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ABSTRACT Biological membranes are known to contain compositional heterogeneities, often termed rafts, with distinguishable
composition and function, and these heterogeneities participate in vigorous transport processes. Membrane lipid phase
coexistence is expected to modulate these processes through the differing mechanical properties of the bulk domains and line
tension at phase boundaries. In this contribution, we compare the predictions from a shape theory derived for vesicles with fluid
phase coexistence to the geometry of giant unilamellar vesicles with coexisting liquid-disordered (Ld) and liquid-ordered (Lo)
phases. We find a bending modulus for the Lo phase higher than that of the Ld phase and a saddle-splay (Gauss) modulus
differencewith theGaussmodulus of the Lo phase beingmore negative than the Ld phase. TheGaussmodulus critically influences
membrane processes that change topology, such as vesicle fission or fusion, and could therefore be of significant biological
relevance in heterogeneous membranes. Our observations of experimental vesicle geometries being modulated by Gaussian
curvature moduli differences confirm the prediction by the theory of Juelicher and Lipowsky.

INTRODUCTION

Bilayer lipid membranes with microscopically resolvable

coexisting fluid domains, a so-called liquid-ordered phase

(Lo) and a liquid-disordered phase (Ld), have recently be-

come a field of intensive research (1–6). The desire to un-

derstand the physicochemical principles of lipid fluid domain

coexistence arises from the hypothesized coupling of lipid

phase segregation to fundamental cell biological processes,

such as membrane signaling, trafficking, and sorting of

membrane components (7,8). This raft hypothesis, which

proposes cell membrane signaling platforms to critically de-

pend on the existence of membrane domains, and its relation

to domain formation in model membrane systems, is cur-

rently a matter of considerable debate (9–11).

Lateral membrane inhomogeneity is often discussed in the

context of essentially flat membranes. Highly curved mem-

branes are, however, found in many functionally distinct

regions of the cellular plasma membrane, such as caveolae,

clathrin-coated pits, microvilli, endocytic and secretory ves-

icles, the internal membranes of endosomes, and parts of

the endoplasmic reticulum and Golgi apparatus. Membrane

trafficking involves changing membrane curvatures (e.g., by

tubulation, budding, fission, or fusion; see Ref. 12) and is

often mediated by proteins (13), but is clearly affected by the

lipid composition (14–17). Addressing the influence of lipid

phase behavior and the physical properties of membrane

domains and domain boundaries on fundamental biological

membrane processes involving the third dimension is just

beginning (18,19). However, there is growing evidence that

lipid domains play an important role in membrane trafficking

events such as the clathrin-independent endocytosis pathway

(20,21).

The three-dimensional shape of laterally homogeneous

(model) membranes is theoretically understood relatively

well (22–24). Hence, the focus of theoretical membrane

elasticity research is increasingly directed to membranes

showing coexisting fluid domains (25–30), which now can

be experimentally observed on micrometer lengthscales.

The physicochemical understanding of membrane phase

segregation greatly benefits from model membrane research,

because these well-defined systems allow for the systematic

analysis of the influence of precisely adjustable control pa-

rameters. Using this approach, the phase behavior of ternary

lipid mixtures, involving cholesterol and both long-chain

saturated lipids that enrich in an Lo phase and unsaturated or

short-chain lipids that enrich in an Ld phase, has been ex-

amined (3–5,31–33). At appropriate conditions, the phase

diagrams of these lipid mixtures show extended regions

where two-dimensional segregation into domains with di-

mensions in the range of several microns is found. These

domains are often circular. After mechanical distortion, these

fluid domains rapidly equilibrate to their circular shape; ac-

cordingly, significant line tension exists at the phase bound-

ary (2). It was recently demonstrated that in addition to this

two-dimensional boundary perimeter minimization, line ten-

sion drives out-of-plane curvature, budding, and fission at

the phase boundary (5). These findings confirmed earlier

theoretical predictions (14). The curvature elasticity theory

developed by Lipowsky’s group (14,25,34), was used to

estimate mechanical parameters of vesicles with fluid phase

coexistence (5). A first integral of the differential shape

equations (25) led to a fitting routine to determine the relative

bending moduli and lateral tensions of the coexisting phases

and the line tension and normal pressure difference across

the membrane, from the experimental vesicle geometry (5).

In this report numerically determined vesicle shapes are

compared to a typical experimentally obtained vesicle geom-

etry. It is demonstrated that the line tension and normal
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pressure difference, the relative magnitudes of bending

moduli, and difference in Gauss moduli, have significant

distinguishable effects on the neck geometry of vesicles with

fluid phase coexistence. To the best of our knowledge, for

the first time we experimentally show the effect of Gaussian

curvature moduli differences on membrane shapes and in

a special case obtain an estimate of its magnitude. Gaussian

curvature resistance is reported to play a significant role in

intermediate stages of vesicle fusion (35). Furthermore, dif-

ferences in Gaussian curvature moduli, line tension, and

differing bending moduli are known to critically influence

the energetic feasibility of dynamical vesicle budding and

fission events (25,34), and the fission of membrane tubes

(36). Consequently, the mechanical analysis in the present

work could have significant biological relevance.

In the following section, we provide a review of quantities

and physical relations necessary for examining membrane

mechanics. A section on experimental results describes

vesicle geometries with fluid phase coexistence and line

tension. Afterward, experimental vesicle geometries are

compared to numerically obtained vesicle shapes with

systematically varied parameters. The discussion then

compares the mechanical parameters obtained for vesicles

with Lo/Ld phase coexistence to known properties of liquid-

ordered and liquid-disordered phases.

BASICS OF MEMBRANE MECHANICS AND
MATERIALS AND METHODS

Detailed discussions of fluid membrane geometries are available in the

literature. Two main approaches can be distinguished. In the first, dif-

ferential shape equations are derived from minimizing a global energy

functional (22,25,37). The second method is based on balancing forces and

moments acting on a local membrane area element (38–40). These two

approaches can be shown to be equivalent (41). Juelicher and Lipowsky

derived a membrane shape theory for vesicles with fluid phase coexistence

based on the first approach (25,34) and the assumption of line tension

coupling to membrane curvature (14). This theoretical prediction was re-

cently confirmed experimentally (5). The theory of Juelicher and Lipowsky

furthermore predicts a characteristic contribution of differing Gaussian

curvature resistances between membrane phases. We shall demonstrate the

experimental observation of this effect. We will furthermore provide a

mechanical interpretation of the boundary conditions originally derived by

Juelicher and Lipowsky (25) in terms of jumps of lateral stress and

transverse shear (see Appendix A). In the following, we review the ter-

minology and basic mechanical relations necessary for our comparison

between experimental and theoretical vesicle shapes. We express shape

equations and phase boundary jump conditions in terms of force and mo-

ment balance, since this allows a mechanically intuitive expression of the

jump conditions.

For a fluid, laterally incompressible membrane, with inner and outer

leaflet indistinguishable, and with the long axis of the constituting molecules

directed along the membrane surface normal, it can be shown (38,42) that

the bending free energy per unit membrane area w, is a function of h2 and k,

i.e., w ¼ w(h2,k), where h and k are the mean and Gauss curvatures of the

membrane. The simplest form of w is

w ¼ 2kh2
1 kGk; (1)

where k and kG are the bending rigidities corresponding to mean and Gauss

curvature, respectively (23,38). The total bending energy of the membrane is

obtained from an integration of Eq. 1 over the whole membrane area, A. The

Gauss-Bonnet theorem (43) in the case of membranes with spherical

topology results in

r
A

kdA ¼ 4p � r
s

cgds: (2)

This shows that the area integral over Gaussian curvature decomposes into

a constant bulk term and a boundary term. This boundary term depends on

the integral over the geodesic curvature, cg, along the boundary, s. Con-

sequently, for homogenous, closed vesicles, shape changes preserving the

vesicle topology do not contribute to the total Gaussian curvature (22,42).

