tions in speed of varying frequency and magnitude (Fig. 2,

traces 1 and 2), which are analyzed in more detail later.

Average speed was not strongly correlated with bacterial

length (Fig. 4 E) or width (Fig. 4 F) or position in the frame

(data not shown).

Estimation of the forward component of
bacterial speed

To make a precise measurement of the growth rate of the

actin comet tail, the forward component of motion must be

separated from motion induced by lateral bending of the

comet tail, differential growth, path curvature, and in-

strumental noise. The point-to-point instantaneous speed of

a bacterium, used in most existing reports, includes com-

ponents due to bending of the actin tail and instrumental

noise. In our own data, instantaneous speed estimates

obtained by dividing the distance between centroid positions

in neighboring frames by the time interval for slowly moving

bacteria were much higher than the speed estimated by

taking the distance between the endpoints of the trajectory

and dividing by the total elapsed time, and measured average

instantaneous speeds did not reach zero even for bacteria

with zero net displacement (data not shown).

To extract the forward component of motion, we fitted in-

dividual bacterial trajectories with a model of linear motion.

For pure forward motion, the increase in average displace-

ment between points in the trajectory is exactly proportional

to the time interval between samples. The degree to which

actual movement can be approximated by this linear model

can be tested with a simple procedure. Each trajectory is

resampled at a time interval Dt greater than the original

sampling interval. Then the average displacement d traveled

between points in the resampled trajectory is calculated. For

linear movement, d should increase exactly proportionally to

Dt where the slope is the average speed (36).

Our data are well described by a linear motion model. In

Fig. 3 A, average displacement as a function of time interval

is plotted for each of the 100 bacterial trajectories. Lines

indicate linear fits to the data. As expected, there is some

deviation from linearity at both high and low limits, but for

FIGURE 2 Bacterial trajectories vary in space and time. (A) Two-

dimensional trajectories of six typical bacteria (colored and numbered 1–6)

and 100 randomly selected bacteria (gray) out of the total experimental

population of 7901 bacteria are plotted. Individual trajectories are translated

to the origin, and rotated so the bacterium is initially pointed to the right

(u¼ 0). (B) Angular displacement the same trajectories as a function of time.

Positive u is in the counterclockwise direction, angular velocity is measured

in degrees/s. (C) Cumulative path-length as a function of time. Path-length is

defined as the sum of the lengths of the line segments connecting individual

points in the trajectory and is measured in microns.
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a wide range of intermediate sampling intervals, the straight

line approximation is quite close (Fig. 3 B), and so the slope

of the best-fit line to the regression of average displacement

versus time interval, or average linear speed, is a reasonable

estimate of the forward component of motion. For rapidly

moving bacteria with straight and curved trajectories, the

average linear speed was found to be close to the average of

the instantaneous speeds. For slowly moving bacteria, the

average linear speed was lower than the average of the instan-

taneous speeds, and unlike the average of the instantaneous

speeds, approached zero for bacteria that showed no net

displacement over the entire course of the movie.

Breadth and time dependence of bacterial
speed distribution

Using a linear speed measurement, the bacterial population

could be clearly divided into moving and stationary sub-

populations. Bacterial average linear speeds ranged from 0 up

to a maximum of 0.25 mm/s (Fig. 4 C). As bacteria average

close to 2 mm in length, the maximum rate corresponds to

nearly 7.5 lengths/min. The average rate of;75 nm/s cor-

responds to a normalized rate of ;2.5 lengths/min. Common

to all samples was a subpopulation (9–12% of total) of bac-

teria that were essentially stationary, with average linear

speed between 0 and 3 nm/s.

One proposed source of variation in population average

speed is gradual ATP depletion in the cytoplasmic extract. In

the absence of an ATP regenerating system, actin-based

movement eventually slows to a halt over a period of several

hours (15). In addition, other processes, such as nonspecific

binding of proteins to the glass substrate, might also occur

during this time (37). In addition it is not known whether

a decrease in average speed comes from a decrease in the

average speed of the moving population, or a decrease in the

number of moving bacteria.

To test whether gradual ATP depletion could account for

the variability in average speed and curvature distributions,

we plotted the average angular velocity and average linear

speed of bacteria as a function of time since sample pre-

paration (Fig. 4,A andB). Included in this figure are data from

41 slides and 6761 bacteria. Because not all slides were

recorded from for a full 180 min, there are fewer bacteria

recorded later than earlier. The distribution of bacterial speeds

on an individual slide was comparable in variability to that of

the entire population; there were no fast or slow slides. To

assess how the population distributions changed over time,

the entire population was divided into early, middle, and late

subpopulations, corresponding to bacteria tracked in the first,

second, or third hour after a slide was created. Histograms of

TABLE 1 Selected characteristics of representative bacteria

# Color Description

Linear

speed (nm/s)

Angular

speed (deg/s) 1/f (s) K (cycles) ppeak rrear rfront x2

1 Red Periodic motion 61.5 �1.75 32.0 10.3 1.1E-06 0.40 0.13 0.93

2 Purple Periodic motion 84.8 0.26 27.8 12.8 1.6E-08 0.28 �0.07 0.90

3 Aqua No periodicity 146.9 �0.44 86.2 3.3 4.5E-03 �0.05 0.00 0.98

4 Yellow Slow, collision 13.2 0.33 507.9 1.0 4.0E-13 0.16 �0.41 0.86

5 Green Circular, collision 118.9 8.84 121.3 1.5 2.4E-08 �0.69 �0.63 0.56

6 Blue No periodicity 44.7 �1.05 43.5 6.3 3.7E-01 �0.06 �0.20 0.98

FIGURE 3 The linear component of bacterial speed can be estimated

using a linear regression technique. (A) The average straight-line dis-

placement of individual bacteria is plotted as a function of time between mea-

surements (small circles) and the corresponding best fit line y¼ a x1 b (lines).

Each trajectory represents the measurements for one bacterium, colored and

numbered as in Fig. 2. If the bacterial path is curved, the straight-line

displacement between two points of the curve will be shorter than the path-

length along the curve between the two points, resulting in deviations from

linearity at longer time intervals. Non-overlapping time intervals are used;

e.g., for a bacterium which was recorded for 500 s, there are 50 non-

overlapping intervals of 10 s. The longest time interval was one-fifth of the

total length of the recording, to ensure that each average contains at least five

measurements. (B) The residual of the fit (actual value minus fit) for the same

bacteria as a function of time interval.
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early, middle, and late average linear speed and angular

velocity distributions are shown in Fig. 4, C and D. Popula-

tion average speeds were 70, 51, and 49 nm/s, for early, mid-

dle, and late populations, respectively. Although in the first

hour there was a distinct bimodal distribution of speeds, in

the second and third hours speeds were slower and more

smoothly distributed. For times .180 min many bacteria

were slowed or nearly stopped, and these late time-points

were excluded from further analysis. Because the speed dis-

tribution is constant between 60 min and 180 min, it is un-

likely that the loss of the faster subpopulation after 60 min is

due to ATP depletion; instead, this observation reflects the

tendency of bacteria to move with anomalously rapid bursts

of speed immediately after movement initiation (38).

The angular velocity distribution, in contrast, did not

appear to differ between early, middle, and late populations.

Bacterial average angular velocities in the different groups

appeared to be symmetrically distributed, with the majority

of the population having average angular velocities between

�3 and 3�/s (Fig. 4 D). The separability of angular and

forward speed suggests that they are dependent on different

biochemical or biophysical processes.

