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ABSTRACT We report a detailed study of the behavior (shapes, experienced forces, velocities) of giant lipid vesicles
subjected to a shear flow close to a wall. Vesicle buoyancy, size, and reduced volume were separately varied. We show that
vesicles are deformed by the flow and exhibit a tank-treading motion with steady orientation. Their shapes are characterized by
two nondimensional parameters: the reduced volume and the ratio of the shear stress with the hydrostatic pressure. We confirm
the existence of a force, able to lift away nonspherical buoyant vesicles from the substrate. We give the functional variation and
the value of this lift force (up to 150 pN in our experimental conditions) as a function of the relevant physical parameters: vesicle-
substrate distance, wall shear rate, viscosity of the solution, vesicle size, and reduced volume. Circulating deformable cells
disclosing a nonspherical shape also experience this force of viscous origin, which contributes to take them away from the
endothelium and should be taken into account in studies on cell adhesion in flow chambers, where cells membrane and the
adhesive substrate are in relative motion. Finally, the kinematics of vesicles along the flow direction can be described in a first
approximation with a model of rigid spheres.

INTRODUCTION

The behavior of individual blood cells subjected to a flow

close to a vessel or a tube wall has generated a great number

of experimental and theoretical studies. Indeed, the quanti-

tative description of the motions of isolated single red and

white blood cells (translation, rotation, and deformation in

a flow) is a prerequisite to better understanding the blood

microrheology. In addition, the dynamics of individual cells

is important for understanding the early inflammatory

response where flowing leukocytes leave the blood flow to

adhere, roll, and stop onto the endothelium (1–4).

For instance, the motion of red blood cells is known to

present two regimes. In the first one, at low shear rates and

low external fluid viscosity the cell rotates as a rigid disk. As

the shear rate increases there is a gradual transition to a tank-

treading motion where the cell maintains a steady tilt with

respect to the flow (5–7). In this regime, migration of the cell

away from the vessel wall has been shown experimentally

and has long been believed by physiologists to occur in vivo

(8,9,6). Flexible rouleaux of red blood cells also exhibit

inward migration away from the vessel wall. This inward

migration phenomenon, known for asymmetric deformable

particles in laminar viscous creeping flow since the 1960s

(10,11) is due to a viscous lift force. It has been explained for

liquid drops in terms of modifications of the flow field in-

duced by the asymmetric deformation of a liquid drop and the

presence of the wall (12) or, in other terms, as originating from

the fore-aft asymmetric pressure field existing in the space

between the tilted tank-treading particle and the wall (13).

However, the exact description of this lift force is

nontrivial, not only for the case of liquid droplets, whose

area can increase and whose shape is governed by the surface

tension, but also for the important class of deformable

systems that present a fixed volume and area (nonextensi-

bility of the membrane) like cells. For instance, the shape of

red blood cells starts from a biconcave shape at rest and

changes to a prolate ellipsoid shape at higher shear rates

without an increase of the surface area of the membrane (5).

In general, the determination of the shapes of deformable

particles is complex, because they are governed by hy-

drodynamic forces, the internal fluid viscosity, the bend-

ing elasticity, and the constraints of fixed volume and area.

Recently, nevertheless, several theoretical (13–17) and ex-

perimental approaches (18,19) have considered the dynamics

in a wall-bounded shear flow of deformable vesicles, which

are closed fluid membranes of constant surface area and

volume, and which are filled by an aqueous solution. These

studies have demonstrated the existence of a lift force that

acts on nonspherical vesicles and tends to unbind them from

the wall. This force is due to the asymmetry of the particles

and has a purely viscous origin because it applies in the

absence of inertia of the fluid. This lift force, therefore, is not

related to the Magnus force (20). Despite the above-listed

theoretical works, the quantitative description for the vari-

ation of the lift force with its driving parameters has not

been established up to now.

This hydrodynamic lift force may also play a role in the

behavior of leukocytes close to the vessel walls by keeping

away from the endothelium nonspherical leukocytes or by

counterbalancing adhesion forces during the rolling stage,

when leukocytes are deformed (2,21,22). Indeed, recent

three-dimensional biomechanics simulations have pointed

out the importance of deformation on the capture and the
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rolling of leukocytes onto the endothelium (23,24), although

the rolling phenomenon was theoretically predicted without

accounting for cell deformability by Hammer and co-

workers (25,26) and observed in vitro for undeformed

spherical beads (26–28).

It therefore turns out to be important to refine the

description of this force. This article is dedicated to a detailed

experimental study of the lift force exerted on soft artificial

shells. It includes the determination of the functional

variation of the force with the shape of the objects, the

distance to the substrate, and the characteristics of the flow.

The artificial soft shells studied here are giant unilamellar

vesicles, which are closed inextensible fluid membranes

composed of a bilayer of phospholipids separating the inner

aqueous solution from the outer solution. The shells are de-

formable objects and present a constant surface area and

volume.

The article is organized as follows. In the next section we

briefly recall the main results reported in the literature on

deformable vesicles under flow, which are relevant for our

study. The Materials and Methods section describes the

material and the experimental methods. Then we describe in

the next section after that the behavior of vesicles and beads

under a shear flow close to a substrate. In ‘‘Tilt and shape of

deformable vesicles’’, we analyze shapes and orientations of

tank-treading deformed vesicles followed in the ‘‘Lift

Force’’ section by the study of the lift force acting on the

vesicles. We finish in the ‘‘Kinematics and deformation:

translation and tank-treading’’ section with a study of the

effect of deformability and the presence of the wall on the

kinematics of vesicles. The ‘‘Discussion and conclusion’’ sec-

tion is dedicated to a general discussion of the results and a

general conclusion of the study.