Hence, Eq. 1 can be simplified to w ¼ 2kh2. For phase-separated mem-

branes, however, the Gauss curvature rigidity plays an important role. In that

case, Juelicher and Lipowsky (25) showed that although the vesicle bulk

shape equations do not contain any term involving kG, the Gauss curvature

rigidity enters through the jump conditions that connect the bulk equations at

the interface between the different phases.

In the present analysis, a closed axially symmetric lipid bilayer mem-

brane consisting of two equilibrated phases is considered. The membrane

geometry is parameterized with respect to arc length along the meridian, s,

and tangent angle c (see Fig. 1). In this case, the mean curvature is given by

h ¼ �1/2c91 sin c/r) ¼ 1/2(cm 1 cp), where cm and cp are meridional

curvature and curvature along the circular parallels of the axially symmetric

membrane, respectively, r is the distance from the axis of revolution, and

a prime indicates derivative with respect to arc length, s. For axially sym-

metric shapes, the geodesic curvature is given by cg ¼ cosc/r (25).

The out-of-plane bulk force balance equation can be expressed as (39–41)

ðQsÞ91
cosc

r
Qs � T

s

s c9�
sinc

r
T

u

u
� p ¼ 0; (3)

where Qs is the transverse (i.e., along the surface normal) shear traction per

unit length acting on an edge along the parallels, Ts
s and Tu

u are lateral stress

components along the meridian and parallels (u is the azimuthal angle),

FIGURE 1 Axially symmetric parameterization of a phase-separated

membrane. The arc length s, can be defined in terms of a generalized

coordinate S. The phase boundary is found at the value s* ¼ s(S*).
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respectively, and p is the net pressure per unit area of the membrane acting

along the inward surface normal direction; i.e., p is an outer excess pressure.

The in-plane balance of forces can be written as

T
s

s

� �
91

cosc

r
T

s

s � T
u

u

� �
1Qs c9 ¼ 0: (4)

We furthermore show in Appendix A that the jump conditions derived by

Juelicher and Lipowsky (25) are equivalent to the expressions in Eqs. 5 and 6,

T
s1

s � T
s�
s � s

cosc

r
¼ 0; (5)

for the jump in lateral stress, where (�) indicates the value before and (1)

the value after the phase jump (in the direction away from the north pole of

the vesicle), respectively. The jump condition for transverse shear is

Q
1

s � Q
�
s � s

sinc

r
¼ 0: (6)

Accordingly, the jump in lateral stress is equal to line tension multiplied by

the geodesic curvature along the boundary, whereas the jump in transverse

shear is simply line tension multiplied by the principal curvature along the

boundary.

It can be shown that tensions Ts
s and Tu

u and transverse shear Qs are related

to curvature, mean curvature bending resistance, k, and mean tension, d, in
the membrane (42) by Ts

s ¼ �½d � 2khðc91 hÞ�; Tu
u ¼ �½d 1 2khðc91 hÞ�;

and Qs ¼ �2kh9. The Gaussian curvature enters the condition for zero jump

in moments across the boundary, Ms1
s � Ms�

s ¼ 0; through the constitutive

equation Ms
s ¼ �½2kh � kG sinc=r� (25,42).

To solve the system of differential shape equations for a membrane with

coexisting phases, we introduce the following dimensionless parameters

(25): e¼ k�/k1 is the ratio between the mean curvature bending rigidities of

the two regions; D̂g ¼ ðk1g � k�g Þ=k1 provides a measure of the difference

in Gaussian curvature rigidities between the two regions; and dimensionless

transverse shear, mean lateral tension, line tension, and pressure are

Q̂s ¼
QsR

2

0

k
1 ; ŝ ¼ sR0

k
1 ; d̂ ¼ dR

2

0

k
1 ; and p̂ ¼ pR

3

0

k
1 ; (7)

where R0 is the radius of a spherical membrane (vesicle) with the same area

as the particular deformed vesicle. All further quantities bearing the dimen-

sion of length are non-dimensionalized by R0 as well. The shape equations

are simultaneously solved in the (�) and (1) regions of the membrane (for

details see Appendix B), subject to appropriate boundary conditions.

In Experimental Results, the experimental geometry of an axially

symmetric vesicle with two coexisting fluid phases, a liquid-disordered

phase (Ld) and a liquid-ordered phase (Lo), is analyzed. Accordingly,

e is defined as e ¼ kLo/kLd, and D̂g is defined as D̂g ¼ ðkLdg � kLog Þ=kLd:

Materials and methods

Giant liposomes with microscopically visible fluid phase coexistence (1,31)

were prepared from lipid mixtures containing the lipids dioleoylphospha-

tidylcholine (DOPC), egg sphingomyelin (egg SM), and cholesterol. These

lipids, as well as the dye N-lissamine rhodamine dipalmitoylphosphatidyl-

choline (rho-DPPE), were obtained from Avanti Polar Lipids (Birmingham,

AL). Perylene was obtained from Sigma/Aldrich (Milwaukee, WI). Lipids

were checked for purity by thin-layer chromatography and used without

further purification. Rho-DPPE was used at a molar ratio of 1:1000 (dye/

lipid), and perylene was added at a molar ratio of 1:500 (dye/lipid). Stock

solutions were prepared in chloroform, checked for purity by thin-layer

chromatography, and stored at �20�C, before use. Vesicles were prepared

by the method of electroswelling (44), at a temperature of 60�C, in a solution
of 100 mM sucrose. The elevated temperature ensured that vesicles would

form from swollen membranes above the mixing demixing transition

temperature. Temperature control during microscopic imaging was

performed by means of a small water bath attached to the objective (360,

water immersion) of an inverted microscope (IX 70, Olympus, Melville,

NY). Two-photon two-color fluorescence microscopy was performed at an

excitation wavelength of l ¼ 750 nm, using a Radiance scanhead (Biorad,

Hercules, CA). The excitation source was a mode-locked Ti:Sapphire laser,

pumped by a solid-state Millennia laser (Spectra Physics, Mountain View,

CA). The laser polarization was controlled via a Berek polarization

compensator (New Focus, San Jose, CA). Circularly polarized light was

used to ensure homogenous excitation of fluorophore dipoles embedded into

the anisotropic membrane.

Numerical integration of the shape equations was performed with the

boundary problem solver BVP4C of the software MatLab (Ver. 6.5, The

MathWorks, Natick, MA).

EXPERIMENTAL RESULTS

Fig. 2 shows equatorial sections of axially symmetric, phase-

separated vesicles, obtained by two-photon fluorescence mi-

croscopy. Lipid-phase-sensitive microscopy was performed

with differentially partitioning fluorescence dyes. Three ves-

icles are depicted in a false color representation with red

referring to Ld phase and blue referring to Lo phase (first
column). Separated color channels are shown in the second

and third columns. The red fluorophore lissamine rhodamine

DPPE partitions strongly into the Ld phase (second column),
whereas the polycyclic aromatic hydrocarbon perylene, par-

titions preferentially into the Lo phase (third column) (5).
Vesicles with coexisting fluid domains have shapes and

domain morphologies distinctly different from vesicles with

gel/fluid phase coexistence. Fluid domains minimize their

boundary perimeter to yield circular domain boundaries due

to line tension at the phase boundary (2). Budded vesicles

with two fluid phases have axially symmetric shapes (5).