Periodic, stochastic, and singular variations
in speed

Several sources contribute to variations in the speed of

bacteria over time, as can be seen in the individual examples

in Fig. 5 A. In some cases (bacteria #1 and #2) the variation is

apparently periodic, whereas in other cases (bacteria #4 and

#5) the motion of the bacterium over time is punctuated by

a single pause or interruption. On inspection these events

corresponded to collisions of the tracked bacterium with the

actin tail of a nearby individual. In addition, a smaller, ran-

FIGURE 4 Average linear speed distributions evolve over time, whereas

angular speed distributions remain constant. (A) Average angular speeds of

individual bacteria are plotted as a function of time after the slide was

prepared. The population is divided into early (0–60 min, gray), middle (60–

120 min, red), and late (120–180 min, blue) subpopulations according to

time after slide creation. Bacteria recorded .180 min after slide creation

were not included. Large dots are colored and numbered as in Fig 2. Dark

line is average angular speed taken in sequential bins of 100 bacteria.

Average angular speed for each bacterium is calculated by taking the

average of the instantaneous changes in orientation of the bacterial centroid

over time. The time at which the bacterium was tracked is defined as the

average value of the times of points in the bacterial trajectory. (B) The

bacterial linear speed as a function of time after the slide preparation was

made. Linear speed for each bacterium is defined as the slope of the best fit

line as defined in Fig. 3. Dark line is linear speed taken in sequential bins of

100 bacteria. (C) Histogram of bacterial linear speeds for early, middle and

late subpopulations. The fraction of bacteria in each bin is plotted as

a function of linear speed. Total number of bacteria in each population n are

indicated in the figure legend. (D) Distribution of angular speeds for early,

middle and late subpopulations. Color-codes are the same as in other panels.

(E) Bacterial width as a function of linear speed. Color-codes are the same as

in other panels. Dark line is average width taken in sequential bins of 50

bacteria. (F) Bacterial length as a function of linear speed. Dark line is

average length taken in sequential bins of 50 bacteria.
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dom component to the speed fluctuations is superimposed on

the larger periodic or singular fluctuations. This appears to

originate from variations in the growth rate of the actin tail,

with only a small contribution from side-to-side thermal

motion and positional measurement error.

Besides the stochastic fluctuations due to collisions and

thermal noise, periodic oscillations in speed can also be seen.

To systematically measure the contribution of the periodic

component to motion, we calculated the normalized Fourier

power spectrum of the speed as a function of time as

described in Materials and Methods. In this analysis, motion

is decomposed into the sum of pure periodic signals of

varying strength and relative phase. The relative strength of

each periodic signal as a function of the frequency of that

signal, or power spectrum, is shown in Fig. 5 B for the six

representative individuals from Fig. 5 A. The peaks in the

power spectra of bacteria #1 and #2 were isolated and narrow,

indicating that fluctuation in speed was highly regular and

largely composed of a single frequency. The peaks were

located in the low-frequency range of the power spectrum

with period 1/fpeak of ;30 s. This is slow compared to the

sampling interval (2 s), and so the peaks cannot be attributed

to aliasing effects. In general, velocity power spectra tended

have only one major peak, and the width of the peaks was

largely accounted for by sideband leakage due to the limited

length of the time series (data not shown).

Collisions, thermal noise, and periodic motion can be

distinguished by their characteristic signatures in the velocity

power spectrum. Bacteria #4 and #5, which collided with

existing actin tails, had strong peaks in the power spectrum,

but the period of these peaks (1/fpeak ¼ 508 and 121 s,

respectively) was on the same order as the length of the

recording (510 and 184 s, respectively), indicating that the

events happened only once during the cycle. For bacteria #3

FIGURE 5 Bacterial instantaneous speeds

fluctuate over time. (A) Instantaneous velocity

for the six typical bacteria are plotted as a function

of time. Traces are numbered and colored as in

previous figures. Instantaneous velocity is de-

fined as the linear distance traveled by the

bacterial centroid between two frames divided

by the time elapsed between the two frames. For

each time bacterium, the number of cycles of the

peak frequency fpeak contained in the duration

tduration of the recording k ¼ fpeak tduration is

indicated. All scales are identical. (B) Corre-

sponding power spectra. Normalized power

(power/total variance) is plotted as a function of

frequency. For each spectrum, the period 1/fpeak

and the probability ppeak of seeing that peak

against the white-noise null hypothesis, as

described in the text, are indicated. All scales

are identical.

710 Soo and Theriot

Biophysical Journal 89(1) 703–723



and #6, power was distributed uniformly across the spectrum

with no peaks, as would be expected from thermal motion or

frame-to-frame jitter.

Many of the observed peaks in velocity power spectra

appear to be significantly stronger than would be expected

from a stationary random process. To test whether power

spectrum peaks could have occurred by chance, we calculated

the probability ppeak that a given peak in the frequency

spectrum was to be generated by a stationary random process

with the same measured total variance. In this hypothetical

case, the probability of such a peak occurring is linearly

dependent on the length of the sample and inversely

exponentially dependent upon the normalized height (see

Materials and Methods). This method of gauging peak heights

takes into account the length of the recording, which varies

from a minimum of 32 frames to a maximum of 256 frames.

For the six bacteria shown in Fig. 5, the calculated values of

ppeak are shown, ranging between 0.4 and 1 3 10�13. Four of

the six peaks have ppeak , 0.001, meaning that the probability

that they were generated by chance is ,1:1000. Using

a conservative significance threshold of ppeak, 0.001, 30% of

the entire population had peaks not expected from chance.

We used the collision signature in the velocity power

spectrum to estimate the fraction of bacteria which collided

with objects while under observation. Because an individual

bacterium usually collides only once with an object during

a recording, the number of cycles k at the peak frequency in

these cases is ,2, and values of k . 2 tend to be trajectories

with regular periodic motions. According to this criterion,

bacteria which collided with obstacles during the observation

period (ppeak , 0.001, k, 2) comprised ;17% of the entire

population, and bacteria which showed significant, non-

collision periodic oscillations (ppeak , 0.001, k . 2)

comprised 13% of the entire population. Nearly all significant

peaks in this latter population occurred at low frequencies

(,0.06 Hz).

Existing models of bacterial motion predict a general re-

lationship between the frequency of large peaks in the velocity

power spectrum and average bacterial speed. Previous reports

indicate that mutant bacterial strains carrying certain variants

of ActA (30) and wild-type bacteria trapped tightly between

two parallel glass coverslips (39) show strong periodic

fluctuations in speed. It has been proposed that periodic

motion arises from catastrophic failure of bonds on the

bacterial surface (18), in which case distance traveled during

the rapid phase of movement may be related to the length of

the bacterium. According to this hypothesis, the temporal

frequency of significant periodic fluctuations and the average

speed of the bacterium should be correlated. Furthermore, the

frequency of nonsignificant peaks, and peaks due to collisions

should not be correlated with the average speed of the

bacteria, as they arise from independent sources.

We found a linear correlation between the frequency of

periodic motion and average bacterial speed among bacteria

with significant peaks in their power spectrum, supporting

the catastrophic failure hypothesis. Peak frequency as a

function of bacterial speed is shown in Fig. 6. For the

bacteria whose spectra did not include significant peaks

( ppeak . 0.001), the highest observed peak was often at

high frequency (0.15–0.25 Hz), consistent with frame-to-

frame jitter from positional noise or Brownian motion. The

peak frequencies of bacteria with singular events (ppeak ,

0.001, k , 2) showed no obvious correlation between peak

frequency and speed. However, the peak frequency of

bacteria with significant periodic speed fluctuations with

several repetitions (ppeak , 0.001, k . 2) was strongly

correlated with the average normalized (to bacterial length)

linear speed of the bacterium. This correlation suggests that

the length constant corresponding to the periodic temporal

fluctuation has a fixed spatial frequency of 0.6 bacterial

lengths (1.2 mm) independent of the average bacterial

speed.

FIGURE 6 Peak frequency is correlated with bacterial speed for bacteria

with periodic speed oscillations. The frequency of the maximum peak fpeak is

plotted as a function of bacterial speed normalized to bacterial length

(lengths/s). Each point represents one bacterium, categorized into one of

three categories. Bacteria for which the peak strength is weak ppeak . 0.001

are plotted in gray. Bacteria which have significant peaks ppeak , 0.001 but

have two or fewer cycles at fpeak (k , 2) are plotted in red. Bacteria with

significant peaks and more than two cycles at fpeak are plotted in blue.