THEORETICAL BACKGROUND

The theoretical approaches treating the dynamics of a de-

formable shell whose shape is free to adapt to the sur-

rounding flow enter the class of problems that are nonlocal,

even nonlinear, and therefore not trivial to solve analytically.

We briefly summarize the main theoretical and experimental

results already reported on the motion of rigid and/or soft

shells under a shear flow.

Unbounded shear flow

The motion under an unbounded shear flow of ellipsoidal

particles of given shape, volume and area, consisting of an

incompressible viscous fluid surrounded by a fluid mem-

brane was modeled analytically by Keller and Skalak (8),

with the aim of describing the motion of red blood cells.

Under suitable conditions of aspect ratio (the ratio of the

minor/major axis) and viscosity ratio (the ratio of internal/

external fluid viscosities), the particles exhibit a tank-

treading motion, where their membrane rotates around their

center of mass in a tank-tread-like motion. The rotating

motion of the membrane transfers the tangential stresses of

the shear flow to the inner fluid, which rotates and dissipates

the work done by external flow, allowing the particles to

maintain a steady stationary orientation, characterized by

a constant angle of inclination with respect to the flow

direction.

Both the inclination angle and the tank-treading frequency

decrease when the aspect ratio decreases. The constraint of

fixed ellipsoidal shape has been relaxed in numerical

approaches in three dimensions (29) and two dimensions

(16). The simulations show that when the external viscosity

is equal to that within the particle, as is the case for a vesicle,

the object undergoes a tank-treading motion of its membrane

and its angle of inclination is correctly predicted by the

model of Keller and Skalak. In particular, the inclination

angle decreases with the reduced volume and is independent

of the shear rate. In experimental studies of lipid vesicles

under shear flow, de Hass et al. (30,31) confirmed this

prediction: the vesicles tank-tread and their shape rapidly

reaches a stationary prolate shape whose angle of inclination

is independent of the shear rate.

Effect of a wall: shapes and lift

The effect of a wall on the motion under shear flow of

deformable vesicles has generated several recent theoretical

studies (13–17) and experimental investigations on giant

lipid vesicles. Two features observed in the absence of a wall

were recovered: vesicles tank-tread and present a steady tilt.

Vesicle shapes and tilt were numerically computed by

Sukumaran and Seifert (17). The steady tilt of the vesicle was

found to induce a fore-aft asymmetric pressure field beneath

the vesicle, giving rise to a net lift force of viscous origin.

The effects of this lift force were indeed experimentally

observed on buoyant vesicles, which have the capacity to

unbind from the wall at high wall shear rate (18,32,19). By

balancing this lift force with vesicle buoyancy, we proposed

a first characterization of this force (19). Nonbuoyant and

nonadhesive vesicles were predicted to progressively drift

away from the wall with a velocity calculated by Olla (15).

Effect of a wall: translational and
rotational velocity

The velocity of soft shells flowing close to and parallel to

a wall was not detailed in the recent theoretical works on

deformable particles (13,15,17). It has been determined for

rigid spheres of radius R as a function of their distance h to

a wall by Goldman and co-workers (33). Because the sphere

is torque-free, it rotates as a consequence of the presence of

the wall. Both translational V and rotational v velocities were

calculated as a function of the applied wall shear rate _gg in

both limits h� R and h� R. The hydrodynamic description

yields for V:
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h � R:
V

R _gg
¼ 0:7431ð11 h=RÞ
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1
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� �3
" #

; (b)

Eqs: 1a and 1b

and for v:

h � R:
v
1

2
_gg
¼ 0:8436

0:6376� 0:200 ln ðh=RÞ (a)

h � R:
v
1

2
_gg
¼ 1� 5

16

1

11 h=R

� �3

: (b)

Eqs: 2a and 2b

MATERIALS AND METHODS

Vesicle preparation

Giant unilamellar vesicles were prepared by the standard electroformation

method (34) by hydrating a lipid film under an AC field. 1,2-Dioleoyl-sn-

glycero-3-phosphocholine, purchased from Sigma (St Louis, MO) (powder,

P 6354), was first dissolved in chloroform and methanol solutions (9:1

volume ratio) at 1.5 mg/ml and the solution was then spread on the

conductive faces of two transparent glass plates coated with a film of indium

tin oxide (ITO). After drying (2 h under primary vacuum), a sucrose solution

was injected in a chamber formed by the ITO plates facing each other,

separated by a Teflon spacer and connected to an AC generator (frequency

10 Hz). The potential was progressively increased from 0.2 to 1.5 V and kept

constant for 3 h. The frequency was finally decreased to 4 Hz to detach

vesicles from the ITO plates. Various concentrations of sucrose solution of

50, 100, 200, and 250 mM were used of densities, respectively, equal to

100.5, 101.1, 102.4, and 103.1 g/l (40). Vesicles were then diluted in glucose

solution of higher osmolality from 50 to 290 mM but lower buoyancy for at

least 1 h. All solutions were prepared at pH¼ 7.4 in Hepes buffer (0.5 mM).

As vesicle membranes are permeable to water and not to sucrose and

glucose, the difference between the inner and the outer osmotic pressures

resulted in partial water diffusion out of the vesicles, which produces

partially deflated flaccid deformable objects. It should be noted that over the

timescale of the flow experiments described below, the vesicle membranes

can be considered as impermeable. Finally, due to the difference of molar

weights between the sucrose and the glucose, vesicles settled on the

substrate and their buoyancy was controlled and varied over a large range.