Gel/fluid phase coexistence, on the other hand, is character-

ized by irregular domain shapes with an elongated boundary

(45–47), due to anisotropic line tension (48) and the high

viscosity of the gel phase. Gel phase domains in vesicles

with spherical topology are expected to be either planar,

or shaped in the form of cylindrical stripes with vanishing

Gauss curvature, due to the large bending rigidity and in-

plane shear resistance of gel phase membranes (48). Ac-

cordingly, the axially symmetric vesicles with minimized

phase boundary perimeters depicted in Fig. 2 show two

coexisting fluid domains. The vesicles of Fig. 2 refer to a

range of area fractions of coexisting domains that depend on

the vesicle composition (31). Fig. 2 A (approximately equal

area fraction of Ld phase versus Lo phase) shows a vesicle

with composition (mole fractions of egg SM, DOPC, and

cholesterol, respectively) 0.615:0.135:0.25, this vesicle

was imaged at a temperature of 30�C. Fig. 2 D (with Ld

phase being the minority phase) refers to the composition

0.584:0.103:0.313, and Fig. 2 G (with Ld phase being

the majority phase) shows a vesicle with composition

0.25:0.5:0.25; both of these vesicles were imaged at 23�C.
The quantitative mechanical analysis of vesicle shapes

depends on an accurate determination of the vesicle neck

geometry. In particular, we show below that the direction of
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the tangent to the meridional vesicle trace at the location of

the phase boundary is critically influenced by the difference

between Ld and Lo phase of Gaussian bending moduli. This

tangent direction can be accurately determined from the

vesicle shown in Fig. 2 A, but can only be estimated in

vesicles depicted in Fig. 2, D and G. We therefore focus our

quantitative discussion on the vesicle shown in Fig. 2 A, and
discuss the shapes of vesicles in Fig. 2, D and G, in

a qualitative manner.

The coordinates of the vesicle shown in Fig. 2 A were

mapped by a tracing algorithm (5), at 2150 data points with

equal arc length increments. The total arc length of the

meridional section was 78.5 mm. To allow for convenient

comparison between experimental vesicle and simulated

vesicle shapes, the total vesicle area, A, was determined from

the trace using

AðsÞ ¼ 2p

Z s

0

rðsÞds; (8)

where integration is performed from north pole to the vesicle

south pole. An area A � 1205 mm2 was obtained, leading to

a radius of an undeformed sphere with the same area, Ro �
9.8 mm. From this radius and the measured vesicle volume,

V, the reduced volume was calculated from

y ¼ V

4p=3ð ÞR3

0

; (9)

which resulted in y � 0.76. The vesicle coordinates were

normalized to the area of the unit sphere: these normalized

coordinates are shown in Fig. 3 A. Fig. 3 B depicts tangent

angles to the meridional trace, as a function of arc length,

measured clockwise from the north pole of the vesicle (see

Fig. 1). The dimensionless arc length of Fig. 3 B can be

converted to physical units by multiplying with a factor of

78.5 mm/8.01ffi 10.2 mm. By definition, the derivative of the

tangent angle with respect to arc length is the meridional

curvature, cm ¼ �c9. The experimental vesicle shape with

line tension shown in Fig. 2 A is significantly deformed from

the equilibrium shape of a vesicle with a homogenous mem-

brane and with the same reduced volume y � 0.76 (compare

Fig. 4 B, leftmost vesicle shape). High reverse meridional

curvature is found in a region near the phase boundary,

whereas the vesicle shape outside this boundary layer shows

FIGURE 2 Two photon microscopy images

of axially symmetric vesicles with fluid phase

coexistence. (A, D, and G) Merged imaging

channels. (Red, Ld phase, fluorescence dye

lissamine rhodamine DPPE; blue, Lo phase,

fluorescence dye perylene.) Vesicle compositions

are, as mole fractions of egg SM, DOPC, and

cholesterol, respectively, 0.615:0.135:0.25 (A–C,

this vesicle was imaged at a temperature of

30�C), 0.584:0.103:0.313 (D–F), and 0.25:0.5:

0.25 (G–I), these vesicles were imaged at 23�C.
(B, E, and H) Red channel. (C, F, and I) Blue

channel. Scale bar is 5 mm.
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relatively constant curvature, i.e., the shape of a spherical

cap. To highlight this fact (and to pronounce the character-

istic deviations from spherical caps near the phase bound-

ary), circles were added to the vesicle trace in Fig. 3 A. Note
that the membrane geometry is continuous over the phase

boundary (as opposed to a kink). The magnitude of meridi-

onal neck curvature depends on vesicle composition and

temperature (5).

A close inspection of the neck geometry reveals char-

acteristic differences between the Lo and Ld phase regions.

Upon approaching the neck region, the Ld phase is observed

to closely follow the spherical cap and then to bend sharply

toward the Lo phase. Accordingly, the high curvature neck

region mostly consists of the Ld phase membrane. The same

phenomenon is found in the vesicle shown in Fig. 2 D. We

demonstrate below that this particular neck geometry in the

framework of vesicle shape theories introduced above can

only be explained by a difference between the Gaussian

curvature moduli of Ld and Lo phases, as has been theo-

retically predicted (25).

The Lo phase, upon approaching the neck, deviates earlier

from the spherical cap than the Ld phase (see the comparison

of circles and vesicle shape in Fig. 3 A, and compare tangent
angles of vesicle shape and straight lines in Fig. 3 B).
It was previously shown (5) that vesicle shapes with high

reverse meridional neck curvature and spherical caps far

FIGURE 3 Trace parameterization of

the vesicle with fluid phase coexistence

shown in Fig. 2 A. (A) Vesicle contour

with coordinates normalized with re-

spect to the unit sphere. Reduced vol-

ume y � 0.76, Ld phase area fraction

xLd� 0.56, boundary radius rb (right)�
0.34, and rb (left) � �0.34. (Gray, Lo

phase; black, Ld phase.) Both upper and

lower parts of the meridional vesicle

section are compared to circles, to

emphasize the characteristic deviations

of the membrane shape from spherical

caps, in the neck region. (B) Tangent

angle as a function of arc length (nor-

malized with respect to unit sphere).

Boundary angle cb (right) � 1.96 rad;

cb (left) � 4.32 rad.

FIGURE 4 Simulated vesicles with

varying line tension but equal curvature

moduli of Ld and Lo phases (e ¼ 1 and

D̂g ¼ 0), area fraction equal to experi-

mental shape. (Gray, Lo phase; black,

Ld phase.) (A) Freely adjustable volume

(pressure difference p̂ ¼ 0), from left to

right: dimensionless line tension ŝ ¼ 0;

4.2, 4.52, 4.382 (rb equal to experimen-

tal vesicle, which is shown for compar-

ison with dashed lines), 4.46, and 5.2.

(B and C) Vesicle shapes (B) and

tangent angles near right phase bound-

ary (C), for vesicles with volume fixed

to experimental shape. From left to

right (B) and in direction of arrows (C):

ŝ ¼ 0; p̂ ¼ 14:56; ŝ ¼ 8; p̂ ¼ �15:5;

ŝ ¼ 32:6; p̂ ¼ �133:6 (rb equal to

experimental vesicle, which is shown

for comparison with dashed lines, B;

and as additional plot in C);

ŝ ¼ 2000; p̂ ¼ �10; 102:
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from the neck are a consequence of line tension at the phase

boundary (25), using a first integral of the differential shape

equations and the experimental vesicle geometry to optimize

mechanical vesicle parameters.

