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ABSTRACT We present a comprehensive study of the accuracy and dynamic range of spatial image correlation spectroscopy
(ICS) and image cross-correlation spectroscopy (ICCS). We use simulations to model laser scanning microscopy imaging of
static subdiffraction limit fluorescent proteins or protein clusters in a cell membrane. The simulation programs allow us to control
the spatial imaging sampling variables and the particle population densities and interactions and introduce and vary background
and counting noise typical of what is encountered in digital optical microscopy. We systematically calculate how the accuracy of
both image correlation methods depends on practical experimental collection parameters and characteristics of the sample.
The results of this study provide a guide to appropriately plan spatial image correlation measurements on proteins in biological
membranes in real cells. The data presented map regimes where the spatial ICS and ICCS provide accurate results as well as
clearly showing the conditions where they systematically deviate from acceptable accuracy. Finally, we compare the simulated
data with standard confocal microscopy using live CHO cells expressing the epidermal growth factor receptor fused with green
fluorescent protein (GFP/EGFR) to obtain typical values for the experimental variables that were investigated in our study. We
used our simulation results to estimate a relative precision of 20% for the ICS measured receptor density of 64 mm�2 within
a 121 3 98 pixel subregion of a single cell.

INTRODUCTION

Image correlation spectroscopy (ICS) and image cross-

correlation spectroscopy (ICCS) have proven to be powerful

tools to analyze laser scanning microscopy (LSM) images

and image time series. Using these techniques, it is possible

to obtain information regarding number densities, clustering,

and dynamics of the fluorescent molecules in biological

membranes via correlation analysis of LSM images. It has

already been applied in several biological experiments;

however, despite the significant development in this area, a

detailed and systematic analysis of the accuracy and the

dynamic range of ICS is still lacking. The main purpose of

this work is to study the accuracy and precision of spatial

ICS and ICCS methods and to determine the measurement

limits so as to provide a useful tool to design image correla-

tion experiments.

Fluorescence correlation spectroscopy (FCS) was origi-

nally developed ;3 decades ago and is a versatile fluc-

tuation technique that can provide the mean concentration

of fluorescent particles and their transport and reaction

dynamics within microscopic samples both in vivo and in

vitro (1–4). It was originally implemented to measure the

dynamics of a fluorescent dye binding to DNA by ex-

tending the concepts of fluctuation spectroscopy to the

kinetics of chemical reactions. FCS is based on the mea-

surement of spontaneous fluorescent particle number fluc-

tuations within an open subsystem defined by the focus of

a stationary excitation laser beam. The emitted photons are

collected and recorded as a function of time, and this in-

tensity fluctuation time series is analyzed by temporal auto-

correlation analysis. The profile and rate of decay of the time

autocorrelation function reflects the kinetics or dynamics of

the physical processes at the molecular level (5,6). The zero

time lag value of the normalized intensity fluctuation auto-

correlation function reflects the relative magnitude of fluc-

tuations on average and is the inverse of the mean number

of independent fluorescent entities in the beam focus (3).

Simple models of the dynamics of the system and excitation

and collection profiles allow for analytical solution of the

autocorrelation function, and useful data can be extracted by

fitting the experimental decay with the appropriate model

function.

Introduced as an extension of FCS, ICS uses fluorescence

microscopy imaging with an LSM to sample spatial intensity

fluctuations as well as time fluctuations. It can be applied to

either fixed or living cells to calculate membrane receptor

number densities or cluster aggregation states (7,8). In the

case of dynamic samples with slow transport, ICS provides

better averaging than FCS by means of improving the sta-

tistics due to parallel sampling inherent in the imaging

process (9).

ICCS, a recent extension of ICS, correlates the fluores-

cence intensity fluctuations between two detection channels

recorded simultaneously (9,10). Even for confocal images of

fixed tissue, ICCS provides accurate number densities of

interacting populations with a dynamic range much larger

than standard colocalization algorithms (J. W. D. Comeau,

S. Costantino, and P. W. Wiseman, unpublished).

An important difference between ICS and FCS is that ICS

does not need any extra hardware component apart from the
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imaging system. The images and the characteristics of the

point spread function are the only data required to perform

the analysis. Furthermore, the images can be obtained with

confocal, two-photon, or total internal reflection microscopes,

and the fluorescence intensity can be recorded using photo-

multiplier tubes, avalanche photodiodes, charge-coupled de-

vice cameras, or any other light detection device suitable for

imaging.

The first application of ICS involved the measurement of

growth factor receptor clustering in fixed cell samples (7,8).