The precision of the densities of the sucrose and glucose solutions were 0.13

and 0.07 g/l, respectively, and is due to the experimental uncertainty of the

concentration of the solutions (1 mM). The difference of densityDr obtained

for all the vesicles are reported in Table 1. These values have an estimated

precision of 0.2 g/L. Consequently, the equivalent precision of the weights

of the vesicles are of the order of 0.01 pN for vesicles of 10 mm in radius and

3 pN for bigger vesicles of 70 mm in radius. To model the motion of the

vesicles we also used spherical rigid polystyrene beads of radii equal to 5,

12.3, 21, 42.5, 45, and 45.6 mm, purchased from Polysciences Europe

(Eppleheim, Baden-Würtemberg, Germany).

Flow chamber

The flow chamber was a parallelepiped-plate chamber (spectrophotometric

circulation chamber from Hellma (Müllheim, Germany), height d ¼ 1 mm,

width a ¼ 10 mm, length ¼ 45 mm) with four optical faces. No significant

adhesion between vesicles and the glass substrate was observed. The flow

was applied using a syringe pump. The laminar wall shear rate _gg was

calibrated using suspensions of 2-mm diameter latex beads. Bead velocities

were measured at given flow rates as a function of their distance to the

substrate. The velocities were found to vary linearly with the distance to the

substrate (up to a distance of 150 mm from the wall where the parabolic

character of the flow appears) and the slopes of the obtained linear curves

yielded the wall shear rates. Also, we verified that we obtained a linear

relationship between the wall shear rate _gg and the flow rate Q produced in

the chamber according to the relation: _gg ¼ ð6Q=a d2Þ.

Side-view observation

We oriented a phase contrast inverted microscope (Leica DM IRB, Wetzlar,

Germany) horizontally. The flow chamber was mounted on a homemade

stainless steel holder keeping the chamber horizontal with the 10-3 45-mm

faces orthogonal to gravity. The observation of the motion of the vesicles

was done through the 1- 3 45-mm cross-section faces. The flow was

produced in the chamber parallel to the 10- 3 45-mm faces, along the 45-

mm side. Tipping the microscope horizontally and working at low-angle

TABLE 1 Experimental parameters for 33 vesicles named by

their rank, used in the determination of the lift force

No

R

(mm)

P ¼ Fl

(pN)

Drg

(Pa/m) h=hwater 1 � n _ggc(s
�1) uL(rad)

1 8.7 0.2 68.7 1.052 0.036 0.45 0.687

2 13.4 1.6 162.8 1.147 0.024 1.62 0.654

3 14.7 0.9 68.7 1.052 0.138 0.44 0.475

4 15.5 1.1 68.7 1.052 0.060 0.45 0.525

5 15.6 2.4 149.1 1.131 0.017 1.45 –

6 17.3 0.2 9.8 1.016 0.015 0.45 0.641

7 18.1 4.2 168.4 1.153 0.045 1.07 –

8 18.7 1.9 68.7 1.052 0.065 0.44 –

9 19.5 5.2 168.4 1.153 0.053 1.00 –

10 19.6 5.3 168.4 1.153 0.072 0.88 –

11 20.5 4.7 131.9 1.115 0.045 0.94 –

12 20.5 5.1 140.5 1.122 0.056 0.88 –

13 20.9 2.6 68.7 1.052 0.077 0.44 –

14 21.3 6.6 162.8 1.147 0.010 6.59 –

15 21.3 5.3 131.9 1.115 0.071 0.82 –

16 23.3 3.6 68.7 1.052 0.031 0.56 –

17 23.7 6.8 121.9 1.082 0.023 1.44 –

18 23.9 3.9 68.7 1.052 0.023 0.75 –

19 24.1 9.6 162.8 1.147 0.025 1.66 0.587

20 25.3 9.6 140.5 1.122 0.042 1.00 –

21 25.9 2.9 39.6 1.021 0.054 0.31 0.540

22 26.2 0.7 9.8 1.016 0.015 0.35 0.655

23 26.5 5.4 68.7 1.052 0.020 0.63 –

24 27.3 13.4 157.9 1.141 0.033 1.14 0.562

25 28.4 11.7 121.9 1.082 0.026 1.13 –

26 31.2 15.5 121.9 1.082 0.057 0.88 –

27 32.5 5.7 39.6 1.021 0.029 0.31 0.576

28 35.3 29.9 162.8 1.147 0.012 1.76 0.663

29 36.9 2.1 9.8 1.016 0.020 0.25 –

30 39.0 40.5 162.8 1.147 0.026 1.21 0.632

31 42.8 22.5 68.7 1.052 0.021 2.80 –

32 50.9 87.1 157.9 1.141 0.022 1.28 0.560

33 67 153.6 121.9 1.082 0.010 2.20 –

P is the weight of the vesicles, Dr is the difference of density between the

inner and the outer fluid, g is the acceleration of gravity, h is the viscosity

of the outer fluid given relatively to the viscosity of water hwater, R is the

radius of the vesicles, n their reduced volume, _ggc the critical wall shear rate

of detachment measured visually, and uL is the limit angle of inclination of

the major axis of inertia of the vesicle relative to the direction of the flow.
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incidence allowed us to observe well-defined side-view images of both

vesicles and their reflections on the substrate. The angle of observation

relative to the 10-3 45-mm face was fixed by the holder to a small constant

value (f # 1�) throughout all the experiments. The vesicles were hence

flowing and observed at low-angle incidence orthogonally to gravity and in

the plane of shear. The measured value h of the distance between the

membrane of the vesicle and the substrate is a projection of the real distance

hreal. The relation between hreal and h is simply h ¼ cos(f)hreal � 0.9998

hreal. We see that the low value of the observational angle was not the main

source of error on the measurement of hreal and in the following h ¼ hreal.

Indeed, most observations were performed with a 203 phase contrast

objective allowing the observation of the vesicles deep in the chamber (long

working distance). Hence, the main source of error originates from the

optical resolution of the objective giving a resolution of 0.8 mm/pixel on the

images and restricting the precision of the measurement of h to 1 mm.