Representative bacteria are also shown (large dots), with colors and numbers

as in previous figures.
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Relationship between speed and average actin
filament density distribution

Experimental evidence suggests that bacterial movement and

the dynamics of the actin tail are closely coupled. Actin

polymerization is required for movement (32) and movement

is always accompanied by the formation of an actin tail. On

encountering objects, actin tail density increases briefly

before movement continues (see movie in Supplementary

Material) and large fluctuations in velocity are correlated

with changes in surface actin density for both bacteria and

beads (12,18,30,39). Finally, in the presence of methylcel-

lulose, bacterial movement is slowed and actin tail density

increases (11). Several models have been proposed in which

change in the actin gel density (18) and actin filament density

(17) have varying effects on bacterial movement. Although

we cannot measure absolute actin density, we are able to

accurately measure relative actin density in our high-

throughput system as a function of location using fluores-

cence intensity.

To measure average actin density relative to background

on the surface of the bacterium, we divided the fluorescence

values in the frame by the average fluorescence of points in

the background away from the bacterium and other actin

tails. We then computationally translated and rotated the

frame so that the bacterium was always centered and oriented

in the same direction. By averaging together frames with

movement information subtracted, we were able to construct,

for each individual bacterium, a map of the average relative

actin density over time with respect to the bacterial surface.

FIGURE 7 Bacterial average fluorescence

distributions are stereotyped and vary system-

atically as a function of bacterial speed. (A)

Typical maps in the bacterial frame of reference

of the time-averaged rhodamine-actin (red) and

tracking channel (blue) signals are plotted.

Darker sections represents higher density. Each

plot represents one bacterium, numbered as in

previous figures. Bacteria are aligned so that they

are always moving toward the right. Intensities

are normalized by bacterium. (B) Average actin

tail density. The map was generated by aver-

aging together centroid-aligned maps of 7902

bacteria, with no normalization among bacte-

ria. The position of the longitudinal section

along the long axis of the bacterium and tail is

indicated by dark lines. (C) Average longitu-

dinal profiles of actin density vary systemati-

cally with average speed. Bacteria were divided

into six subpopulations according to average

speed and the average longitudinal profile for

each subpopulation calculated and plotted with

corresponding color and line pattern. Actin

density relative to background is plotted as

a function of position along the long axis. (D)

Average longitudinal profiles of the tracking

channel for the same subpopulations. In this

case profiles are normalized to unit height.
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The relative density maps for the six representative

bacteria (Fig. 7 A) have the comet-tail profile expected

from visual inspection of the raw movies. In all six cases,

actin tail density is oriented along the long axis of the

bacterium, rises along the bacterial surface, peaks near the

rear end of the bacterium, and falls off rapidly with distance

behind the bacterium. The fall-off is largely due to actin

depolymerization (29), but also is influenced by variations in

curvature of the bacterial trajectory over time. With the ex-

ception of stationary bacteria and laterally moving bacteria,

the majority of actin tails for moving bacteria appear similar

to the six examples. These results are consistent with

qualitative observations that actin density is highest near the

rear of the bacterial surface.

The same comet-tail structure, with minor differences, is

present in the average of the actin maps across the entire

population, including both stationary and nonmoving bac-

teria (Fig. 7 B). Unlike the individual actin density maps,

however, there is no average curvature in the actin density,

as expected because there is no net average curvature in the

averaged trajectories of the entire population. In addition,

the actin tail is shorter behind the bacterium than in any

individual case, as the density is, on average, spread over

a larger area due to the varying curvatures of individual

bacteria.

By dividing the large population into subsets of bacteria

moving with similar average speeds, we have discovered that

the shape of the comet tail depends systematically upon

bacterial speed, with a discontinuous transition at a low

speed threshold. To quantify the shape of actin tail near the

bacterial surface, we measured the actin tail density along

a straight line through the long axis of the bacterium (Fig. 7

B) generating an average density profile for each bacterium.

We sorted bacteria into groups by their average linear speeds

and calculated the average profile of each group, shown

in Fig. 7 C. In the case of essentially stationary bacteria

(moving more slowly than 10 nm/s), the average profile

closely mirrored the bacterial profile (Fig. 7 D), and fell off

rapidly with distance from the bacterium. For bacteria

moving more rapidly than 10 nm/s, the average profile

became sharply asymmetric, with lowered density near the

front of the bacterium and a peak in density near the rear of

the bacterium. As speeds increased, the peak density sys-

tematically decreased and stretched further behind the bac-

terium. This result is surprising since simple physical models

tend to predict that bacterial speed should increase with

increasing actin density, contrary to our experimental ob-

servation (17). These results also suggest that there is a

highly discontinuous transition in actin tail profile near a

speed threshold of 10 nm/s, consistent with previous ob-

servations that actin-associated bacteria exist in a bimodal

population, where each bacterium is either stationary in

a nearly uniform actin cloud or motile with an elongated

actin tail (40).

Parameterization of the longitudinal actin
tail profile

Although the above measurement is sufficient to capture

variations near the bacterial surface, the comet tail extends

several micrometers behind the bacterium; how the tail is

shaped is not easily captured without taking into account the

curvature of the actin tail. Several observations suggest that

most of the variation in the actin is captured in how its

average density varies as a function of distance along its

central axis regardless of curvature, the longitudinal actin
tail profile. The tail does not appear to compress or expand

significantly during its decay (29), or move laterally except

as a whole (unpublished observations), suggesting that points

in the actin tail remain fixed both relative to one another and

relative to the background over time. In fluorescence and

electron micrographs, the actin tail appears bilaterally sym-

metric (29,32,40) with width comparable to the width of the

bacterium along the entire length of the tail. Cross-sections

of actin density taken perpendicular to the previous trajectory

of the bacterium (Fig. 1 B) are approximately Gaussian

in cross-section behind the bacterium, with little variation in

width or lateral position, with most variation occurring in

overall density (fits are not shown).

Longitudinal actin tail profiles qualitatively match what is

expected from classical descriptions of the actin tail. The

classical description of the tail derived from static immuno-

fluorescence and electron micrographic techniques (4,29,32,

40–42) is of a cometlike structure, with highest actin density

near the bacterium and a gradual exponential decay with

distance. As expected from these observations, in the

longitudinal actin tail profiles of the individual bacteria we

examined, the intensity of the actin fluorescence in the tail

increased rapidly along the length of the bacterium, peaking

in the region 0.1–0.5 mm past the rear end of the bacterium

(Fig. 8 B). The intensity of the tail then decays approximately

exponentially with distance from the bacterium.

The extended longitudinal profile of the actin tail of mov-

ing (average speed . 10 nm/s) bacteria without collisions

from other bacteria or with other actin tails were closely fit

by a sharp exponential step function convolved with a nor-

malized Gaussian kernel (i.e., the blurred exponential; see

Fig. 8 A). On inspection, poor fits were due to collisions of

bacteria with existing actin tails. In addition, bacteria with

average speeds below 10 nm/s, in which the actin profile

closely mirrored the bacterial profile, were generally poorly

fitted by this function.