In the following section, it is demonstrated that the

detailed neck geometry of vesicles with fluid phase coex-

istence results from the different elastic material properties of

the Ld and Lo phase membranes. To examine the effect of

varying particular vesicle parameters, simulated vesicle

shapes with systematically varied parameters are compared

to the experimental shape. It will be shown that the ratio of

mean curvature moduli e, and the dimensionless difference in

Gauss moduli D̂g; modulate vesicle shapes in characteristi-

cally different ways. By comparing the experimental and

theoretical shapes, we obtained estimates for both e and D̂g:

COMPARISON OF EXPERIMENTAL AND
SIMULATED VESICLE SHAPES

This section discusses the characteristic influence of varied

mechanical parameters in vesicle shapes. We begin with

simulated vesicles that have equal curvature moduli in both

phases but line tension at the phase boundary, and compare

the case of freely adjustable versus fixed vesicle volume. We

then proceed to show the variation of vesicle shape with

differing mean curvature modulus in coexisting phases

(e 6¼ 1), where equal Gauss curvature moduli are assumed

(D̂g ¼ 0). Next we show by comparison of the previously

mentioned situation to the case of equal mean curvature

moduli (e ¼ 1) and differing Gauss curvature moduli

(D̂g 6¼ 0), that both types of curvature moduli affect vesicle

shapes in significantly different ways. We finally obtain the

best agreement between theory and experiment by analyzing

the case of e 6¼ 1 and D̂g 6¼ 0; and obtain estimates for the

difference of mean and Gauss curvature moduli in coexisting

fluid lipid phases.

Vesicles with line tension but equal curvature
moduli: freely adjustable versus
constrained volume

We begin the discussion of vesicle shapes with coexisting

phases, deformed by line tension at the boundary, with

a series of simulated vesicles with increasing line tension,

and equal curvature moduli of the Lo and Ld phases (e ¼ 1

and D̂g ¼ 0), where the vesicle volume is assumed to be

freely adjustable, i.e., p̂ ¼ 0; and the area fraction of the Ld

phase is adjusted to the value of the experimental vesicle

(Fig. 2 A), xLd� 0.56. In Fig. 4 A, the neck curvature and line
tension increase from left to right. The comparison of the

meridional neck curvature of a simulated vesicle with neck

radius rb equal to the experimental value rb � 0.34

(simulated vesicle overlaid with the experimental vesicle,

which is shown with dashed line, for comparison), indicates

smaller meridional neck curvatures in the simulated vesicle.

As will be demonstrated below, high meridional neck cur-

vature with large neck radii are obtained in vesicles with

inner excess pressure only, where p̂, 0:
Fig. 4 B shows simulated vesicles with varying line

tension, where the reduced volume of each vesicle is fixed to

the experimental value y � 0.76. The constrained volume is

accounted for as an additional boundary condition for the

numerical solution of the shape equations and the inner

excess pressure results as an eigenvalue of the boundary

value problem (see Appendix B for further details). Whereas

for homogenous vesicles without line tension, a reduced

volume smaller than y ¼ 1 requires an outer excess pressure

(p̂. 0; see Refs. 22 and 43) at mechanical equilibrium, in

vesicles with high line tension, it necessitates an inner excess

pressure. Fig. 4, B and C, shows the meridional neck cur-

vature to increase with line tension. The volume constraint

results in a limit shape of minimum boundary radius (for

increasing line tension), which is characterized by spherical

caps with a geometry determined by the area fraction and

vesicle volume (see the rightmost shape in Fig. 4 B). In case

of this limit shape, a balance of forces in the plane of the

phase boundary leads to a linear relationship between pres-

sure and line tension according to

s

p
¼ 1

2
r
2

bðcotc1 � cotc2Þ; (10)

where c1 and c2 are the tangent angles right before and right

after the phase boundary (5). Note that with high line tension,

the meridional neck curvature can become higher than is

resolvable by optical microscopy. Accordingly, a kinked

neck geometry imaged by fluorescence microscopy, similar

to the rightmost vesicle in Fig. 4 B, does not allow for the

conclusion that meridional tangent angles show a disconti-

nuity at the phase boundary. For example, the neck geometry

of the experimental vesicle displayed in Fig. 2 G is in ac-

cordance with the assumption of a continuous neck geom-

etry, as follows from the comparison to the simulated vesicle

in Fig. 7 B.
The comparison of a simulated vesicle having a boundary

radius equal to the experimentally obtained value and the

experimental vesicle shows similar neck curvatures (Fig. 4 B,
compare the overlaid simulated and experimental vesicle,

with dashed lines). Accordingly, experimental vesicles with

approximately spherical-cap-shaped domains result from

line tension and a volume constraint leading to an inner

excess pressure. This inner excess pressure is probably

balanced by an osmotic pressure difference between inside

and outside of the vesicle (5). The mechanical analysis of the

vesicle geometries shown in Fig. 2, D and G, also lead to the

conclusion of an inner excess pressure (data not shown).

Fig. 4 C shows the tangent angles near the right phase

boundary of the simulated vesicles shown in Fig. 4 B and

of the experimental vesicle (Fig. 2 A). It is found that

the simulated vesicle with boundary radius equal to the
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experimental vesicle (third trace in the direction of the

arrows in Fig. 4 C) does not fit well to the experimental data.

Moreover, whereas the experimental vesicle shows the phase

boundary at an angle of cb� 1.96 rad, the simulated vesicles

have tangent angles at the phase boundary near cb¼ p/2 rad.

In the following, we will examine the effect of varying the

curvature moduli, i.e., the effect of e and D̂g; for vesicles with
fixed volume and boundary radius (both equal to the experi-

mentally obtained values).

Vesicles with line tension and constrained volume
and boundary radius: the effect of varying
curvature moduli

The simulated vesicle shapes shown in Fig. 5 all have an area

fraction, volume, and boundary radius equal to the ex-

perimentally obtained vesicle shape (Fig. 2 A). Defining

vesicle volume and boundary radius as boundary conditions

allows the determination of line tension and pressure dif-

ference as eigenvalues of the boundary value problem. Fig. 5

A shows tangent angles near the right phase boundary for

ratios of mean curvature moduli ranging from e ¼ 0.01 to

e ¼ 100 (in the direction of the arrows), under the assump-

tion of equal Gauss moduli in both phases, i.e., D̂g ¼ 0: The
experimental tangent angles are plotted for comparison. It is

readily inferred that e 6¼ 1 cannot account for the high

experimental tangent angle (cb � 1.96 rad) at the phase

boundary. The comparison of vesicle shapes with decreasing

values of e (Fig. 5 B, from left to right) reveals that whereas
the membrane domain with smaller mean curvature bending

modulus has the shape of a spherical cap, the membrane

domain with high mean curvature bending modulus has a

characteristic droplet shape (compare, e.g., the rightmost and
leftmost shapes in Fig. 5 B). The second simulated vesicle in

Fig. 5 B has a value of e ¼ 10, i.e., kLo is assumed to be 10

times greater than kLd. Although the effect of e on the vesi-

cle geometry on that order of magnitude is subtle, the

comparison to the experimental vesicle (shown in Fig. 5 B
with dashed lines) indicates that the Lo phase of the

experimental vesicle has a higher mean curvature bending

modulus than the Ld phase. This difference in bending

rigidity (e 6¼ 1) underlies the more pronounced deviation of

the Lo phase from a spherical cap, compared to the Ld phase

(see Fig. 3 A) near the phase boundary.
To demonstrate the influence of D̂g 6¼ 0 on the neck

geometry, vesicles with e ¼ 1 but varying difference in

Gaussian bending moduli are shown in Fig. 5, C and D. Fig. 5

C reveals that varying D̂g between �4 and 4, shifts the

boundary angle from cb ¼ 0.90 rad to cb ¼ 2.14 rad. The

comparison with the experimental value cb (right)� 1.96 rad

indicates that the experimental value of D̂g is positive, i.e., the

Lo phase has a smaller value of kG (but higher magnitude,

because the kG values of mechanically stable bilayer

membranes are negative; see Ref. 49) than the Ld phase.