Pictures were captured with a charge-coupled device camera (COHU 4910)

and image analysis was performed using the image software (National

Institutes of Health, 1.62c). All vesicles studied were at a minimal distance

of 1 mm from the nearest 1- 3 45-mm face of the chamber, so that velocity

field and wall shear rate values were not disturbed by the presence of the side

walls.

Protocol of measurement

Vesicles are slowly injected in the chamber and allowed to settle. One well-

contrasted axisymmetric vesicle is chosen at rest. A flow is then applied. The

wall shear rate applied to the vesicle is then increased gradually from 0.1 to

10 s�1, by increasing step by step the flow rate in the chamber. The vesicle

reaches a constant velocity for each flow rate or wall shear rate. Its motion is

observed over a traveling distance varying from 600 to 1200 mm. The flow is

finally stopped to check that the vesicle recovers its initial shape at rest.

Determination of vesicle shape and position

The projection of the beads (Fig. 1 a) and the vesicles (Fig. 1, b and c) onto

their meridian plane is directly observed with side-view microscopy. The

analysis of the images allows the determination of beads radii Rb and the

geometrical characteristics of the vesicles. The enclosed volume V and

surface area S of each vesicle are deduced from azimuthal integration over

the vesicle contour at rest by applying the Papus-Guldin theorem (assuming

an axisymmetric shape) (35). V and S are then given, respectively, by

V ¼ 2pS rS and S ¼ 2p L rL, where S and L are the surface area and the

contour length of half of the vesicle projection onto its meridian plane,

respectively, rS and rL are the distances of the centers of mass of the surface

and the contour from the vertical symmetry axis (Fig. 1 c). Each vesicle is

also characterized by its effective radius R¼ (3V/4p)1/3 defined as the radius

of the sphere with the same volume. The state of deswelling of the vesicles is

characterized by their reduced volume, y ¼ ðV=ð4=3Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS=4pÞ

p� �3Þ,
defined as the ratio of the volume of the vesicle relative to the volume of

the sphere with the same surface (n# 1, n¼ 1 for a sphere). The observation

plane intercepts the meridian plane of the vesicle yielding the direction of

two of its three principal axes of inertia. Indeed, one axis of inertia is given

by the direction of observation and the two other axes of inertia belong to the

plane of observation that is actually a plane of symmetry for the vesicle in

motion. Therefore, the two axes of inertia can be determined by image

analysis of the cross section of the vesicle, along with the angle u between

the major principal axis of inertia and the flow direction, and the position of

the center of mass of the vesicle during the motion. The distance of the

vesicle from the substrate h is also directly determined from the side-view

observation. The measurement of h is performed by measuring the closest

distance between the membrane of the vesicle and its reflection on the

substrate; h is hence half this distance. The precision reached by this

measurement is optically estimated to 1 mm.

The moment of inertia of an object relative to a given axis is by definition

the sum of the square of the distances between the points in the object and

the axis, and the principal axes of inertia of the object represent the axes for

which the moments of inertia are minimal. We developed a simple edge

recognition program to detect the cross section of the vesicle and analyzed

the image to find the direction of the two axes of inertia by giving a virtual

weight to the pixels of the cross section corresponding to their gray level.

When the vesicle is at rest the axis of symmetry is one of the axes of inertia.

BEHAVIOR OF VESICLES AND BEADS UNDER
SHEAR FLOW

Typical images obtained during a flow experiment are given

in Figs. 2 and 3. Vesicles and beads as well as their lower

reflection on the substrate are well contrasted. When a given

wall shear rate _gg is applied, vesicles and beads slowly move

along the flow direction at constant velocity. They rotate,

which is clearly seen from the motion of defects within the

beads or bound to vesicle membranes (Fig. 2).

Initially deflated vesicles undergo a shape change when _gg
is applied: they exhibit stationary tilted shapes (characterized

by the angle u between their major axis of inertia and the

flow direction). Vesicle tank-treading motion, i.e., fixed

vesicle orientation associated with rotational motion of the

membrane, is clearly observed from the motion of membrane-

bound defects as illustrated in Fig. 2.

When the wall shear rate is progressively increased,

shapes of flaccid vesicles go on changing and the angle u

increases, while the vesicles remain in the vicinity of the

substrate. The vesicle-substrate distance is then too small to

be directly determined from microscope imaging. Above

a critical wall shear rate _ggc, which depends on characteristics

of the vesicles, their shapes change less and tend to be

a prolate ellipsoid, and their tilt reaches a steady value.

Concomitantly, the distance h between these quasiellipsoidal
vesicles and the substrate strongly increases (several

microns) and is directly observed on the images as illustrated

in Fig. 3. When the wall shear rate is increased above _ggc,

ellipsoidal vesicles move farther away from the substrate.

FIGURE 1 Side views of a (a) polystyrene bead of radius Rb¼ 45 mm, (b)

vesicle of radius R ¼ 67 mm, (c) vesicle of radius R ¼ 22 mm. On the figure

(c), S and L are the surface area and the contour length of half of the vesicle

projection onto its meridian plane respectively, rS and rL are the distances of

the centers of mass of the surface and the contour from the vertical symmetry

axis.

1058 Abkarian and Viallat

Biophysical Journal 89(2) 1055–1066



This behavior is not observed for quasispherical vesicles and

beads that are not deformed by the flow and remain settled on the

substrate even under large wall shear rates (up to _gg ¼ 10 s�1).

TILT AND SHAPE OF DEFORMABLE VESICLES

The evolution of the vesicle shapes under an increasing wall

shear rate is represented in Fig. 3. It is clearly seen that the

front of the vesicle moves upward progressively. One can

notice also the region under the vesicle where the membrane

is flat. Such profiles are very similar to those computed by

Sukumaran and Seifert (17) or by Cantat and Misbah (13) for

two-dimensional buoyant vesicles in adhesion, both sub-

jected to a shear flow close to a substrate. In both cases of

adhesion or buoyancy, a force is pulling the vesicles down.