Similar image correlation analysis has also proven useful in a

total internal reflection fluorescence microscopy setup where

binding rates of IgE to lipid bilayers were analyzed (11).

Furthermore, ICCS has been applied successfully to measure

receptor coated-pit interactions (12) and adhesion receptor

dynamics in living cells (13).

The statistical accuracy of FCS has been the focus of

several important studies (14–17) that have built upon the

pioneering work of D. E. Koppel (18). In contrast, only the

precision of cell population ICS measurements have been

treated in any detail (8). No statistical road map exists for

ICS or ICCS for single cell measurements, i.e., for a single

image measurement. The aim of this work is to map out col-

lection and sampling rules for spatial ICS and ICCS experi-

ments to establish valid experimental regimes for imaging to

ensure statistically relevant results.

Using simple numerical algorithms to model the images

that are obtained with confocal or two-photon fluorescence

microscopy, we have simulated different situations to test

the accuracy of ICS and ICCS. Systematic variation of the

parameters that characterize simulated images can provide

very useful information regarding the dynamic range of the

methods. Furthermore, generating multiple images allows us

to calculate estimates of the standard deviation (SD) of the

results obtained under different conditions.

Finally, to connect the results obtained from simulations

with standard confocal imaging, we performed confocal laser

scanning microscopy (CLSM) imaging and ICS analysis

using transfected CHO cells expressing a green fluorescent

protein (GFP) fusion of the epidermal growth factor receptor

(EGFR). The data from the recorded images provided

a typical example of a cell measurement and the character-

istic values regarding signal/noise ratio and receptor number

densities for a GFP transfected cell line.

The result of our work is a comprehensive exploration of

the variable space that plays a role in the imaging process

and the expected accuracy of the methods that can be used

as a guide by researchers with no expertise in the area. The

precision of spatial ICS is analyzed as a function of the size

of the point spread function, particle density in the sample,

number of independent fluctuations (NIF) sampled, and

noise in the image acquisition process. We also present a

similar study for spatial ICCS, which includes the influence

of the total number of particles in the image as well as their

relative densities and their interaction fraction.

THEORY

A complete derivation of the formal theory of spatial ICS can

be found in the original articles (7,9) and in a review (19).

For thisworkwewill only recapitulate the fundamental defini-

tions and formulae that are necessary for what follows.

The basis of the method consists of measuring the fluores-

cence intensity excited in a diffraction-limited volume de-

fined by a focused laser beam in a confocal or two-photon

microscope. The focal spot is rapidly scanned across the

sample while the fluorescence intensity is collected at each

position within the sample and recorded as a pixel value

to build a two-dimensional array which is the image. The

fluorescence intensity fluctuation at each pixel can be ex-

pressed as

diðx; yÞ ¼ iðx; yÞ � Æiæ; (1)

where iðx; yÞ is the fluorescence intensity measured at the

pixel located at x, y and Æiæ is the mean intensity of the image.

For a system of noninteracting particles with no noise, the

ratio of the mean square intensity fluctuation to the square of

the mean intensity is inversely proportional to ÆNæ, the mean

number of fluorescent particles per beam area (BA) (7):

ÆðdiÞ2æ
Æiæ2

¼ ÆNæ�1
: (2)

The square relative fluctuation in Eq. 2 is obtained from the

zero time lag amplitude of the temporal autocorrelation

function for FCS (1,3) or equivalently from the zero spatial

lags amplitude of the spatial autocorrelation for ICS.

Nevertheless, in the case of real systems, different noise

sources render meaningless a direct measurement of the mean

particle density from a straight calculation of the square re-

lative fluctuation. For a complete ICS analysis, it is necessary

to calculate the normalized fluorescence intensity fluctuation

spatial autocorrelation function:

r11ðe;hÞ ¼
Ædi1ðx; yÞdi1ðx1 e; y1hÞæ

Æi1æ
2 ; (3)

where the angle brackets indicate spatial ensemble averaging

and the subscript 1 indicates detection channel 1. This dis-

crete function, often called the raw autocorrelation function,

depends on two spatial lag variables, and its zero lags value

is the square relative intensity fluctuation

rð0; 0Þ ¼ ÆðdiÞ2æ
Æiæ2

¼ ÆNæ�1
: (4)

The zero lags value is obtained from the fit of the raw auto-

correlation function (3) to a two-dimensional Gaussian func-

tion (see Eq. 9) without weighting the zero lags datum due to

the presence of uncorrelated noise in this channel. However,

noise will still contribute to the mean intensity term in the

denominator. Any background sources of light will also in-

troduce systematic deviations from the true value for ÆNæ as
is studied in this work.
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MATERIALS AND METHODS

Image generation

All the computational work, both simulation and correlation function cal-

culations, was performed using custom written MATLAB 7.0 (The Math-

Works, Natick, MA) routines and two toolboxes (Image Processing Toolbox

and Optimization Toolbox) running on a personal computer equipped with

a 2.0 GHz processor and 512 Mbytes of RAM.