The shape of the longitudinal actin tail profile is strongly

dependent upon how quickly the bacterium is moving and

suggests several physical interpretations of the shape of the

tail. For the bacteria with good fits, the profile of the tail

could be fully described by four parameters: the spatial decay

constant k of the exponential, the width s2 of the blurring

Gaussian, the offset d of the exponential anchor point from

the bacterial end, and the overall magnitude scaling factor a.
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Representative fits to four representative traces are shown in

Fig. 8 B, and how the four parameters change as a function of

average speed for a subset of 250 representative bacteria are

plotted in Fig. 9. The spatial decay constant k of the un-

derlying exponential was directly proportional to speed,

consistent with previous findings indicating that tail decay

rates are constant in time with decay time on the order of 30 s

(7,29). This was confirmed by direct measurement of decay

time constants of points of the path of the bacterium (data not

shown). The typical width s2 of the Gaussian kernel was

0.8–1.1 mM, only twofold greater than the width of the

expected optical diffraction kernel at the emission wave-

length of the rhodamine dye (590 nm), suggesting that many

features of the tail profile, such as the rising phase and the

rearward location of the peak, can be partially explained as

optical blurring of a sharper underlying distribution. The

anchor position of the exponential d was, on average, 0.5 mm

from the bacterial end and was slightly negatively correlated

with bacterial speed, suggesting that some part of the

underlying structure of the tail slips rearward with increasing

speed, consistent with the observations of average actin

profiles shown in Fig. 7 C. The overall scaling factor a was

slightly negatively correlated with speed, again consistent

with the observations of lower average actin density for

tails associated with faster-moving bacteria as shown in

Fig. 7 C.

Correlations between speed fluctuations and
changes in actin density

Existing observations suggest that fluctuations in actin

density at the bacterial surface are negatively correlated

with fluctuations in speed, and it has been proposed that this

cross-correlation is related to force generation by the actin

tail. When bacteria encounter an obstacle in their path, they

slow down and the actin density behind the bacterium

increases (see Movies 2–4 in Supplementary Material). For

saltatory bacteria (18) and large latex beads (12), the phase

density of the actin tail on the rear surface is correlated with

speed for those periodic speed changes. In the watermelon-

FIGURE 9 Longitudinal tail profile parameters as a function of speed

for a subset of 250 representative bacteria. (A) Fitted values for k, s, d, and

a as a function of speed. Each point represents parameter for one bacterium.

Linear regression and regression parameters are shown. Representative

examples shown in Fig. 8 are labeled. (B) Histogram of speed distribution

for this subset of 250 bacteria, with fit to normal distribution.

FIGURE 8 Extended bacterial tail profiles are well described by a simple

mathematical function. (A) Schematic of blurred exponential function

described in text, with s, k, offset (d), and scaling (a). (B) Representative fits

of blurred exponential (black) to measured average actin tail profiles (red)

for four bacteria, different than previous examples. Individual bacterial

average speeds are indicated in the legend. (C) Corresponding longitudinal

cross-sections from the tracking channel, indicating the relative position of

the bacterium.
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seed model, it has been proposed that energy generated by

polymerization is stored by the elastic compression of the

actin tail behind the bacterium, and released by catastrophic

breakage of frictional bonds between the actin tail and

bacterial surface (18). This model predicts that the density of

the actin gel near the front of the bacterium will be negatively

correlated with speed, and that the density near the rear of the

bacterium will be positively correlated with speed.

To quantify the relationship between bacterial speed and

actin tail dynamics, we calculated the linear cross-correlation

between fluctuations in actin density on the bacterial surface

and fluctuations in bacterial velocity over time. For initial

cross-correlation analysis, we chose two points on the

bacterial surface, one near the front and one near the rear,

schematically shown in Fig. 10 A. For each of the six typical

bacteria, Fig. 10 B shows the actin density for those two

points and instantaneous bacterial speed as a function of

time. We calculated the linear cross-correlation coefficient

between the actin density and instantaneous speed r ¼
ð1=ðN � 1ÞÞ+N

i¼1
ððxi � �xxÞðyi � �yyÞ=sxsyÞ, where x and y are

defined as the actin density and instantaneous speed at a point

in frame i; �xx and �yy are the mean values of x and y over the

entire time series; sx and sy are the standard deviations of x
and y over the entire time series; and N is the number of

frames in the movie. The calculated values of r, which must

range between �1 and 1, are shown for each set of traces in

Fig. 10. A positive value of r indicates that fluctuations in

actin density and speed at their respective means were, on

average, in the same direction at the same time. A negative

value of r indicates that, on average, the fluctuations were in

opposite directions, e.g., high actin density and low speed.

The coefficient r is strongly influenced by singular events,

such as the collision of the bacterium with an existing actin

tail. For instance, bacterium #5 encountered its own actin tail

approximately midway through its recording. This collision

is visible as a sudden, large increase in actin density for the

point near the front of the bacterium. The bacterium slowed

nearly to a stop, seen as a corresponding decrease in bacterial

instantaneous speed. As the bacterium passed through

the obstacle, the actin density at the front point decreased,

and the bacterium returned to its characteristic speed. The

sequence of events for the rear point is similar, except for

a delay in time, and a much higher increase in density than

expected from just passing through the obstacle. In this series

of events the actin density and instantaneous speed were in-

versely related; r was negative for both front and rear points.

The pattern of positive and negative r along the length of

the bacterium can be accounted for by a combination of

latency in the density fluctuations of the actin tail and for-

ward movement of the bacterium over time, as proposed by

the elastic gel model (18). For bacteria #1 and #2, the

periodic variations in speed were positively and negatively

correlated with fluctuations in actin density near the rear and

the front of the bacterium, respectively. This is visible in the

individual movies as fluorescence intensity pulsations in the

actin tail as the bacterium moved more quickly or slowly.

Because the bacterium moved forward in space over time,

and assuming that the tail remained stationary, the change in

sign is consistent with a phase shift of one-half cycle.

Whether the phase is advanced or lagging is indicated by the

cross correlation between the time derivative of the actin

density fluctuations and bacterial speed (data not shown). In

these cases, the bacteria was moving faster when actin

FIGURE 10 Calculation of the cross-correlation between actin density

and bacterial speed as a function of time. (A) Schematic diagram of

bacterium (blue), actin tail (red), and representative regions (white squares)

in the front and rear of the bacterium. (B) Representative examples of how

actin density in the front and rear of the bacterium (thick lines) vary as

a function of time. Since the actin tail is denser near the rear of the bacterium,

traces corresponding to actin density from the rear of the bacterium are the

higher of the two traces. Scale bars indicate density normalized to

background. All scales are identical. Normalized instantaneous speed is

shown for comparison (gray traces). Numbers and colors representing

individual bacteria are as in Figs. 2–6. The correlation coefficient r between

the density and speed traces in each graph is calculated as described in the

text, where rfront indicates correlation coefficient for front trace and rrear is

coefficient for rear trace.
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density was decreasing, corresponding to a phase lag. This is

consistent with the watermelon-seed model (18), in which

the buildup of actin density along the sides of the bacterium

causes the slippage of the bacterium forward. In this case, the

density of the actin gel behind the bacterium would increase

as the bacterium slips forward, leaving the region of high

density, and the density of the actin gel near the front surface

would decrease as it escapes the surrounding gel.

A systematic map of the cross-correlation coefficient r for

all positions on the bacterial surface and surrounding area

show similar patterns both in individuals and across the

entire bacterial population. In Fig. 11 A, the colors in the

pseudo-colored maps indicate the value of r at that position

relative to the bacterium for the six typical bacteria. Near the

bacterial surface, the actin tail density fluctuations were

negatively correlated with the rate of movement. Behind the

bacterium the correlation was positive. Far from the

bacterium, the correlation tended toward zero, as expected

for random noise. The same pattern is seen in the average

cross-correlation r as a function of position for the entire

population (Fig. 11 B).