FIGURE 5 Vesicle shapes and tan-

gent angles near right phase boundary,

in vesicles with varying e and D̂g ¼ 0

(A and B), or alternatively varying D̂g

and e ¼ 1 (C and D). (Gray, Lo phase;

black, Ld phase.) In all vesicles, area

fraction, volume, and boundary radius

were fixed to the experimental values.

(A) Tangent angles near right phase

boundary, e increases in the direction of
the arrows; e ¼ 0.01, 1, 100. The figure

additionally shows the experimental

trace. (B) The value e decreases from

left to right; e ¼ 100, 10, 0.1, 0.01, the

experimental vesicle is shown for

comparison with dashed lines. (C)

Tangent angles near right phase bound-

ary, which shifts toward lower angles

with increasing D̂g: D̂g ¼ 4; cb ¼ 2.14

rad; D̂g ¼ 0; cb ¼ 1.51 rad; Dg ¼ �4,

cb ¼ 0.90 rad. (D) Vesicle shapes with

varying D̂g; from left to right: D̂g ¼ �4;

experimental vesicle, D̂g ¼ 4: For all

three shapes circles were added to

compare the vesicle geometry to spher-

ical caps.
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The left and right vesicle shapes in Fig. 5 D are simulated

shapes referring to D̂g ¼ �4 and D̂g ¼ 4; respectively, the
middle shape is the experimental trace, for comparison.

The term D̂g 6¼ 0 shifts the phase boundary out of the neck

region (25), such that the membrane phase with the higher

value (but smaller magnitude) of kG primarily forms the

neck. The simulated shapes in Fig. 5 D clearly indicate that

the effect of D̂g 6¼ 0 is confined to the neck region, where

Gauss curvature is high. Both the Lo and Ld phase domains

in vesicles with D̂g ¼ 4 and D̂g ¼ �4 and e ¼ 1 are close to

spherical caps (circles are added in Fig. 5 D for comparison)

far from and near the neck. The Ld phase geometry of the

simulated vesicle with D̂g ¼ 4 (right vesicle in Fig. 5 D,

black domain) is similar to the Ld phase geometry of the

experimental vesicle (Fig. 5 D middle). However, as

previously mentioned, the comparison of the Lo phase geo-

metry of the experimental vesicle to a spherical cap, and

additionally to the Lo phase geometry of the simulated

vesicle with D̂g ¼ 4; reveals a significant deviation. The ex-
perimental Lo phase domain shows a characteristic droplet

shape, which according to the results shown in Fig. 5 B,
indicates e . 1, i.e., kLo . kLd.

To obtain estimates of the parameters e and D̂g for the

experimental vesicle shape shown in Fig. 2 A, the vesicle

volume, phase boundary radius, and phase boundary angle

were defined as boundary values (for the numerical solution

of the shape equations) given by the experimentally obtained

data, which determines the excess pressure p̂; line tension ŝ;
and difference in Gauss moduli D̂g as eigenvalues in

a boundary value problem with e as a single adjustable

parameter. Fig. 6, A and B, shows vesicle shapes simulated

with those conditions, and mean curvature moduli ratio

ranging from e¼ 0.05 to e¼ 5 (in the direction of the arrows
in Fig. 6 A and from right to left in Fig. 6 B). The ex-

perimental values are shown both in Fig. 6 A, and with

dashed lines in Fig. 6 B, for comparison. Both plots indicate

that agreement between simulated vesicle shapes and ex-

perimental vesicle necessitates e . 1 and D̂g . 0:
The most probable estimates of e consistent with the

experimental data were obtained from least-squares fitting of

the model described above to the experimentally obtained

coordinates, using e as a single adjustable parameter in the

parameterization with respect to arc length and tangent

angles. The least-square sum was calculated for the left and

right halves of the vesicle separately, and was restricted to an

interval of 6250 data points from the position of the phase

boundary, i.e., ;48% of the vesicle arc length measured

from north to south pole. According to Figs. 3 B and 6 A, this
procedure captures the vesicle geometry in the low curvature

spherical cap-shaped regions far from the neck in addition to

the high curvature neck region, but avoids decreasing the fit

quality by thermally excited membrane undulations (i.e.,

FIGURE 6 Vesicle shapes and tangent

angles near right phase boundary, in

vesicles with varying e and D̂g: (Gray,

Lo phase; black, Ld phase.) In all vesicles,

area fraction, volume, boundary radius,

and boundary angle were fixed to the

experimental values. (A) Tangent angles

near right phase boundary, in the di-

rection of the arrows: e¼ 0.2, D̂g ¼ 2:32;
e ¼ 1, D̂g ¼ 2:4; e ¼ 5, D̂g ¼ 3:5; e¼ 20,

and D̂g ¼ 9:2: (B) vesicles with same

parameters as in A, with increasing e (and
increasing D̂g) from left to right, the

experimental vesicle is shown for com-

parison with dashed lines. (C) Compari-

son of tangent angles near right phase

boundary for a vesicle with e ¼ 6.1 (i.e.,

the best fit value) and the experimental

vesicle. (D) Comparison of vesicle ge-

ometry near right phase boundary for

a vesicle with e ¼ 6.1 and the experi-

mental vesicle (dashed lines and shifted

toward the left).
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deviations from constant curvature) in the spherical caps.

The statistic x2 was calculated from the least-square sum and

an estimated uniform uncertainty in the experimentally

determined tangent angles c, of60.1 rad. The uncertainty in

the fit parameter e was obtained from the curvature of the

function x2 ¼ x2(e) near the minimum (50). The right-hand

side of the vesicle yielded e ¼ 6.10 6 1.339, whereas fitting

the left part of the vesicle resulted in e ¼ 3.89 6 0.916,

indicating that the uncertainty in e caused by thermal

fluctuations of the membrane geometry is higher than the

uncertainty estimated from the fit quality. The averaged

values and standard deviations of fit parameters on left

and right part of the vesicle are �ee ¼ 5:06 1:56;
�̂
D̂Dg ¼ 3:6

6 0:60; �̂ŝs ¼ 666 13:8; and �̂p̂p ¼ �2606 65:0: Lateral ten-
sions in the liquid-ordered and -disordered part of the vesicle

are
�̂dðLdÞ ¼�9:96 2:44 and

�̂dðLoÞ ¼ �8:76 2:21:
Fig. 6 C shows a closeup of tangent angle values at the

phase boundary, indicating the jump in meridional curvature,

for a simulated vesicle under the same conditions as those

used in Fig. 6, A and B, and e¼ 6.1, i.e., the best fit value for

the right half of the vesicle. This meridional curvature

discontinuity, which is caused by the differential material

properties quantified by e and �̂
D̂Dg; is clearly seen as a jump in

slope at the phase boundary in both experimental and

simulated vesicles.

A comparison between the vesicle coordinates of a sim-

ulated vesicle with best fit parameters (same as in Fig. 6 C)
and experimental vesicle (dashed lines and shifted toward

the left) is shown in Fig. 6 D, which further illustrates the

satisfactory agreement between theory and experiment.