To create images that simulate the ones obtained with confocal or two-

photon fluorescence microscopy of membrane macromolecules, i.e., two-

dimensional systems, we used the following procedure. For an image of Nx

3 Nx pixels with a fixed number of particles N0, two sets of N0 randomly

generated integer numbers between 1 and Nx were created. These two sets

of random integers were used as the coordinates (in pixel units) in the

horizontal and vertical directions for the particles. As a result, a first image

matrix was obtained with a value of 1 at the locations of the N0 particles and

zeros for all other pixels. For the case of two or more particles located in the

same pixel, a value of 1 was added for each coincident particle. We refer to

this matrix as the particle matrix.

To simulate the effect of excitation with a diffraction-limited focused

TEM00 laser beam, the particle matrix was convolved with a two-dimensional

Gaussian function with variable e�2 radius (in pixel units) in the x, y plane.
For this convolution procedure, a minimum arbitrary ratio of six was estab-

lished between the full length in pixel units of the square matrix used to

create the Gaussian function and its e�2 radius. Using this criterion, the

Gaussian function has decayed by more than four orders of magnitude from

its central maximum at the edge of the convolving matrix.

We refer to the resulting image matrix after the convolution process as A.
It is then normalized, and its elements are rounded to the closest integer so

that the maximum value corresponds to 2d, where d is chosen to equal the

number of bits typical for the analog-to-digital conversion of the signal from

the light detector of the microscope imaging system we wish to simulate. All

the simulations in this work were performed setting d ¼ 12.

To simulate background noise, a square matrix of the same dimensions as

the image with normally distributed random numbers was generated. The

mean of the distribution was zero, and its SD was 1. The absolute values of

the numbers were taken, and this noise matrix U was added to the image

matrix A. A variable scaling coefficient, s, was used as an adjustable SD

parameter allowing us to control the magnitude of the signal/background

ratio (S/B). The elements of the final image matrix C are given by

cij ¼ aij 1suij: (5)

Using this definition the S/B is defined as

S=B ¼ maxðAÞ
s

: (6)

To simulate shot or counting noise inherent in photon detection, a dif-

ferent procedure was used. We also generated random numbers with a

Gaussian distribution around zero and SD of 1 distributed in the matrix U,
but this noise matrix was scaled with a coefficient WF (the width factor) and

multiplied by the square root of the intensity of each pixel. The final value

for each pixel in the matrix is

cij ¼ aij 1WF
ffiffiffiffiffi
aij

p
uij: (7)

This WF represents the ratio of the real SD of the intensity signal at a given

photomultiplier tube (PMT) voltage to the one expected from a pure Poisson

distribution (i.e., the square root of the mean value for the Poisson).

To simulate two-color images with fixed numbers of colocalized par-

ticles, three matrices were created following the previously outlined pro-

cedures. One represented the colocalized particles (matrix A) and two more

represented the noninteracting molecules, one matrix for each detection

channel B1 and B2. Two final images C1 and C2 were generated by sum-

ming the colocalized particle matrix A with those representing the non-

interacting particles. The ratio between the number of particles in the

colocalized image and the total number of particles in the respective

detection channels N(A)/[N(B1)1N(A)] and N(A)/[N(B2)1N(A)] defines
the percentage of interaction or interacting fraction (IF). Throughout this

study we will call N1 and N2 the total number of particles in the image for

detection channel 1 and channel 2, respectively.

A two-dimensional fast Fourier transform algorithm was applied to

compute the normalized intensity fluctuation spatial autocorrelation func-

tion, using the expression

r11ðe;hÞ ¼
F

�1fFðCðx; yÞÞF�ðCðx; yÞÞg
ÆCðx; yÞæ2

� 1; (8)

where F represents the Fourier transform, F�1 the inverse Fourier transform,

F�its complex conjugate, and e and h are spatial lag variables.