The shape of the pattern was maintained even if different

subgroups of bacteria exhibiting different average speeds,

lengths, or degree of periodic movement were used in the

calculation, but the strength of the correlation varied among

subpopulations. The strength of the cross-correlation is

strongest for bacteria that show significant peaks in their

power spectra (Fig. 11 C), despite relatively small differ-

ences in the average actin profile for these bacteria relative to

the bacteria without significant peaks (Fig. 11 D). The strong

FIGURE 11 The correlation between bacterial

movement and actin tail dynamics varies widely,

but on average is negative on the bacterial surface

and positive behind the bacterium. (A) Maps of the

correlation between local fluorescence and speed

fluctuations for represented, are plotted, with num-

bers as in previous figures. Each map represents one

bacterium. (B) Average cross-correlation map for

entire population of 7902 bacteria. Map is generated

by averaging together centroid-centered individual

cross-correlation maps, without normalization. The

position of the longitudinal cross-section is indicated

by dark lines. (C) Longitudinal profiles of cross-

correlation maps for three subpopulations of bacteria

defined in Fig. 6. Subpopulation with nonsignificant

(ppeak . 0.001) peaks in velocity power spectra are

plotted in gray, those with significant peaks (ppeak ,

0.001) with few recorded cycles (k , 2) are in red,

and those with significant peaks and several cycles

(k . 2) are in blue. (D) Corresponding actin (dotted

lines) and tracking channel (solid lines) longitudinal

profiles, normalized to unit height.
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negative correlation near the front of the bacterium is

surprising because there is relatively little average actin

density in the front of the bacterium compared to the rear, yet

the fluctuations are nearly as strongly correlated with

fluctuations in speed, indicating that the number of actin

filaments located near the front of the bacterium exerts a

disproportionately larger influence on speed than the number

filaments at the rear.

Comparison of the accuracy of linear models
of the coupling between movement and actin
tail dynamics

We next compared the accuracy with which simple models

of the coupling between actin tail dynamics and movement

described the movement of the bacterium over time. The

elastic gel model, unfortunately, does not make exact pre-

dictions about the movement of the bacterium so we were not

able to include it in this comparison, but we were able to ask

how a simpler and more general linear model, in which the

speed of the bacterium depends upon the actin density at a

single point with coefficient r, performs compared to models

which take into account varying amounts of the past history

of actin tail dynamics.

As a measure of the accuracy of a given model, we used

the mean-square error x2. In this case we calculate x2 ¼
ð1=s2

actualÞ+N
i¼1

ðnpredictedðiÞ � nactualðiÞÞ2
, and divide by the

number of frames N, where nactual(i) is the actual measured

speed of the bacterium in the ith frame, npredicted(i) is the

speed of the bacterium predicted by the model, and sactual
2 is

the variance of nactual. This normalized error ranges in value

from 0 to 1, with 0 being a perfectly accurate guess, and 1
being a random guess. This is a special case of the more

general characterization of P(v|[actin]), applicable to rela-

tively small data sets.

Linear models which include varying past history con-

volve the actin density dactin(i) with a fixed causal linear

kernel rj of nr terms to produce a predicted velocity

npredictedðiÞ ¼ +nr�1

j¼0
rjdactinði� jÞ, where nr is the number

of frames in the past used to make the prediction. The simple

linear model is the case where nr ¼ 1. Although in general

the kernel can have any set of coefficients rj, we are in-

terested in the optimal model, i.e., the values of rj which

minimize the speed prediction error. These values could be

different for each bacterium, and we used each individual’s

own history as a best guide to estimating these values. To

calculate this kernel we used linear estimation techniques

(24) as described in Materials and Methods from a portion of

the motion and fluorescence data from each bacterium. This

is mathematically equivalent to calculating the causal trans-

fer function between dactin(i) and nactual(i), or calculating the

general linear least-squares fit between nactual(i) and a linear

combination of dactin(i) and its time derivatives.

Examples of actual and predicted velocities for the six

typical bacteria, calculated using varying amounts of past

history nr are shown in Fig. 12, A and B. The quality of the

predictions generally increased as a function of increasing

past history Fig. 12 C as seen by the falling value of

normalized x2, but plateaued with more than three or four

terms, indicating that the time frame over which speed

changes couple to changes in actin density was on the order

of 6–8 s. On inspection of typical kernel values, we found

that the optimal model effectively uses the time derivative in

addition to the instantaneous actin density in predicting

speed.

The relatively low absolute values of normalized x2

suggests that the model is only partially successful in

predicting the movement of the bacterium. Although adding

more free parameters to the model (as shown below),

including information from different parts of the bacterial

surface, or including nonlinearities in the model would both

increase the predictive power, a certain degree of un-

predictability is due to the inherent randomness in both the

movement of the bacterium and fluctuations in actin density.

Our approach is primarily useful for comparing the relative

performance of models, and setting lower limits on the in-

formation about speed carried in actin density fluctuations.

Using the same techniques, we asked how different

positions on the surface of the bacterium compare in terms of

the information they carry about bacterial speed. We

calculated how an optimal linear model with a past history

nr ¼ 5 (10 s) performed, given information about actin

density at different positions on the bacterial surface. How x2

varied as a function of position is shown for individual

examples in Fig. 13 A. Like the maps of cross-correlation,

several bacteria showed regions of high information density,

but in general the maps varied considerably in shape and

size. On average, there was more information for regions

near the surface of the bacterium than in the actin tail region,

as seen in the average over the entire population shown in

Fig. 13 B. The longitudinal cross-sections for the average

map showed the same trend of increasing accuracy with

increased history, with significant improvement for includ-

ing terms covering 2–8 s in the past and little improvement

between 8 and 10 s. The shape of the longitudinal cross-

section also suggests that density fluctuations near the front

of the bacterium were more strongly predictive of bacterial

motion, despite a much higher concentration of actin near the

rear of the bacterium, qualitatively consistent with the results

of our earlier cross-correlation analysis.

DISCUSSION

Variation in average bacterial speed

Our observations suggest that the broad population variation

in the average speed of the bacterium is largely determined

by factors unique to individual bacteria. Like previous

studies of bacterial motility we find that bacteria in Xenopus
frog egg cytoplasmic extract move with average speeds
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typically between 40 and 150 nm/s, and that these speeds are

broadly and randomly distributed throughout the population.

Previous studies have been unable to distinguish whether the

broad distribution of average speeds is due to undersampling,

or is a genuine reflection of long-term differences in indi-

vidual bacterial speeds. Within the limits of our measure-

ments, it appears that the spread of average speeds in the

population is in fact due to significant differences among

individual bacteria maintained over time. Individual bacteria

maintain their characteristic speeds over minutes or longer,

even after encounters with obstacles, and there is no evi-

dence for large, slow variations in speed over time. When

we resample our population using sample sizes comparable

to existing reports and exclude nonmoving bacteria, our

measured-population average speeds and standard deviations

are comparable to the findings published from smaller

sample sizes in the literature (data not shown).

Several previous studies have identified biochemical

and physical parameters that can be altered to change the

population average speed for actin-based motility, but

these potential sources of variation cannot account for our

observations. For ActA-coated beads with large variations

in size and therefore surface curvature, from 0.2 to 10

mm in diameter (12,28,43), average speed is strongly

affected by surface curvature. However, the natural range

of shape variation in our bacterial population (10%

variation width and 20% variation in length) is in-

sufficient to account for the large degree of speed

variation among individuals.

The speed of bacteria in cytoplasmic extract with added

methylcellulose is correlated with the thermal motion of

nearby latex spheres (11), suggesting that local variations in

viscosity may contribute to determining bacterial speed.