Fig. 7, A and B, display simulated vesicle shapes with area

fraction, phase boundary radius, and reduced volume equal

to the experimental shapes of Fig. 2, D and G. Furthermore,

the geometries shown in Fig. 7 were obtained with the aver-

age values for e and �̂
D̂Dg that were found from the analysis of

the vesicle shown in Fig. 2 A. The insets of Fig. 7 depict neck
geometries obtained with values for e and �̂

D̂Dg equal to those

found from fitting the shape of the vesicle in Fig. 2 A (solid
lines), and for comparison neck geometries obtained for e¼ 1

and
�̂
D̂Dg ¼ 0 (dashed lines). Fig. 7 A (inset) indicates high

neck curvature in the Ld phase. The inset of Fig. 7 A
furthermore shows the Lo phase to bend strongly toward the

Ld phase in case of equal bending moduli in both phases,

whereas small neck curvature in the Lo phase is found in the

case of bending moduli obtained from the fitting vesicle in

Fig. 2 A. We showed above that the vesicle neck geometry is

primarily influenced by differing Gauss moduli, i.e., the

parameter
�̂
D̂Dg ¼ 0: Accordingly, vesicles with geometries

similar to Fig. 7 A are in better agreement with the ex-

perimental vesicle of Fig. 2 D (here the Lo phase hardly

bends toward the Ld phase in the neck region, see Fig. 2 F), if
a difference in Gaussian bending moduli is assumed. This

result qualitatively supports our finding of non-zero
�̂
D̂Dg

values in vesicles with fluid phase coexistence. The neck

geometries shown in the inset of Fig. 7 B hardly show a

detectable difference, indicating that vesicles with geometry

similar to Fig. 2 G cannot be employed to demonstrate

a difference in material properties of Lo and Ld phases.

We found vesicles with sufficiently resolvable neck geo-

metry particularly difficult to experimentally obtain. This is

explained by the fact that shapes have to be imaged that are

sufficiently different from limit shapes for high line tension

(see rightmost vesicle in Figs. 4 B and 7 B), i.e., line tensions
of experimental vesicles should not be too high, to allow

for a quantitative mechanical analysis. On the other hand,

vesicles with low line tension show increased thermal out-

of-plane fluctuations, which limits the applicability of a

zero-temperature vesicle shape theory (5). Our quantitative

mechanical analysis is limited by the fact that only one vesi-

cle of a composition SM/DOPC/chol ¼ 0.615:0.135:0.25

was analyzed in detail. Further research is therefore neces-

sary, to examine the extent to which our results can be

generalized. In particular, the influence of vesicle composi-

tions on mechanical vesicle parameters needs to be

examined. To that end, our algorithm for numerically

solving the shape equations has to be significantly improved

to reduce the amount of time necessary to fit a single

experimental vesicle shape.

FIGURE 7 Simulated vesicle shapes with

area fraction, reduced volume, and boundary

radius equal to the experimental vesicles shown

in Fig. 2 D (left) and Fig. 2 G (right). The ratio
of mean curvature moduli and dimensionless

difference in Gaussian moduli, respectively,

were set to e¼ 5 and D̂g ¼ 3:6 (i.e., the average

values found from the analysis of the vesicle

shown in Fig. 2 A). Geometrical parameters

referring to the simulated shapes are for A:

reduced volume y ¼ 0.84, Ld phase area

fraction xLd ¼ 0.18, and boundary radius rb ¼
0.235; and for B: y ¼ 0.98, xLd¼ 0.89, and rb¼
0.522. Insets display a comparison of neck

geometries for e ¼ 5 and D̂g ¼ 3:6 (solid lines)
and e ¼ 1 and D̂g ¼ 0 (dashed lines).
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DISCUSSION OF THE MECHANICAL
PARAMETERS FOR A VESICLE WITH
LO/LD PHASE COEXISTENCE

The model that was used above to examine the mechanical

properties of a phase-separated vesicle yields six param-

eters (e, �̂D̂Dg; ŝ; d̂Ld
; d̂Lo

; and p̂), raising the question of an

ambiguity of the results. It was demonstrated above that line

tension, the difference in bending moduli, and the difference

in Gauss moduli each affect vesicle shapes in characteris-

tically different ways. Additionally, the axially symmetric,

quasispherical shape of the bulk domains causes the lateral

tensions of each domain to be determined by the simple

Laplace equation (see below). Furthermore, the measure-

ment of the vesicle volume, the boundary radius, the bound-

ary angle, and the area fraction of the coexisting phases

allowed the determination of five parameters as boundary

values. The bending modulus ratio e was chosen as the only

fitting parameter in comparing the local membrane geometry

of the experimental vesicle to the simulated shape. The ap-

proach for determining five parameters from five inde-

pendent measurements allowed the fitting of the model

described above to the experimental vesicle with sufficient

statistical significance.

In the following, these estimates will be discussed based

on published experimental results in optically homogenous

lipid membranes and theoretical predictions.

Bending moduli: the ratio e

Bending moduli k of lipid bilayer membranes have been

determined by several different experimental methods,

among which the vesicle flicker spectroscopy (24,51,52)

and micropipette aspiration (53) have been employed most

frequently. Furthermore, theoretical estimates of k have been

obtained from microscopic models (54,55) and computer

simulations (56–58).

However, absolute values of bending moduli cannot be

determined from studying static equilibrium shapes of

vesicles with homogenous membranes, because vesicle

shapes of homogenous membranes (without spontaneous

curvature) are determined by the reduced volume only (37).

(Note that the effect of a blocked lipid exchange between

monolayer leaflets leads to further shape parameters, which

is neglected in this work due to the presence of cholesterol,

which rapidly flip-flops between leaflets.) This is because the

bending energies are much smaller compared to energies

necessary to change the total membrane area, and the vesicle

volume (59). For the same reason, absolute values of

bending moduli for the Ld and Lo phases cannot be obtained

from an equilibrium shape analysis of phase-separated

vesicles. However, the experimental shape of vesicles with

phase coexistence permits the determination of the ratio of

bending moduli e, as shown above (see also Refs. 25 and 34).
A value �ee ¼ 56 1:56 is obtained from the shape analysis of

the vesicle shown in Fig. 2 A, indicating a significantly

higher bending rigidity of the Lo phase compared to that of

the Ld phase.

This finding is in accord with experimental measurements

of bending moduli in homogenous membranes, with micro-

scopic models, and with known properties of the Lo versus

Ld phase membranes, as will be discussed in the following.

Tie-line estimations in the Lo/Ld demixing region of phase

diagrams of ternary lipid mixtures composed of cholesterol

and a phospholipid with saturated (like SM or DPPC) and

unsaturated (like POPC or DOPC) chains, indicate that the

Lo phase contains more cholesterol than a coexisting Ld

phase (33,60). Cholesterol incorporation into fluid mem-

branes is known to increase membrane bending moduli

(52,53), compared to fluid membranes without cholesterol,

up to a factor of ;5 (61).

Microscopic models (55,62) show the bending modulus to

scale as

k}KA

l
t

u
y; (11)

where KA is the area compressibility modulus, l is the thick-
ness of the membrane, and u is the average cross-sectional

area of a lipid molecule. The exponents t, y $ 1. The value

KA has been shown to increase with cholesterol content

(63), consistent with e . 1. Comparative studies of one-

component membranes from lipids with increasing chain

length but identical headgroups revealed KA to be roughly

constant (64) and a quadratic dependence on chain length

(and therefore membrane thickness), i.e., t ¼ 2 (64,65).