The resulting function was fit to a two-dimensional Gaussian function

using a three-parameter nonlinear least-squares procedure:

r11ðe;hÞ ¼ g11ð0; 0Þexp
e2 1h

2

v
2

� �
1 gN; (9)

where g11ð0; 0Þ, the best fit amplitude, provides the measurement of the

inverse mean number of particles per BA, ÆNæ, v is the e�2 beam focus

radius, and gN is an offset to account for the possibility of long range spatial

correlations. The initialization parameters for the fitting procedure were

calculated as follows: the minimum of r11(e,h) for gN, the difference

between the maximum and the minimum for g11(0,0), and the distance in

pixel units from r11(0,0) to r11(e9,h9) ¼ e�2 r11(0,0) for vinitial.

For the dual-color ICCS analysis, we used a similar approach, taking into

account contributions from both simulated detection channels. The nor-

malized intensity fluctuation spatial cross-correlation function between

detection channels 1 and 2 is calculated as follows where the symbols are as

described for Eq. 8:

r12ðe;hÞ ¼
F�1fFðC1ðx; yÞÞF�ðC2ðx; yÞÞg

ÆC1ðx; yÞæ ÆC2ðx; yÞæ � 1: (10)

This function was also fit to a Gaussian, but in this case the mean number of

colocalized particles per BA, ÆN12æ is

ÆN12æ ¼
g12ð0; 0Þ

g11ð0; 0Þg22ð0; 0Þ
; (11)

where g12(0,0) is the amplitude of the cross-correlation fit Gaussian and

g11(0,0) and g22(0,0) are the single channel autocorrelation amplitudes from

the best fits.

Cell culture

CHO K1 cells expressing GFP/EGFR constructs (20) were generously

provided byDr. T.M. Jovin andDr.DonnaArndt-Jovin (MaxPlanck Institute

for Biophysical Chemistry, Göttingen, Germany). Cells were cultured in

Dulbecco’s modified Eagle’s medium, supplemented with 10% fetal bovine

serum, 4 mM L-glutamine, 100 units/ml penicillin, 0.1 mg/ml streptomycin,

0.1 mM nonessential amino acids, and 0.5 mg/ml G418 to maintain

transfection (Gibco, Carlsbad, CA). Cells were maintained in a humidified,

5.0% CO2 atmosphere at 37�C.

Microscopy

The basal membrane of living CHO K1 cells expressing GFP/EGFR fusion

proteins was imaged using an Olympus FV300 (Olympus America,

Melville, NY) confocal laser scanning microscope. The cells were plated

in petri dishes with a coverslip insert in the bottom (No. 1.5; MatTek,

Ashland, MA). Excitation was provided by the 488 nm line of an Ar ion

laser, and emission was collected with an Olympus 603 PlanApo oil

immersion objective (numerical aperture 1.4) and filtered with a BA510IF

Accuracy and Dynamic Range of ICS and ICCS 1253
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long pass filter (Chroma, Rockingham, VT). The PMT voltage was adjusted

such that no pixels were saturated and no threshold was applied. A digital

zoom was used to achieve a pixel resolution of 0.057 mm.

Rhodamine 6G chloride solutions were imaged using the same excitation

laser line, objective, and collection filter as described above for live cell

imaging.

RESULTS AND DISCUSSION

The work we present in this study is restricted to simula-

tions of two-dimensional systems. From a biological point

of view, this restricts the applicability of the results to planar

membrane systems. Nevertheless, biological membranes are

the location for many important biochemical processes in-

cluding the initial events in cell signaling and cell adhesion,

which involve multicomponent macromolecular complex

formation at the membrane via clustering of cell surface re-

ceptors and intracellular components. Also, ICS and ICCS

allow correlation measurement of particle densities in such

systems under static conditions (e.g., after chemical fixation

of membrane proteins), which is not possible by FCS. An

extension of our simulation to three dimensions can easily

be performed, but computation times would be considerably

increased and would not yield better insight into the pro-

blems that are typically addressed by image correlation studies.

In an ideal situation, without any noise sources and even

with poor digitization, the dynamic range of ICS is very

large. Noise-free simulations with a density.103 ideal (non-

interacting) fluorescent particles per BA have been per-

formed, and accurate results were obtained for the recovered

number densities after the ICS analysis (data not shown).

A fundamental parameter that defines the precision of the

method is the magnitude of the relative intensity fluctuations.

This is the ratio of the SD in the number of particles in the

area excited by the laser and the mean number of particles

within the focal spot. For a very dense sample or for a very

large point spread function, the relative fluctuations become

smaller as does the precision of the method, hence the SD of

the measurement becomes larger.