Contrary to this hypothesis, we did not observe any cor-

FIGURE 12 Calculation of the accuracy

with which a linear model predicts bacterial

speed given actin density. (A) Example pre-

dicted (colored traces) and actual (gray traces)

instantaneous velocities for the six representa-

tive bacteria, with colors and numbers as in

previous figures. Predicted velocities are cal-

culated as described in the text for nr ¼ 1, for

a location 1 mm behind the bacterial centroid

on the long axis of the bacterium. Normalized

x2 scores are calculated as described in the text

and shown next to each trace. (B) Scatter-plot

of predicted versus actual instantaneous veloc-

ities. Dark crosses represent the standard

deviations of actual and predicted speed

distributions for each individual bacterium,

and gray line is unit regression line. Coloration

of individual points is as in previous figures,

each point represents one pair of predicted/

actual instantaneous velocities, as calculated

in A. (C) Accuracy of predictions increases

as a function of past history included in the

calculation. Average x2 values for the entire

population at x ¼ 1 mm behind centroid are

shown as a function of increasing number of

terms nr used to make the prediction. Because

each time additional time-point is 2 s into the

past, nr of 1–6 correspond to 2–12 s of history

included in making the prediction.
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relation between bacterial speed and position within the

microscope slide, or proximity to faster or slower moving

bacteria. On several occasions, rapidly and slowly moving

bacteria traveled through the same region of the slide without

changing speed, suggesting that the differences in speed that

we observed were not due to variations in the local com-

position of the extract. Although the overall extract viscosity

may indeed affect the population average speed, it does not

seem that local variations in viscosity could be responsible

for the differences among individual bacteria.

One of the requirements for sustained bacterial movement

is the regeneration of free actin monomer through ATP hy-

drolysis. It is therefore possible that slow changes in the free

ATP concentration in the extract affect the speed of bacteria

over time, or that variations in speed among individuals may

be affected by spatial variations in ATP or actin monomer

availability. As noted above, however, rapidly and slowly

moving bacteria were frequently seen to be very close to one

another, indicating that the latter explanation is unlikely. We

did observe a decrease in the population average speed as

a function of age of the extract on the slide. Speeds decreased

at very early times (,30 min) and at late times (.180 min)

where secondary processes such as movement initiation (38),

or ATP depletion (15), would be expected, and on a much

slower timescale than our observations of individual bac-

teria. Nonetheless, even during early, middle, and late

phases, the distribution of characteristic speeds remained

broadly distributed and there was no indication from our

FIGURE 13 Actin density near the surface

of the bacterium is a better predictor of bac-

terial speed than density in the tail region. (A)

Maps of normalized x2 error from a linear

estimator are plotted for representative bacteria,

with numbers as in previous figures. White

represents x2 ¼ 1, and black represents x2 ¼
0.93. In this calculation 10 s of previous history

were included (nr ¼ 5). Bacteria are centered

and oriented as in previous figures. (B) Pop-

ulation average map of x2 values for 7902

bacteria. Longitudinal cross-section is indi-

cated by black lines. (C) x2 values along

longitudinal cross-section, for nr ¼ 1 to nr ¼ 5

indicated by the darkness of the traces. (D)

Corresponding normalized actin (dotted line)

and tracking channel (solid line) profile.
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measurements of systematic changes occurring on the 5–10

min timescale. Without being able to track individual bac-

teria for longer periods (.30 min), we cannot yet distinguish

whether the gradual shift in the characteristic speed

distribution is due to a very slow shift in individual bacterial

speeds, or to a decrease in the fraction of faster moving

bacteria with a concomitant increase in the number of slower

moving bacteria.

Our results most strongly support the hypothesis that

differences in average speed among individual bacteria are

due to long-lasting biochemical or physical differences

among bacteria. For example, the amount and distribution

of the ActA protein varies among different bacterial cells

depending on their stage in the cell cycle (44). Although the

average surface density of ActA does not appear to

significantly affect speed (28), the distribution of ActA

does, such that bacteria with relatively greater amounts of

ActA along the sides or near the leading pole tend to have

slower speeds (38). Consistent with this hypothesis, we have

observed that high actin densities along the sides or near the

front of moving bacteria are negatively correlated with speed,

both at the level of population averages and for temporal

fluctuations in speed for individuals. Another possible source

of long-lived variation comes from the autocatalytic nature of

actin polymerization; because the Arp2/3 complex activated

by ActA nucleates a new actin filament most effectively when

it is also bound to the side of a preexisting actin filament

(9,45), the growth and density of an actin gel can depend

strongly on its previous structure. We propose that ActA

distribution and other persistent variations in the structure of

the bacterium-comet tail system may be primarily responsible

for the large amount of individual-to-individual variation in

average speed that we have documented here.

Variations in bacterial motion over time

We have shown that variation in the speed of movement of

an individual bacterium over time can be attributed to three

sources: singular collisions with obstacles, uniform stochas-

tic noise, and regular periodic fluctuations. The rate of col-

lisions is determined by the density and average speed of

bacteria in the extract. Positional noise in tracking, thermal

noise in the form of lateral bending of the actin tail, and

genuine variations in the forward rate of movement con-

tribute, to varying degrees, to stochastic and periodic varia-

tion. Significant periodic motion is characteristic of a subset

(13%) of wild-type bacteria under normal conditions.

Steplike motion and periodic motion are both thought to

be closely related to the mechanism of force production and

regulation of movement. In high-resolution measurements,

bacteria move with small, nanometer-scale steps (11,19)

attributed to discrete bond breakage events at the bacterial

surface (17,46). Under certain conditions, both bacteria and

beads also move with large, regular micrometer-scale steps

(12,30,39), which have been modeled as the catastrophic

breakage of the adhesive bond between the bacterium and

surrounding actin gel (18).

One of the important questions raised is whether the size

or frequency of steplike motion is, like average speed,

a characteristic of individual bacteria. Existing data and

models are equivocal. For instance, nanometer-scale steps

appear to be on the order of the spatial periodicity of the actin

filament (19), leading to the hypothesis that step size may be

closely related to the actin filament periodicity, regardless of

bacterial geometry. On the other hand, the size and frequency

of micrometer-scale variations in elastic gel models appears

to depend upon the geometry and surface characteristics of

individual particles (12,18), leading to the hypothesis that the

geometry of the bacterium critically determines step size for

these large-scale periodic variations. Supporting this hy-

pothesis, large beads in purified extract appear to move with

fixed temporal period with a spatial period inversely de-

pendent upon bead size (12). Individual recordings for

mutant bacteria suggested a spatial period that varies be-

tween 1 and 4 mm (30), approximately the same order as the

bacterial length (1 mm); however, this sample consisted of

just three bacteria.

Our technique cannot currently resolve nanometer-scale

steps and so we cannot directly answer the question of

whether the size or frequency of nanometer-scale steps are

correlated with average bacterial speed. We did find, how-

ever, that the time constant of the strongest large-scale

periodic oscillations appeared to be linearly correlated with

average speed with a period slightly under one bacterial

length. This period is on the same scale as the size of the

bacterium, supporting the hypothesis that a relatively simple

geometric mechanism may determine the size of large steps.

One prediction of this hypothesis is that the spatial period of

the motion of smaller and larger objects, such as latex beads,

or strains of bacteria of different sizes, should vary with the

length of the object.

Our finding that periodic oscillations are widespread and

quite strong, compared to the stochastic component in a large

fraction of the wild-type bacterial population, is quite sur-

prising. Although the prevailing view had been that periodic

oscillations were an isolated property of particular mutants

(18,30) or a secondary phenomenon related to the character-

istics of the enclosing chamber or the physical properties of the

propelled object (12,39), our data suggest that this phenom-

enon is fairly common even for wild-type bacteria moving

under normal conditions, with statistically significant regular

periodicity in the movement of .;13% (as compared with

a 0.1% predicted fraction). That the periodicity is slow (on the

order of 10–30 s for bacteria moving at typical speeds)

compared to typical time constants for the biochemical

reaction in the system (microseconds for actin diffusion and

binding) suggests that this timescale may be more a reflection

of the typical speeds and lengths of the system than of a slow

biochemical process, but without further experimental evi-

dence, both mechanisms are possible.
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Co-variation between actin tail density and speed

We found that the actin tail generally increased in length

with increasing speed, as expected from previous studies.