Orientation far from the wall

When the wall shear rate _gg increases, the angle u between the

vesicles major axis of inertia and the flow direction increases

up to a characteristic wall shear rate _ggangle, where u reaches

a limiting value uL. This limiting angle is independent of the

wall shear rate and increases with the reduced volume n of

the vesicles as shown in Fig. 4. The maximum value of uL is

p/4 for a quasispherical vesicle (n � 1). uL is reached when

the wall-vesicle distance is of the order of magnitude of the

vesicle radius. The ‘‘bulk’’ behavior of our vesicles is

compared with the bulk predictions from Kraus et al. (29) in

Fig. 4. We find a good agreement between the calculations of

Kraus et al. and our experiments. Nevertheless, one can

notice a slight difference of curvature between the numerical

plot and the experimental data. The origin of this difference

is likely due to the presence of the wall, which may change

the value of uL.

Orientation close to the wall

When the wall shear rate _gg increases, the angle u increases

sharply. Variations of 1 � u/uL with _gg are plotted in Fig. 5 a
with a logarithmic scale. An exponential decay is observed

FIGURE 2 Tank-treading motion of a vesicle at _gg¼ 0.5 s�1 disclosed by the presence of a marker (invaginated vesicle). The time between each picture is 6 s.

FIGURE 3 Shape diagram of vesicles under flow.

Each row of pictures represents the deformation of one

vesicle for different flow rate indexed from 1 to 6.

Vesicle properties are listed in Table 1 by vesicle

number. (a) Vesicle No. 3: (a,1) 0 s�1, (a,2) 0.25 s�1,

(a,3) 0.38 s�1, (a,4) 0.50 s�1, (a,5) 1.00 s�1, (a,6) 2.1

s�1. (b) No. 21: (b,1) 0 s�1, (b,2) 0.11 s�1, (b,3) 0.17

s�1, (b,4) 0.28 s�1, (b,5) 0.45 s�1, (b,6) 0.79 s�1. (c)
No. 29: (c,1) 0 s�1, (c,2) 0.09 s�1, (c,3) 0.14 s�1, (c,4)

0.23 s�1, (c,5) 0.32 s�1, (c,6) 0.36 s�1. (d) No. 33: (d,1)

0 s�1, (d,2) 0.38 s�1, (d,3) 0.63 s�1, (d,4) 1.25 s�1,

(d,5) 1.9 s�1, (d,6) 3.77 s�1.
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and yields the characteristic wall shear rate _ggangle. This

characteristic wall shear rate depends on the viscosity h of

the suspending fluid, the buoyancy of the vesicle (de-

termined by the difference of density Dr between the inner

and the outer fluids), and its radius R. The normalized angle

1 � u/uL is plotted as a function of a reduced parameter

A ¼ h _gg=DrgR ¼ _gg= _ggangle in Fig. 5 b, where g is the accel-

eration of gravity. A good superposition of the experimental

curves is observed with only a slight dispersion. The

parameter A is defined as the ratio of the viscous stresses

produced by the shear flow to the hydrostatic pressure

coming from the buoyancy of the internal fluid relative to the

outer fluid. It describes the competition between the shear

flow, which tends to produce a tilt of the vesicle, and gravity,

which causes the sedimentation of the vesicle.

The parameter A can be rewritten as the ratio of a capillary

number Ca and a bond number Bo that one can define for

vesicles, by replacing the usual surface tension term by

a bending term k: Ca ¼ h _ggR3=k and Bo ¼ DrgR4=k. We

then understand that the parameter A describes the system-

atical coupling that occurs between the elastic deformation

(bending) of the vesicles induced by the shear flow and that

produces the tilt, the presence of the gravity trying to orient

the vesicle’s major axis of inertia, and also the presence of

the substrate that produces a counter force to the sedimen-

tation. It is interesting to notice that the bending modulus

cancels out and does not appear in the definition of A.

Shape of the vesicles under bounded shear flow

The global shape of the vesicles changes when the wall shear

rate increases. The fore-aft symmetry is rapidly lost. The

front of the vesicle moves upward whereas the rear stays

close to the substrate and has a higher curvature than the

front. The flat region beneath the vesicles close to the

substrate seems to be reduced when A and/or the reduced

volume increases (Fig. 3). The sequences of deformation

shown in Fig. 3 for different vesicles depend on the reduced

volume of the vesicles and the wall shear rate, but all shapes

can be compared and superimposed by renormalizing the

distances by R and the wall shear rate by DrgR=h as is

shown on Fig. 6 for two vesicles with the same reduced

volume n ¼ 0.95. This observation confirms the role played

by the dimensionless parameter A and shows that A and the

reduced volume n are the relevant parameters to describe the

shape of vesicles subjected to a bounded shear flow without

adhesion. Finally, we note that these shapes are well fit by

the shape calculated by Sukumaran and Seifert (17) for the

same value of the parameter A. Two of these shapes are

shown in Fig. 6, e and f. The angles of inclination of the

shapes calculated by Sukumaran and Seifert are also

represented on Fig. 5 b and are in agreement with the ex-

FIGURE 4 Limit angle uL as a function of the reduced volume n. The

dashed line and the open circles represent the numerical simulations of

Kraus et al. (29).