These simulations demonstrate that ICS can accurately

recover number densities when .1 particle is in the beam

focal spot. However, there is a limit where such simulations

become unphysical. We would expect nonideal interactions

and excluded volume effects to lead to systematic deviations

at higher particle densities for real systems as has been

shown for FCS (21). Membrane biological applications of

ICS have typically involved protein densities of ,100 pro-

teins per focal spot and often ,10 (8,13). Distortions to the

analysis that may arise because cell membranes are not

perfectly planar have been studied for the case of FCS and

can be used as a guide for ICS analyses (22).

Simulation results for single component ICS

To study the relationship between the relative fluorescence

intensity fluctuations and the precision of the ICS analysis,

we vary both the number of particles in the image and the

radius of the Gaussian correlating function. An example of

simulated images created following the procedure described

in Materials and Methods is shown in Fig. 1S in the Sup-

plementary Material Appendix in which different numbers of

particles were randomly distributed across areas of 256 3

256 pixels and convolved with a Gaussian function with an

e�2 radius of 5 pixels. In Fig. 1 we show the relative SD in

the recovered number of particles as a function of the input

particle number and Gaussian radius. This relative SD of

each point was obtained after performing independent ICS

analysis on 200 images created using the same simulation

conditions and calculating the mean and the SD of the 200

results for the total number of particles recovered and form-

ing the ratio of this SD to the mean. The relative SD of the

measurement increases with increasing radius for two

reasons: first, due to the decrease in the magnitude of the

relative intensity fluctuations because the number of particles

in the focal spot area increases; and second, due to the

reduction in the NIF sampled in the image because the area

of the focal spot becomes larger, whereas the total image

area stays constant. On the other hand, for a given radius the

relative SD remains constant as the surface density of the

sample increases because the distribution of the number of

particles in the focal area follows Poisson statistics (our

simulation only models ideal noninteracting particles as

previously discussed).

We also analyzed the dependence of the precision of ICS

analysis as a function of the ratio of the total image area to

the area of the Gaussian convolution function (which sim-

ulated the beam focal spot and represented one fluctuation

area sampled). An increase in this ratio, which we call the

NIF, yields better statistics, as has been shown for temporal

FIGURE 1 Three-dimensional plot of the relative SD for ICS analysis as

a function of the number of particles in the images and the radius of the

Gaussian convolution function. The relative SD was calculated as the ratio

of the SD to the mean for the ICS recovered particle number for the 200

randomly generated images with the same input parameters for each point

(i.e., simulation) in the plot.
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sampling in FCS (18). However, the diffraction limit of the

optics as well as the maximum image size that an LSM

system can acquire, the size of the field of view, and the

morphology of the sample establish a practical limit to this

ratio in real experiments. In Fig. 2 we show the dependence

of the relative error that ICS analysis yields and the SD in the

relative error as a function of the NIF sampled per image.

Note that images larger that 256 3 256 pixels could provide

very high precision in this background noise-free limit where

we are considering only sampling effects.

Based on these results, we can state that an important

sampling parameter is the NIF, which depends on the beam

focal spot and the total area imaged. Consequently, if there

exists a subregion of interest in a larger image, one can pro-

ceed directly with ICS analysis on the subregion. However,

reimaging the area of interest with higher pixel resolution

does not change the NIF (and hence the measurement pre-

cision) and would generally result in higher photobleaching,

as the beam dwell time per sample area would increase for

most commercial CLSMs. Nevertheless, in many situations

for ICS measurements on cells, it is necessary to increase

the imaging zoom factor, thus reducing the NIF as a conse-

quence. Zooming to avoid edge effects or selecting smaller

areas of interest to image on the sample would give rise to a

reduction in the NIF, and it is important to understand that

this modifies the performance of the ICS analysis.

The noise that is present in real experimental images and

that is inherent in the image acquisition process will naturally

affect the accuracy and precision of the results that can be

obtained with ICS. We choose to separate the noise into two

distinct types to systematically study their relative contribu-

tions. We do not attempt to model the actual physical pro-

cesses that give rise to the appearance of such noise, but

instead to capture the salient statistical features inevitably

introduced by noise and background signals. Facing the prob-

lem from an empirical and practical point of view, we first

consider a background noise that is important when the

fluorescence signal is low and that we will assume is constant

across the image and independent of the true fluorescence

signal at each position. Possible sources for this kind of noise

are dark current, background autofluorescence, and detected

scattered light that did not originate in the sample. We should

remark that when imaging fixed tissue, some image pro-

cessing is usually performed to obtain an accurate g(0,0)
value when background is present. If there is no a priori