We also show strong evidence for a distinct transition in

actin tail shape between nonmoving and moving bacteria that

occurs near 10 nm/s, corresponding to the transition from an

actin cloud to an actin tail as originally described mor-

phologically (40). Strikingly, we have found that the actin

tail shape of moving bacteria can be closely described by

a simply parameterized blurred exponential function which

changes systematically with average speed. As expected, the

exponential spatial constant increased linearly with speed,

corresponding to a fixed temporal decay time constant of

;30 s. The width of the blurring function was on the order

predicted from optical effects and is independent of speed, as

might be expected from a combined optical and diffusion

effect. The shift in the tail anchor position could reflect

a change in the underlying tail profile near the rear of the

bacterium. This simple parameterization may be useful in

future quantitative studies of actin tail formation and

function.

Our observations of actin tail density as bacteria collide

with objects and our cross-correlation analysis contradict

specific aspects of existing theories of actin polymerization-

based motility, and suggest that changes in actin gel density

may be important to account for in future models. In

Brownian ratchet models, forward motion is the product of

a continuous balance between thermally driven, polymer-

ization-rectified forward motion and resistive forces (16,17).

A common characteristic of this class of models is that the

density of the actin tail does not influence the speed of the

bacterium. Our observations show the contrary; for

example, on encountering obstacles such as bacterial tails,

bacteria slow, and the density of actin on the back surface

and some distance behind the bacterium increases. This

behavior is consistent with previous observations of

variations in actin tail density in static immunofluorescence

micrographs, and variations in the density of actin tails

behind ActA mutant bacteria undergoing saltatory motion

(30), and is quantitatively and systematically captured in the

cross-correlation map between actin density and instanta-

neous speed for individual bacteria, where there is a positive

correlation between speed and actin density behind the

bacterium, and a negative correlation along the sides and

near the front of the bacterium. In the elastic gel models

proposed to explain periodic speed variations (18) the gel

itself is assumed to be incompressible, so actin density

variations due to compression are not predicted. The only

current biophysical models which predict changes in actin

density with speed or load are computational models of

growing branched actin networks near barriers (47,48).

These simulations suggest that the density of a growing

branched actin gel should become higher as the resistive

force increases, such that net velocity remains nearly

constant. Our results demonstrate that the compensation of

increased force generated by increased actin density is not

quite sufficient to maintain constant speed, such that, in

reality, both net speed and actin gel density vary

periodically.

Our measurements do indicate that the actin density near

the front of the bacterium is inversely correlated with bac-

terial velocity; this is qualitatively consistent with the elastic

gel model in that the retarding force is roughly proportional

to the thickness of the elastic gel surrounding the bacterial

surface and that in certain regimes, the bacterium may be

pushed forward rapidly enough to escape the retarding layer,

which then grows back slowly. Our finding that there is no

correlation between the dimensions of the bacterium (either

length or width or the ratio of the two) and the average rate of

motion suggests, however, that this model, which is highly

dependent upon the radius of curvature of the back end of

the bacterium, may not determine the characteristic rate of

forward movement.

Our comparison of the performance of several linear

models suggests that movement depends on both the past

history and position of fluctuations in actin density near the

bacterial surface. During the 5–10 s history, the bacterium

travels approximately one-quarter to one-half length. This is

on the same order as the spatial period observed for periodic

fluctuations. The fluctuations near the front of the bacterium

are more predictive of speed, despite the lower average

actin density near the front. Although the performance of

models that have more free parameters, or that include

nonlinearities may be higher, it is also correspondingly

more difficult to test and interpret the physical basis for

these models; we believe that more experiments, rather than

more modeling, are required to elucidate the relationship

between actin tail density and the rate of bacterial

movement.

From our observations, we speculate that a stochastic,

density-dependent frictional reaction acting along the

surface of the bacterium may regulate the movement of

the bacterium, a frictional mechanism similar to that

proposed in the elastic gel model (18). Sudden rupture of

the frictional bonds could result in movement forward of

approximately one-bacterial-length, resulting in periodic

speed oscillations with the correct cross-correlation between

the actin gel density and the rate of movement. Variations in

surface bond density could influence the rupture threshold

and the relaxation distance, such that most parameters will

give essentially smooth and constant movement as observed

for ;70% of our large population. In this model, bacterial

motion is regulated primarily by the rate of rupture of

frictional surface bonds. One difference between this model

and existing models is that, although the energy for rupture

ultimately comes from the polymerization reaction, the

release of this energy and thus variability in movement is

regulated by the rate of dissociation of bonds between the

bacterial surface and the actin tail.
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SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.

REFERENCES

1. Cameron, L. A., P. A. Giardini, F. S. Soo, and J. A. Theriot. 2000.
Secrets of actin-based motility revealed by a bacterial pathogen. Nat.
Rev. Mol. Cell Biol. 1:110–119.

2. Goldberg, M. B. 2001. Actin-based motility of intracellular microbial
pathogens. Microbiol. Mol. Biol. Rev. 65:595–626.

3. Pantaloni, D., C. Le Clainche, and M. F. Carlier. 2001. Mechanism of
actin-based motility. Science. 292:1502–1506.

4. Dabiri, G. A., J. M. Sanger, D. A. Portnoy, and F. S. Southwick. 1990.
Listeria monocytogenes moves rapidly through the host-cell cytoplasm
by inducing directional actin assembly. Proc. Natl. Acad. Sci. USA. 87:
6068–6072.

5. Nanavati, D., F. T. Ashton, J. M. Sanger, and J. W. Sanger. 1994.
Dynamics of actin and a-actinin in the tails of Listeria monocytogenes
in infected PtK2 cells. Cell Motil. Cytoskeleton. 28:346–358.

6. Lacayo, C. I., and J. A. Theriot. 2004. Listeria monocytogenes actin-
based motility varies depending on subcellular location: a kinematic
probe for cytoarchitecture. Mol. Biol. Cell. 15:2164–2175.

7. Theriot, J. A., J. Rosenblatt, D. A. Portnoy, P. J. Goldschmidt-
Clermont, and T. J. Mitchison. 1994. Involvement of profilin in the
actin-based motility of L. monocytogenes in cells and in cell-free
extracts. Cell. 76:505–517.

8. Welch, M. D., A. Iwamatsu, and T. J. Mitchison. 1997. Actin
polymerization is induced by Arp2/3 protein complex at the surface of
Listeria monocytogenes. Nature. 385:265–269.

9. May, R. C., M. E. Hall, H. N. Higgs, T. D. Pollard, T. Chakraborty,
J. Wehland, L. M. Machesky, and A. S. Sechi. 1999. The Arp2/3
complex is essential for the actin-based motility of Listeria mono-
cytogenes. Curr. Biol. 9:759–762.

10. Loisel, T. P., R. Boujemaa, D. Pantaloni, and M. F. Carlier. 1999.
Reconstitution of actin-based motility of Listeria and Shigella using
pure proteins. Nature. 401:613–616.

11. McGrath, J. L., N. J. Eungdamrong, C. I. Fisher, F. Peng, L.
Mahadevan, T. J. Mitchison, and S. C. Kuo. 2003. The force-velocity
relationship for the actin-based motility of Listeria monocytogenes.
Curr. Biol. 13:329–332.

12. Bernheim-Groswasser, A., S. Wiesner, R. M. Golsteyn, M. F. Carlier,
and C. Sykes. 2002. The dynamics of actin-based motility depend on
surface parameters. Nature. 417:308–311.

13. Schwartz, I. M., M. Ehrenberg, M. Bindschadler, and J. L. McGrath.
2004. The role of substrate curvature in actin-based pushing forces.
Curr. Biol. 14:1094–1098.

14. Giardini, P. A., and J. A. Theriot. 2001. Effects of intermediate fila-
ments on actin-based motility of Listeria monocytogenes. Biophys. J.
81:3193–3203.

15. Marchand, J. B., P. Moreau, A. Paoletti, P. Cossart, M. F. Carlier, and
D. Pantaloni. 1995. Actin-based movement of Listeria monocytogenes:
actin assembly results from the local maintenance of uncapped filament
barbed ends at the bacterium surface. J. Cell Biol. 130:331–343.