FIGURE 5 (a) 1 � u/uL in function of the wall shear rate _gg for 10 vesicles. The properties of the vesicles are reported in Table 1: (¤) No. 1; (:) No. 3; (n)

No. 4; (1) No. 19; (;) No. 21; (h) No. 24; (d) No. 27; ()) No. 28; (3) No. 30; (s) No. 32. (b) 1 � u/uL in function of the A ¼ h _gg=DrgR. Symbols are the

same as in panel a. (”) Angle of the two shapes extracted from Sukumaran and Seifert (18) and plotted in Fig. 6, e and f.
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perimental measurement obtained for all the vesicles.

Nevertheless, we had to multiply the coordinates X/R and

Y/R of the shape of the vesicles presented by the authors by

a constant factor of 0.71 that we do not understand the origin.

The shapes of buoyant vesicles presented by Sukumaran and

Seifert (18) disclose a volume V that seems to be bigger than

the sphere with the same surface S. We think that the authors

have a numerical error on their XY scale explaining why we

needed to rescale their shape by a constant value of 0.71.

LIFT FORCE

In this section, we show that nonspherical vesicles are able to

unbind from the substrate under sufficiently high wall shear

rates. From the study of 33 vesicles prepared of various sizes,

buoyancies, and reduced volumes, we deduce the typical

values of this lift force and its functional dependence with

the relevant parameters.

Observations

As it was shown in Fig. 3, the deflated vesicles lift off

from the substrate when the wall shear rate is higher than

a typical value _ggc, which depends on the viscosity h, the

difference of density Dr of the vesicles, and their radius R. It
is significant that at _ggc, the vesicle shapes barely change and

reach the asymptotic shapes observed far from the substrate,

which reveals the weaker influence of the substrate. From

a first group of 33 vesicles, we estimated visually the

characteristic wall shear rate _ggc, and for a second group of 11

vesicles, we studied the complete lift off by measuring the

increase in height h as a function of the wall shear rate.

Experimental quantities related to each vesicle are listed in

Table 1.

Measurement and characterization of the lift force

In the regime where the vesicles have clearly unbound from

the substrate, they hover at a distance h from the wall, which

increases upon increasing the wall shear rate. The distance h
self-adjusts so that the sum of the forces applied to each

vesicle is equal to zero, disclosing therefore the existence of

a hydrodynamic lift force Fl, which counterbalances exactly

the vesicle weight P ¼ 4pR3=3ð ÞDrg, corrected by the

buoyancy of the fluid. The value of this lift force, which acts

on nonspherical vesicles, is therefore known for each lifted

FIGURE 6 Shapes of two vesicles with

approximately the same n ¼ 0.95 at

different wall shear rate _gg or A. The two

vesicles are represented with two symbols

and their properties are reported in Table 1.

(s) Vesicle No. 21 and (h) vesicle No. 4.

Each image from panels a to f represents
the normalized shapes for the two vesicles

having the closest parameter A. (a) (s),

A¼ 0; (h), A¼ 0; (b) (s), A¼ 0.042; (h),

A ¼ 0.059; (c) (s), A ¼ 0.168; (h), A ¼
0.177; (d) (s), A ¼ 0.280; (h), A ¼ 0.295;

(e) (s), A¼ 0.391; (h), A¼ 0.413; (f) (s),

A ¼ 0.502; (h), A ¼ 0.531. (d) Rescaled

shapes of Sukumaran and Seifert (18) for

a vesicle of a reduced volume of 0.95 and

with panel e A ¼ 0.398; (f) A ¼ 0.597.
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vesicle. It ranges in our experiment over three decades from

0.2 to 150 pN (Table 1).

Dimensional analysis of the lift force

By dimensional analysis, the lift force Fl can be expressed as:

Fl ¼ h _ggR2 3 f , where f is a dimensionless function that

depends on geometrical parameters, as the normalized

geographical position of the vesicle from the substrate,

expressed through the variable R/h, and on the shape of the

vesicle that depends itself on the wall shear rate _gg, the

reduced volume n, and the bending module k of the mem-

brane. As proposed before (1), it is possible to characterize

these features by using the global parameter n only, because

the vesicle shape is _gg-independent at the unbinding, allowing
us to drop the dependence with the bending modulus k. The

functional form of the lift force is then expected to be:

Fl ¼ h _ggR
2
f

�
R

h
; n

�
: (3)

We explored the R and h dependence of the hovering

regime. We can already notice that the variations in R and h
must be intimately related because they appear as a ratio and

allow us in the following part to deduce the law of variation

of Fl with the physical parameters.

The h dependence of the lift measured visually:
distance to the substrate at _ggc

We report the variation of h with _gg= _ggc for the 11 vesicles in

Fig. 7. A linear behavior is clearly observed. In this hovering

regime, the lift force Fl is constant and equal to the vesicle

weight P. For a given wall shear rate, the vesicle-substrate

distance self-adjusts so that Fl ¼ P. A linear variation of h
with _gg therefore implies a R3/h variation of the lift force.

Indeed, if Fl¼ P, then h _ggR2f ðR=h; nÞ is a constant, implying

that f ðR=hÞ } R=h, so that h varies linearly with _gg. Therefore
Fl should be written as:

Fl ¼ h _gg
R

3

h
f ðnÞ; (4)

which can be expressed at unbinding as:

Fl ¼ h _ggc

R
3

h0

f ðnÞ; (5)

where h0 is the distance of the vesicle when it notably lifts off
under the typical wall shear rate _ggc. The equality between

Eqs. 4 and 5 imposes a linear relation between the height of

the vesicle and the applied wall shear rate given by the fol-

lowing equation:

h ¼ h0

_ggc

_gg: (6)

We note that, for the 11 studied vesicles in Fig. 7, h0 . 1

mm and most h0 values range in a narrow interval (1.2–2.7

mm), with a mean value equal to 2.2 6 0.4 mm.