knowledge of the minimum signal expected, then the

average background intensity is subtracted from all pixels

in the image. The mean background intensity is calculated

from an area of the image that does not contain true signal

(i.e., areas off of cells). After this correction via the mean, the

remaining background counts can be approximated by a nor-

mal distribution centered at zero with a width that will

depend on the specific noise source and the experimental

conditions. This noise is simulated as the absolute value of

random, normally distributed numbers with a variable SD

added to the noise-free image. The S/B is computed as the

ratio of the maximum intensity value of the image before

adding noise to the SD of the distribution used to generate

the noise random numbers. Note that this definition uses the

SD of a noise distribution that has a mean very close to zero.

Second, we consider a counting noise that models the

stochastic behavior of photon emission and the amplification

process of the light detection. Even though shot noise results

from statistical variation in the number of detected photons

and obeys a Poisson distribution, this is not the only source

of counting noise in the image acquisition process. The light

detectors can also contribute to the noise in the number of

generated photoelectrons, the amplification of the current

signal, and the digitization process. Furthermore, fluctua-

tions in the laser intensity can also be added as a source of

noise in this category, provided that the temporal behavior of

these fluctuations does not follow a periodic pattern that

requires special treatment such as frequency filters. With all

of these noise sources, the underlying Poisson distribution

will be broadened, and so we can expect that its SD will

increase. For the analysis, we tested the accuracy of ICS as

a function of the width of this counting noise distribution (as

described in Materials and Methods). It is important to state

that, even though we are separating the noise into these two

possible forms for simulation studies, in practice both will be

simultaneously present in a real image. The main purpose of

this partition is to be able to adequately quantify the pre-

cision of an ICS analysis before attempting an experiment. If

the noise levels are measured, we can then determine the

accuracy and precision we should expect to obtain in a real

experiment. Furthermore, it is important to emphasize that

separated in this way, the counting noise does not change the

FIGURE 2 Plot of the absolute value of the relative error obtained with

ICS analysis as a function of the total NIF. The simulated sample had a

density of eight particles per BA, and the Gaussian convolution function e�2

radius was kept fixed at five pixels. The error bars correspond to the

propagation of the SD of the number of particles recovered from the fit (Nfit)

for each image generated using the same set of conditions for 50 images.

When the error is larger than the mean, the lower part of the error bar is not

plotted within the logarithmic scales.
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intensity value of the pixels with no intensity (zero value

pixels).

Special care has to be taken to monitor the fit of the

Gaussian radius v in Eq. 9 when the noise is too high, since

deviation from the known point spread function radius is an

excellent criterion to determine when the fitting model is no

longer applicable. In some cases, a high peak in the correla-

tion function or correlated noise in the fast scan direction of

LSM systems may require the use of weighted fits to reduce

the effect of these distortions in the result.

A plot showing how background noise perturbs the results

obtained with ICS can be seen in Fig. 3 A. The persistence of
background counts that remain in nonzero pixels after the

background mean correction, due to the width of the noise

distribution, reduces the magnitude of the relative fluctua-

tions by increasing the mean intensity value of the whole

image. Thus, the value of gð0; 0Þ obtained after fitting Eq. 9

systematically overestimates the density of the sample. Fur-

thermore, the influence of the background noise is different

for different densities. When the image has just a few par-

ticles, even a low noise level produces a significant change

in the average intensity and the S/B has to be very large to

achieve an accurate ICS result. Moreover, for very poor S/B

the correlation function still fits a Gaussian function with the

proper radius, and it is not possible to distinguish a priori that

the result can be orders of magnitude off. When the particle

density is very high, background counts do not significantly

affect the result, and the radius of the fitted Gaussian can be

used as a criterion for an accurate convergence of the ICS

analysis.

The counting noise does not affect the average fluores-

cence intensity as dramatically as the background noise does

because in our model there is no counting noise when the

pixel intensity is zero. The intensity profile of an image of

a single subdiffraction limit size fluorescent source would

basically show a modulation on the intensity profile that is

ideally a perfect Gaussian, and the magnitude of this modu-

lation due to counting noise will be larger at the peak than on

the tails of the bell-shaped curve. In Fig. 3 B, we present a

plot of the threshold value for the maximum WF for the

counting noise distribution that allows us to obtain accurate

ICS results with 20% statistics for different particle densities.