Cholesterol incorporation has been shown to lead to a

thickness increase of lipid membranes and a decrease in the

average cross-sectional area per molecule, u, in single phase

membranes (66–68). Atomic force microscopy measure-

ments have indicated the Lo phase thickness, l, to be higher

compared to a coexisting Ld phase, in ternary lipid mixtures

of DOPC, egg SM, and cholesterol (69). The increased Lo

phase thickness is partially due to the enrichment of saturated

chain lipids in this phase (33). Eq. 11 reveals that all these

findings lead to a higher bending modulus of the Lo versus Ld

phases, consistent with e . 1.

Saddle-splay moduli: the difference D̂g

Saddle-splay (Gauss) moduli kG are significantly more dif-

ficult to measure than the moduli k, because the Gaussian

bending energy is a topological invariant due to the Gauss-

Bonnet theorem and, consequently, cannot be experi-

mentally determined in homogenous bilayer membranes.

However, it was shown above that phase-separated giant

vesicles can be used to experimentally determine the

normalized difference, D̂g; of saddle-splay moduli in the

Lo and Ld phases. A value of
�̂
D̂Dg ¼ 3:66 0:60 was obtained

from the analysis of the vesicle shown in Fig. 2 A, i.e.,
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a smaller (i.e., more negative) value of kG in the Lo phase

versus the Ld phase.

It can be shown (35,70) that bilayer saddle-splay moduli

kG are related to the monolayer values kmG by

kG ¼ 2k
m

G � 8k
m

h
m

0 d; (12)

where hm
0 is the spontaneous curvature of the lipid mono-

layer, and d is the distance of the monolayer neutral surface

(surface of inextension) to the bilayer midplane. The mono-

layer neutral surface is usually assumed to be near the

hydrophilic/hydrophobic interface of the lipid monolayer.

Theoretical considerations limit the range of km=kmG to

� 1# km=kmG # 0 (71). Most theoretical models show the

ratio km=kmG to be a constant with respect to varied

microscopic parameters (see Refs. 55 and 72 and references

therein), i.e., bending rigidity and saddle splay modulus are

affected in exactly the same way with varying membrane

parameters. Due to the sign difference (km=kmG # 0), and k ¼
2km (49), and e . 1 (see above), it is therefore expected that

the Lo phase monolayers have more negative values of kmG
compared to the Ld phase monolayers. Assuming the first

term in Eq. 12 to dominate the difference in bilayer Gaussian

bending moduli, and furthermore assuming km=kmG ¼ �1;
leads to D̂g ¼ðkLdg � kLog Þ=kLd ¼ e�1¼ 4; consistent with
the value determined experimentally. However, the sponta-

neous curvature hm
0 and therefore the second term in Eq. 12

depend on parameters such as the membrane composition,

the molecular geometry of the constituting membrane lipids,

and the temperature. It could therefore be the case that
�̂
D̂Dg of

the Lo and Ld phases is not always positive. Further

systematic shape studies of vesicles with fluid phase

coexistence that span the whole composition range of fluid

phase coexistence are therefore necessary.

Experimentally obtained values of kLd for the Ld phase

membranes are of the order 10�19 J (24,51–53). Using this

value, the absolute difference in Gauss moduli is estimated to

be �DDg � 3:6310�19 J:

Estimation of line tension, pressure, and
lateral tensions

The dimensionless vesicle shape parameters �̂ŝs; �̂p̂p;
�̂
dðLoÞ; and

�̂
dðLdÞ can be used to obtain a rough estimate of the mag-

nitudes of line tension s, pressure difference p, and lateral

tensions d in the experimental vesicle, using the radius of the

undeformed sphere R0 and an estimate of the bending

modulus of the Ld phase (see Eq. 7).

The typical value ofkLd� 10�19 J usedwith the radius of the

(undeformed) experimental vesicle, R0� 9.8 mm and �ee � 5:0;
yields an experimental line tension s � 6.73 10�13 N.
Generally, the thermodynamic description of line tension

at the boundary of coexisting fluid phases in lipid bilayer

membranes has been based on two contributions. These are

a chemical line-tension arising from the compositional in-

homogeneity over the phase boundary (73), and a mechanical

line-tension resulting from the thickness difference between

coexisting domains leading to membrane compression and

tilt to avoid an energetically unfavorable hydrophobic

mismatch (74). The latter model yields line tensions in the

range of the experimental value determined in this work.

Line tension at phase boundaries of coexisting fluid do-

mains in two-dimensional lipid systems have been measured

in lipid monolayers at the air/water interface (75). The ex-

perimental values varied from 1.6 3 10�12 N to 0 at the

critical point of the phase diagram where the difference in

properties of coexisting phases becomes negligible, and

accordingly the line tension vanishes. A recent line tension

estimate in giant vesicles with fluid phase coexistence (5)

yielded s � 9.03 10�13 N, i.e., a value of the same order of

magnitude as determined above. Line tension estimates in

other systems are typically of order 10�12 N (73). Line

tensions depend on the relative properties of coexisting

phases, i.e., on domain composition and temperature. To

systematically relate experimentally obtained line tensions to

vesicle composition and temperature, the determination of

tie-line directions in ternary lipid phase diagrams with fluid

phase coexistence is necessary.

The normal pressure difference across the membrane of

the experimental vesicle amounts to p ��2.83 10�2 N/m2.

Lateral mean tensions in the membrane were d(Ld) � �1.03

3 10�4 mN/m and d(Lo) � �0.91 3 10�4 mN/m. The me-

chanical pressure difference, p, should be balanced by an

osmotic pressure P,

P ¼ csRT; (13)

where cs is the solute (sucrose in the present case)

concentration difference between inside and outside of the

vesicle, R is the molar gas constant, and T is temperature. Eq.

13 yields a concentration difference on the order of cs� 10�5

mmolar, i.e., an extremely tiny value. The spherical caps

of the experimental vesicle with approximately constant

curvature (see Fig. 2 A) yield radii of curvature in the

disordered-liquid phase RLd � 7.4 mm and in the liquid-

ordered phase RLo� 6.5. From the Laplace equation (p ¼ 2d/
Ri, where Ri is the constant radius of curvature of a spherical

membrane), these curvature radii and the lateral tensions de-

termined above, a pressure difference is obtained—which is

in agreement with the value determined from the vesicle fit.

CONCLUSION

Cellular membrane transport processes are hypothesized to

involve coexisting fluid lipid membrane phases; i.e., tubu-

lation, budding, and fission take place in the presence of

membrane regions with differing curvature moduli and line

tension at the boundary of domains with differing compo-

sitions. A proper mechanical interpretation of these phe-

nomena necessitates the determination of the curvature
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resistance of coexisting domains and the magnitudes of line

tensions at phase boundaries.

The approach of this research was to analyze the geometry

of individual vesicles with fluid phase coexistence that

showed a geometry amenable to quantitative analysis, i.e., an

optically resolvable neck curvature, the disordered phase

bending strongly toward the ordered phase with a clearly

resolvable tangent angle at the phase boundary, a spherical

cap of the disordered fluid phase, and a somewhat droplet-

shaped ordered phase cap (5). Clearly, a more complete me-

chanical analysis has to account for the lipid composition

of the coexisting changes, which varies with average lipid

composition and temperature (5,31). Such an analysis relies

on the determination of tie-line directions in ternary lipid

phase diagrams; this field of research is currently still at an

early stage (33). However, the approach described above

provides a starting point for a refined mechanical analysis of

membranes with fluid coexisting phases.

In this contribution, an elastic model for phase-separated

vesicles with line tension at the phase boundary and different

bending moduli k and Gauss moduli kG was used to extract

experimental estimates for the ratio of bending moduli, and

difference in Gauss moduli, from the detailed neck geome-

try of a vesicle with coexisting liquid-ordered and liquid-

disordered phases.