To probe the proposed functional dependence for the lift

force and to experimentally determine the function f(n), we
plotted in Fig. 8 the force Fl normalized by h=h _ggR3 as

a function of the parameter 1 � v for the 11 fully unbound

vesicles for which Fl is known and equal to the weight,

4pDrgR3/3. This normalized force writes as 4pDrgh/3h _gg.
Moreover, we added on the curve the data obtained for the 33

vesicles, for which we did not experimentally determine the

full h vs. _gg curve. Note that _ggc was determined visually. In

this case, h0 was not known and we used the average value

FIGURE 7 Height h of 11 vesicles in function of _gg= _ggc. The linear fits give

an estimation of the distance h0 at the unbinding from Eq. 7. Vesicles prop-

erties are reported in Table 1. (1) Vesicle No. 1: h0 ¼ 2.1 mm; (;) No. 2:

2.1; (n) No. 3: 2.7; (h) No. 4: 2.1; (s) No. 6: 2.0; (¤) No. 7: 2.2; (n) No.

15: 2.0; ()) No. 21: 2.6; (3) No. 22: 1.2; (d) No. 27: 1.8; (:) No. 33: 2.2.

FIGURE 8 Variation of the normalized lift force Fl in function of 1 � n

(s) at the unbinding when Fl ¼ P, _gg ¼ _ggc, and h ¼ h0: Fl ¼ Ph0=h _ggcR
3;

(;) after unbinding where Fl ¼ P and F1 ¼ Ph=h _ggR3.
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found from Fig. 7, which was equal to 2.2 mm. The curve ob-

tained is unique for all the studied vesicles. The curve allows

us to estimate the lift force close to a substrate experienced by

an object whose mass, size, and aspect ratio are known.

KINEMATICS AND DEFORMATION:
TRANSLATION AND TANK-TREADING

In this section, we describe the kinematics of the motion of

vesicles both far from and close to the wall. From the co-

ordinates of the center of mass of each vesicle, we calculate

the translational velocity V as a function of the wall shear

rate. Moreover, for three vesicles, we have extracted the ro-

tational velocity of the membrane v as a function of _gg, by
following the position of a defect attached to the membrane

(Fig. 2) relative to the center of mass of the vesicle. The plots

obtained for both V and v are represented respectively on

Fig. 9 a for eight vesicles and Fig. 9 b for the three vesicles

whose tank-treading frequency was measured.

We observe a nonlinear behavior of the translational

velocity V with the wall shear rate _gg as the vesicles deform

and unbind from the substrate, whereas the rotational

velocity v remains linear within the whole range of wall

shear rates explored and is the same for the three vesicles.

We next study the kinematics of the vesicles through the

framework of the Goldman et al. model (33) for rigid spheres

subjected to a linear shear flow far from and close to a wall.

Kinematics far from the wall and the
Goldman et al. approximation

Wemeasured the translational and the rotational velocities of

the vesicles far from the wall ( _gg. _ggc), where the vesicles are

detached from the substrate, their shape is almost stationary,

and their distance h is measurable. In Fig. 10 a, we have

plotted the variation of V=R _gg with h/R for the eight vesicles

reported in Fig. 9 a, whose both translational velocities V and

height h were determined experimentally. In Fig. 10 b, we
have represented the variations of v= _gg as a function of h/R
for the three vesicles presented in Fig. 9 b. The data in Fig.

10 show a single trend that is well approximated by the two

regimes given for rigid spheres far from (dashed lines; h/R
� 1) and close to (solid lines; h/R � 1) the substrate (see

Eqs. 1 and 2). They strongly suggest that the model of

Goldman et al. for rigid spheres correctly describes the

kinematics of moderately deflated vesicles close to a wall.

The observed dispersion in the data may come from the non-

spherical shape of the vesicles.

FIGURE 9 (a) Translational veloci-

ties V of the vesicles in function of the

wall shear rate _gg for eight vesicles.

Their properties are reported in Table 1.

(1) Vesicle No. 2; (,) No. 21; (h) No.

22; (s) No. 4; (n) No. 1; ()) No. 3;

(3) No. 33; (9) No. 7. (b) Tank-

treading velocities for three vesicles.

Same symbols as in panel a.

FIGURE 10 (a) Translational veloc-
ities of the eight vesicles of Fig. 9 a

normalized by the wall shear rate and

the radius in function of the distance h
of the vesicles divided by their radius R.

(b) Tank-treading velocities of the three

vesicles reported in Fig. 9 b in function

of h/R. The symbols used are the same

as in Fig. 9. In both cases, the fit lines

represent the Goldman et al. laws

without any adjustable parameter. The

dashed lines represent the limit h/R� 1

and the solid lines the case h/R � 1.
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Translation and kinematics: discussion on the
distance h0 to the substrate at _ggc

At _ggc, the distance to the substrate cannot be determined

optically. We plotted the variations of V= _ggc for all studied

vesicles at the detachment as a function of R. The data fairly
fall on a single curve independent of the reduced volume.

The data of the translational velocity were fitted using Eq.

2 a with h ¼ h0 as one adjustable parameter (Fig. 11). The

fit yields h0 ¼ 2.4 6 0.3 mm. This value is in very good

agreement with the value independently measured from the

slopes of the linear curve of Fig. 7 for vesicles far from the

substrate. It confirms that the substrate-membrane distance is

similar for all vesicles at _ggc, when they reach the shape they

have far from the substrate, just before notably lifting off.

This distance differs from that reported on quasispherical

vesicles either at rest (36) or moving in a quiescent fluid

without unbinding (37), where the authors estimate that the

substrate/membrane separation is of the order of 50 nm.

Translation and kinematics: discussion on the
distance to the substrate below _ggc

The question arises of the substrate-membrane separation

distance at wall shear rates smaller than _ggc. In absence of

direct experimental measurements, we calculated the dis-

tance h between the vesicles and the substrate by injecting

in Eq. 1 the experimental data (radius, translational velocity).