16. Mogilner, A., and G. Oster. 1996. Cell motility driven by actin
polymerization. Biophys. J. 71:3030–3045.

17. Mogilner, A., and G. Oster. 2003. Force generation by actin poly-
merization II: the elastic ratchet and tethered filaments. Biophys. J.
84:1591–1605.

18. Gerbal, F., P. Chaikin, Y. Rabin, and J. Prost. 2000. An elastic analysis
of Listeria monocytogenes propulsion. Biophys. J. 79:2259–2275.

19. Kuo, S. C., and J. L. McGrath. 2000. Steps and fluctuations of
Listeria monocytogenes during actin-based motility. Nature. 407:
1026–1029.

20. Theriot, J., and D. C. Fung. 1997. Use of Xenopus egg extracts for
studies of actin-based motility. In Cell Biology: A Laboratory
Handbook, 2nd Ed. J.E. Celis, editor. Academic Press, NY. 157–175.

21. Murray, M. T., G. Krohne, and W. W. Franke. 1991. Different forms of
soluble cytoplasmic mRNA binding proteins and particles in Xenopus
laevis oocytes and embryos. J. Cell Biol. 112:1–11.

22. Leimeister-Wachter, M., and T. Chakraborty. 1989. Detection of
listeriolysin, the thiol-dependent hemolysin in Listeria monocytogenes,
Listeria ivanovii, and Listeria seeligeri. Infect. Immun. 57:2350–2357.

23. Wilson, R. L., A. R. Tvinnereim, B. D. Jones, and J. T. Harty.
2001. Identification of Listeria monocytogenes in in-vivo induced genes
by fluorescence-activated cell sorting. Infect. Immun. 69:5016–5024.

24. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
1992. Numerical Recipes in C. Cambridge University Press, New York.

25. Wiesner, S., E. Helfer, D. Didry, G. Ducouret, F. Lafuma, M. F.
Carlier, and D. Pantaloni. 2003. A biomimetic motility assay provides
insight into the mechanism of actin-based motility. J. Cell Biol. 160:
387–398.

26. Smith, G. A., J. A. Theriot, and D. A. Portnoy. 1996. The tandem
repeat domain in the Listeria monocytogenes ActA protein controls the
rate of actin-based motility, the percentage of moving bacteria, and the
localization of vasodilator-stimulated phosphoprotein and profilin.
J. Cell Biol. 135:647–660.

27. Rosenblatt, J., B. J. Agnew, H. Abe, J. R. Bamburg, and T. J.
Mitchison. 1997. Xenopus actin depolymerizing factor/cofilin (XAC) is
responsible for the turnover of actin filaments in Listeria mono-
cytogenes tails. J. Cell Biol. 136:1323–1332.

28. Cameron, L. A., M. J. Footer, A. van Oudenaarden, and J. A. Theriot.
1999. Motility of ActA protein-coated microspheres driven by actin
polymerization. Proc. Natl. Acad. Sci. USA. 96:4908–4913.

29. Theriot, J. A., T. J. Mitchison, L. G. Tilney, and D. A. Portnoy. 1992.
The rate of actin-based motility of intracellular Listeria monocytogenes
equals the rate of actin polymerization. Nature. 357:257–260.

30. Lasa, I., E. Gouin, M. Goethals, K. Vancompernolle, V. David,
J. Vandekerckhove, and P. Cossart. 1997. Identification of two
regions in the N-terminal domain of ActA involved in the actin
comet tail formation by Listeria monocytogenes. EMBO J. 16:1531–
1540.

31. Geese, M., K. Schluter, M. Rothkegel, B. M. Jockusch, J. Wehland,
and A. S. Sechi. 2000. Accumulation of profilin II at the surface of
Listeria is concomitant with the onset of motility and correlates with
bacterial speed. J. Cell Sci. 113:1415–1426.

32. Sanger, J. M., J. W. Sanger, and F. S. Southwick. 1992. Host cell actin
assembly is necessary and likely to provide the propulsive force for
intracellular movement of Listeria monocytogenes. Infect. Immun.
60:3609–3619.

33. Lauer, P., J. A. Theriot, J. Skoble, M. D. Welch, and D. A. Portnoy.
2001. Systematic mutational analysis of the amino-terminal domain of
the Listeria monocytogenes ActA protein reveals novel functions in
actin-based motility. Mol. Microbiol. 42:1163–1177.

34. Auerbuch, V., J. J. Loureiro, F. B. Gertler, J. A. Theriot, and D. A.
Portnoy. 2003. Ena/VASP proteins contribute to Listeria monocyto-
genes pathogenesis by controlling temporal and spatial persistence of
bacterial actin-based motility. Mol. Microbiol. 49:1361–1375.

35. Rutenberg, A. D., and M. Grant. 2001. Curved tails in polymerization-
based bacterial motility. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
64:021904.

36. Dunn, G. A. 1983. Characterising a kinesis response: time averaged
measures of cell speed and directional persistence. Agents Actions
Suppl. 12:14–33.

37. Vignjevic, D., D. Yarar, M. D. Welch, J. Peloquin, T. Svitkina, and
G. G. Borisy. 2003. Formation of filopodia-like bundles in vitro from
a dendritic network. J. Cell Biol. 160:951–962.

722 Soo and Theriot

Biophysical Journal 89(1) 703–723



38. Rafelski, S. M., and J. A. Theriot. 2004. Crawling toward a unified
model of cell motility: spatial and temporal regulation of actin
dynamics. Annu. Rev. Biochem. 73:209–239.

39. Fung, D. C., and J. Theriot. 1998. Movement of bacterial pathogens
driven by actin polymerization. In Motion Analysis of Living Cells. D.
Soll, editor. John Wiley and Sons, New York. 157–175.

40. Tilney, L. G., and D. A. Portnoy. 1989. Actin filaments and the growth,
movement, and spread of the intracellular bacterial parasite, Listeria
monocytogenes. J. Cell Biol. 109:1597–1608.

41. Mounier, J., A. Ryter, M. Coquis-Rondon, and P. J. Sansonetti. 1990.
Intracellular and cell-to-cell spread of Listeria monocytogenes involves
interaction with F-actin in the enterocytelike cell line Caco-2. Infect.
Immun. 58:1048–1058.

42. Tilney, L. G., D. J. DeRosier, A. Weber, and M. S. Tilney. 1992. How
Listeria exploits host cell actin to form its own cytoskeleton. II.
Nucleation, actin filament polarity, filament assembly, and evidence for
a pointed end capper. J. Cell Biol. 118:83–93.

43. Cameron, L. A., J. R. Robbins, M. J. Footer, and J. A. Theriot. 2004.

Biophysical parameters influence actin-based movement, trajectory,

and initiation in a cell-free system. Mol. Biol. Cell. 15:2312–2323.

44. Kocks, C., R. Hellio, P. Gounon, H. Ohayon, and P. Cossart. 1993.

Polarized distribution of Listeria monocytogenes surface protein ActA

at the site of directional actin assembly. J. Cell Sci. 105:699–710.

45. Mullins, R. D., J. A. Heuser, and T. D. Pollard. 1998. The interaction

of Arp2/3 complex with actin: nucleation, high affinity pointed end

capping, and formation of branching networks of filaments. Proc. Natl.
Acad. Sci. USA. 95:6181–6186.

46. Alberts, J. B., and G. M. Odell. 2004. In silico reconstitution of Listeria
propulsion exhibits nano-saltation. PLoS Biol. 2:e412.

47. Carlsson, A. E. 2001. Growth of branched actin networks against

obstacles. Biophys. J. 81:1907–1923.

48. Carlsson, A. E. 2003. Growth velocities of branched actin networks.

Biophys. J. 84:2907–2918.

Listeria Variations 723

Biophysical Journal 89(1) 703–723