The expression of boundary conditions based on the bal-

ance of forces and moments over the boundary allowed

a straightforward interpretation of the physical meaning of

the jump conditions. The jump in lateral tensions is equal to

line tension multiplied by the geodesic curvature of the

boundary, whereas the jump in transverse shear is equal to

line tension multiplied by the principal curvature along the

phase boundary.

The contributions from line tension, differing bending

moduli, and differences in Gauss moduli were shown to each

affect vesicle shapes in distinct ways, allowing estimations

of their magnitudes from a comparison of theory and experi-

ment. It was found that line tension leads to a vesicle shape

significantly different from membranes without a phase

boundary and that a normal pressure difference across the

vesicle membrane in the case of high neck curvature with

large neck radii is mandatory to maintain mechanical equi-

librium. The mean curvature bending modulus of the Lo

phase was found to be considerably higher than that of the

Ld phase.

The significant influence of the difference of Gaussian

bending moduli on biologically relevant membrane shape

transitions such as budding of phase-separated vesicles

(25,34) and fission of tubes with coexisting phases (36) has

been theoretically demonstrated by several groups. To the

best of our knowledge, this research provides the first

experimental evidence for the existence of a difference in

Gaussian bending moduli in coexisting liquid-ordered and

liquid-disordered bilayer lipid membrane phases. This is

a starting point for an in-depth analysis that will relate the

compositions of coexisting fluid phases to mechanical

membrane properties and examine the dynamics of line

tension driven budding and fission.

APPENDIX A: EQUIVALENCE OF JUMPS IN
FORCES AND MOMENTS TO THE
VARIATIONAL APPROACH

This section shows that the three jump conditions, Eqs. 5 and 6 and the

moments jump condition Ms1
s � Ms�

s ¼ 0; are equivalent to Eqs. A18, A21,

and A22 in Juelicher and Lipowsky (25), when spontaneous curvature is

neglected. Their Eq. A18 (with neglecting spontaneous curvature, and in our

notation, i.e., d ¼ �Si) can be written as

k
i
r

2
c9

i2 � sinc

r

� �2
( )

1 d
i � p

2
r
2
sinc1 g

i
cosc ¼ 0:

(14)

Solving for g and inserting Eq. 14 into their relation for s (their Eq. A21), it

follows that

s
cosc

r
¼ D

k

2
c9

2 � sinc

r

� �2
( )

� d

 !
; (15)

where D indicates a difference between phases. With h ¼�1/2(c9 1 sin c/r)

it follows that

s
cosc

r
¼ Dð2kfh

2
1 hc9g � dÞ: (16)

With Ts
s ¼ �½d � 2khðc91hÞ�Þ the in-plane jump condition Eq. 5 is

obtained. Similarly, Juelicher and Lipowsky’s equation (their Eq. A13) can

be solved for g and insertion into their relation for s (their Eq. A21) yields

s
sinc

r
¼ D k c$1 c9

cosc

r
� cosc sinc

r
2

� �� �
; (17)

which with Qs ¼ 2kh9 is equivalent to the jump in transverse shear Eq. 6.

The jump in moments together with the constitutive relation Ms
s ¼

�½2kh � kG sinc=r� yields Juelicher and Lipowsky’s Eq. A22. Hence, the

expression of jumps in forces and moments is in accordance with the

variational approach put forward by Juelicher and Lipowsky (25).

APPENDIX B: NUMERICAL SOLUTION OF THE
SHAPE EQUATIONS

The six quantities Q̂s; h, c, r, z, and d̂; are chosen as dependent variables,

where z is the vesicle height (see Fig. 1) and the arc length s is the

independent variable. For each phase of a membrane with domains, a set of

six coupled first-order differential equations for each membrane region is

obtained. Two of these are derived from Eqs. 3 and 4, and read for the (�)

region (i.e., the region before the phase jump, viewed from the north pole of

the vesicle)

ðQ̂sÞ9 ¼�cosc

r
Q̂s12h d̂1eh2

1e
sinc

r
2h1

sinc

r

� �� �
1 p̂

(18)

and

h9¼�Q̂s=e: (19)

The four remaining equations are c9¼�2h � sin c/r, r9¼ cos c, z9¼ sin c,

and d̂9 ¼ 0: The six equations for the (1) region are identical, except that the
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parameter e in Eqs. 18 and 19 does not appear (due to scaling with respect to
k1). The 12 boundary conditions at north pole (s ¼ 0), phase discontinuity

(s ¼ s*), and south pole (s ¼ se) are: Qs(0)¼ Qs(se)¼ 0, c(0)¼ 0, c(se)¼ p,

r(0) ¼ 0, and z(0) ¼ 0; and the continuity equations are c(s*�) ¼ c(s*1),
r(s*�)¼ r(s*1), and z(s*�)¼ z(s*1); and, finally, the three jump conditions

obtained from Eqs. 5, 6, and Ms1
s � Ms�

s ¼ 0 are

Q̂
1

s � Q̂
�
s � ŝ

sinc

r
¼ 0; (20)

d̂
1 � d̂

�
1h

12� eh�2
1ðh1 � eh�Þsinc

r
1 ŝ

cosc

r
¼ 0; (21)

and

h
1 � eh� � D̂g

sinc

r
¼ 0: (22)

A calculation shows that r(se) ¼ 0 is automatically satisfied. The choice of

a continuous tangent angle over the phase boundary is based on ex-

perimental evidence in vesicles with fluid phase coexistence (see Ref. 5).

To account for the constraints on total membrane area and area fraction of

the coexisting phases of a phase-separated lipid vesicle at constant temper-

ature, we introduce a generalized variable S (25,42), such that s(S ¼ 0) ¼ 0,

s(S*) ¼ s*, s(Se) ¼ se, and _ss [ ds=dS: Derivatives with respect to s are thus

expressed in terms of derivatives with respect to S, e.g., Q9s _ss ¼ _QQs: For the

choice of _ss ¼ sinðSÞ=r ¼ R=r and Se ¼ p, S becomes the arc length along

the meridian of a unit sphere with local radius R(S) (42). The area of an

axially symmetric vesicle element including the north pole yields

AðsÞ ¼ 2p

Z s

0

rðsÞds¼ 2p

Z S

0

RðSÞdS¼AðSÞ: (23)

Accordingly, this parameterization yields the total membrane area of a unit

sphere, and preserves the area fraction of coexisting membrane phases,

under change of membrane parameters. The differential shape equations of

the (�) and (1) regions are solved by mapping S� in [0 S*] and S1 in [S* p]

onto the common interval [0 p], by introducing a modified scaling of S. The
arc length of the deformed vesicle is obtained by simultaneously integrating

_ss ¼ sinðSÞ=r; with the boundary condition s(S ¼ 0) ¼ 0. The singularities at

the poles are approximated by expansions near the poles. The pressure

difference, p̂; is either prescribed, or in case of a fixed volume Vf, can be

obtained as an eigenvalue, with introduction of the additional differential

equation _VV ¼ pr sinc sin S; with boundary conditions V(S ¼ 0) ¼ 0 and

V(S ¼ p) ¼ Vf. The line tension, ŝ; is either prescribed or in case of a fixed

boundary radius, rb, obtained from the boundary condition r(S*) ¼ rb. The
normalized difference in Gaussian bending resistances, D̂g; is either

prescribed or in case of a fixed tangent angle at the boundary, cb, obtained

from the boundary condition c(S*) ¼ cb.
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