The normalized heights h/R are reported for four vesicles in

Fig. 12, a and b, for different reduced volume. We observe

a crossover between the calculated value of h and the values

measured optically just above _ggc. This result suggests that

the vesicles continuously lift off from an equilibrium

distance at rest around 50 nm to a distance of the order of

1 mm at _ggc. Nevertheless, the nonsphericity of vesicles may

induce small changes in Goldman et al. equations that we did

not account for. These effects may be significant because

below _ggc vesicle shapes change with _gg. It is therefore im-

possible here to definitively discriminate if the increase of

the separation distance with _gg obtained from Eq. 1 is a real

effect or if it is an artifact due to the variation of the shape of

the vesicles. Indeed, the calculus of Goldman et al. considers

a fixed spherical shape moving at a constant height h that

is an external parameter of the problem not fixed by the

hydrodynamics. In our case, below _ggc, both the shape and

the height are changing and coupled by the lift force pushing

away the vesicle with an intensity dependent of the shape.

We still do not know how to separate the effect of the shape

from the effect of the changing distance to the wall on the

kinematics of the vesicles.

DISCUSSION AND CONCLUSION

In this article, we presented a thorough experimental study of

the effect of the deformability on the shape and the

kinematics of vesicles under wall-bounded shear flow. We

showed how giant buoyant vesicles deform and incline

relative to the direction of the flow. Far from the substrate,

the angle of inclination between the major axis of inertia of

the vesicles is found to follow the calculations of Kraus et al.

(29). The inclination angle at the vicinity of the substrate

FIGURE 11 V= _gg for (s) vesicles at _ggc and (d) polystyrene beads. The

dashed line represents the fit realized with Eq. 3a with the single adjustable

parameter h0, found to be equal to 2.4 mm for all the vesicles.

FIGURE 12 The open symbols are

the calculated heights h of the vesicles

normalized by their radius R in function

of _gg using the Goldman et al. equations

(Eq. 3a); the solid symbols represent the

actual measurements of the height. (a)

Vesicle (n andh) No. 3; (d ands) No.

2; (¤ ande) No. 7; and (b) (: andn)

No. 33 a quasispherical vesicle. The

properties of the vesicles are all re-

ported in Table 1.
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deviates from that predicted by the simulation of Kraus et al..

This deviation decays exponentially with a reduced param-

eter A, which is the ratio of the viscous stresses and the

hydrostatic pressure that act on the vesicles. We find that the

observed detailed shapes of vesicles are well described by

the simulation of Sukumaran and Seifert (17) and are fully

characterized by two dimensionless parameters: their re-

duced volume n and the parameter A ¼ h _gg=DrgR.
We confirmed in this article the existence of a viscous lift

force pushing away the vesicles from the wall for increasing

wall shear rates. We determined the functional variation of

the lift force Fl above _ggc, when the vesicle shape is stationary

and we propose an empirical law for which there is at yet no

theoretical explanation. The curve plotted in Fig. 9 permits

the estimation of the lift force acting on a tank-treading

object of known shape in a shear flow close to a wall. This

force has to be accounted for when one tries to describe cell

and vesicle behavior in a wall-bounded shear flow. Adhesion

of the most deflated deformable objects may be significantly

disturbed because such objects experience the strongest lift

force. Nevertheless, the formula for Fl gives an order of

magnitude of the repulsive forces pushing away from the

endothelial walls cells like red blood cells or leukocytes

during their flow. If we consider the flow in the postcapillary

venules, the shear stresses range from 0.2 to 1 Pa. If we

consider a typical distance h of 350 nm between the vascular

wall and the cell membrane (typical size of a microvilli (38)),

the lift force can be estimated from 31 to 155 pN for red

blood cells (with n ¼ 0.7, f(1 � 0.7) ; 2 by extrapolation in

Fig. 9, and R ¼ 3 mm) and from 46 to 230 pN for leukocytes

(with n ¼ 0.95, f(1� 0.95); 1.25 in Fig. 9, and R ¼ 4 mm).

This estimation of Fl shows how hydrodynamic forces can

be important at cellular scales. On one hand, the discoid

shape of red blood cells together with the fluidity of both

their membrane and their interior can induce a strong lift

force, which helps to maintain the cells away from the

endothelial walls producing a cell-free layer. On the other

hand, the preservation of the spherical shape of leukocytes

flowing close to a wall ensures that the lift force is weak and

permits their capture onto the endothelium and the formation

of adhesive links. Indeed, a little deformability (n ¼ 0.95)

produces large hydrodynamic forces, which can be of the

order of the adhesive forces (10–100 pN scale) (39). More-

over, we believe that this viscous lift force has to be taken

into account in experiments using laminar flow chambers

to study the interactions between a cell membrane and an

adhesive wall in relative motion.

Finally, we showed that the kinematics of moderately

deflated vesicles of fixed shapes at a distance of a few

microns from the substrate can be described in a first approx-

imation with a model of rigid spheres given by Goldman

et al. (33). The expected deviation to these analytical results

due to the nonsphericity of the vesicles is small; val-

ues of calculated vesicle-substrate distances h are within the

(large) error bars of measured values. Very close to the

substrate, the variation of the vesicle-substrate distance with

the wall shear rate, estimated from the theoretical predic-

tions of Goldman et al. (33), must be taken with cau-

tion because of the constant variation of the vesicle shape

for increasing wall shear rates. The dynamical measurement

of the distance h of the vesicles to the substrate during their

motion below _ggc remains an experimental challenge but is

a key parameter to better understand the continuous lifting

phenomena.

We thank Professor H. A. Stone for the reading of the manuscript and for

fruitful discussions.
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