The WF is the ratio between the width of the experimentally

measured intensity distribution and that of the underlying

Poisson photon count distribution. Depending on the total

number of particles in the image, there is an upper bound

above which the analysis does not converge. For very high

counting noise, it becomes possible to confidently discard

an ICS result because the correlation function will not fit a

Gaussian with a radius comparable to that of the Gaussian

convolution function.

Fig. 3 B shows that for low density samples, counting

noise is not a limitation for obtaining accurate results, since

the maximum WF is not at all restrictive at these densities.

Furthermore, this density dependent limit of detection can

easily be predicted by just looking at the images. When the

density is low, it is possible to identify the individual par-

ticles in the image even for a very high WF, given that the

zero intensity pixels are not altered by counting noise. How-

ever, when the density is high, this is not possible and the

analysis fails. We defined the maximum acceptable WF as

the one for which more than half of the images in a series of

100 did not fit the correct beam radius, even though the rest

of the images yielded the correct result. Below this value of

the WF, spatial ICS provides estimates within 20% of the

true particle density.

Simulation results for ICCS

Some example images created to simulate a sample consist-

ing of two different fluorescent species are shown in Fig. 4.

Fig. 4, A–C, has 50% of both particle populations interacting

and a total surface particle number of 2 3 103, 2 3 104, and

2 3 105 particles in 256 3 256 pixel arrays, respectively.

FIGURE 3 (A) Plot of the relative error

in the number of particles recovered by the

ICS fit (Nfit) as a function of the S/B of the

image, considering only background noise.

The existence of background intensity

causes an increase in the average image

intensity, reducing the mean relative fluc-

tuations, and results in a systematic over-

estimation of the number of particles in the

sample. The error bars correspond to the

propagation of the SD of the number of

particles recovered from the fit for each

image. (B) Plot of the maximum WF as

a function of the density of the sample.

When the measured WF is lower than the

plotted maximum value, the accuracy of

ICS is better than 20% for all densities. The

images analyzed had a variable number of particles in a 256 3 256 pixel array with a point spread function of 5 pixels for the Gaussian convolution function

e�2 radius, and 300 images were simulated for each point using the same conditions.
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The red and green colors represent the two detection chan-

nels, and the yellow pixels show the colocalization within

the simulated diffraction-limited focal spot.

The first test that was performed to determine the dynamic

range of ICCS was to fix the total number of particles in both

channels, vary the percentage of interaction, and then repeat

for different densities. The minimum interaction percentage

required for ICCS to yield a result with a relative error

smaller than 10% was calculated as a function of the total

particle density of the sample. As the particle density of the

sample increases, the minimum measurable IF decreases,

improving the dynamic range. When there are just a few

particles visible in the image, at least ;40% of them have to

be interacting to obtain an accurate result, but when the

density becomes higher than 1 particles/BA, this threshold

decreases to ;¼ of the particles with no upper limit on the

particle density. Again, a comparison of the known convolu-

tion radius and the radius of the fit Gaussian spatial correla-

tion function is used as the criterion for judging when the

analysis had failed. Thus, it is possible to differentiate a priori

the correct result by using the convergence of the fitting

algorithm instead of having to compare the result obtained

with the one set in the simulation, which is of course not

feasible in a real experimental situation.

Above this interaction limit of detection, the method

yields an accurate result for all IFs and can operate at very

high particle densities, with the same proviso regarding the

onset of nonideal deviations as was discussed previously for

ICS. Even when the density becomes very high, it is still

possible to obtain the correct result with accuracy better than

10% (data not shown).

We next set the IF to a value that was shown to be appro-

priate for the ICCS analysis and then varied the total number

of particles in both image channels independently. The result

is shown in a contour plot in Fig. 5. It is possible to see that

the correct result is only achieved under restricted con-

ditions. The density of particles in each channel cannot be

very different; when the ratio between the total numbers of

particles of each type is .10, the accuracy decreases dra-

matically. When this happens, it is not possible to fit the

spatial cross-correlation Gaussian function with the proper

radius, and it becomes easy to reject the result with con-

fidence. When this ratio becomes larger than one order of

magnitude, the relative random overlap between the particles

in each channel turns out to be too large to differentiate the

central peak from the noise in the correlation function.

Nevertheless, it is remarkable that at densities on the order of

1000 particles per BA, ICCS still provides an accurate value

for the interaction fraction. The number of particles in the top

right corner of Fig. 5 is one order of magnitude larger than

the number in the simulated image shown in Fig. 4 C.
For the simulation of noise, two separate noise matrices

were generated for each channel for the two separate cases of

background and counting noise, as has been outlined in the

FIGURE 4 Simulated dual-color images of two

interacting species for ICCS analysis, corresponding

to a 50% IF. The two-channel images consist of N0

total particles, N0/4 are noncolocalized for each color

(red and green), and N0/4 are colocalized particles

with each color emitting equal intensity signals for both

wavelengths (N1 ¼ N2 ¼ N0/2). The particles are

randomly distributed in the image matrix of 2563 256

pixel image size, and the Gaussian convolution func-

tion e�2 radius was 5 pixels. The first row shows dif-

ferent particle densities with 50% interaction. (A) N0

¼ 23 103 (1.2 particles/BA), (B) N0¼ 23 104, (C) N0

¼ 2 3 105. In the second row, background noise was

added to images with N0 ¼ 2 3 103 as described in

Materials and Methods. (D) S/B ¼ 190, (E) S/B ¼ 14,

(F) S/B ¼ 1.7. In the third row, the WF of the count-

ing noise was varied in images with N0 ¼ 23 104. (G)

WF ¼ 1, (H) WF ¼ 5, (I) WF ¼ 15.
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Materials and Methods section. Fig. 6 A shows that to obtain

an accuracy of at least 10%, the S/B has to be larger than 20

for densities of ;12 particles per BA per channel and that

the S/B has to be greater to obtain accurate results for more

dense samples, as was already shown for the single channel

images.

In the case of counting noise, we observe a similar be-

havior as that for background noise (see Fig. 6 B). For high
densities, the counting noise has to be low to achieve ac-

ceptable accuracy, but as the density decreases the WF of

the signal can increase and still yield similar relative errors.

The relative error in the interaction fraction is conceptually

different than the number of interacting particles since both

the number of interacting particles and the total number

of particles is obtained independently from the ICCS

analysis.

Spatial ICS on CLSM images of GFP transfected
CHO cells

To compare real ICS experiments on cells with the simu-

lations that estimate the accuracy and precision of ICS out-

lined above, we performed standard CLSM on GFP/EGFR

transfected CHO cells. These imaging measurements pro-

vide some characteristic numbers related to fluctuation sam-

pling and typical noise levels for the commercial confocal

system used.

In Fig. 7, we show a typical CLSM image of a CHO K1

cell expressing GFP/EGFR from which an area 121 3 98

pixels was analyzed using spatial ICS. The experimental e�2

radius of the PSF is 5.7 pixels, corresponding to a NIF of 116

that yields a relative error of;2%. The raw correlation func-

tion and its Gaussian fit (Fig. 7 B) are also presented. From

the fit amplitude and beam radius, one can calculate a recep-

tor density of 64 mm�2 (21 particles/BA) after the subtraction

of the mean intensity of the background noise distribution.

As the boundaries of the cell are clear, it is simple to cal-

culate the mean intensity of the off cell background signal

and subtract this value from the whole image before per-

forming the ICS analysis. The SD of the background was

calculated as described in Materials and Methods, and to-

gether with the average of some of the brightest intensity

spots in the image leads to an S/B ¼ 25. Based on the results

shown in Fig. 3 A, this value would establish an accuracy of

20% considering only this effect.

It should be noted that we are employing a very con-

servative approach for background correction in this work.

Subtraction of the mean of the background distribution en-

tails a residual contribution of positive background fluctua-

tions (those greater than the mean) to the correlation function,

which leads to the systematic error trend depicted in Fig. 5.

This approach to background correction would be used

in cases where there is no a priori knowledge about the

FIGURE 5 Contour plot of the ICCS measured interaction fraction as a

function of the densities of particles in both simulated image detection

channels. The IF was set to 50% of channel 1 for all the simulations, and the

total number of particles was varied independently for both types of particles.

The bottom-right black area of the plot corresponds to regimeswhere the fit of

a Gaussian to the spatial cross-correlation function failed and the upper-left

black area to densities that cannot exist, given the restriction that 50% of the

particles of channel 1 are interacting. The mean result for 50 trials for each set

of conditions is plotted. The images consisted of 256 3 256 pixels, and the

e�2 radius of the Gaussian convolving function was set to 5 pixels.

FIGURE 6 (A) Plot of relative error of

the IF obtained using ICCS (IFfit) compared

to the IF set in the simulation (IF0) as a

function of the S/B. The mean result of 300

trials for each set of conditions is plotted.

The images were 256 3 256 pixels in size,

and the e�2 radius of the Gaussian con-

volving function was set to 5 pixels. The

error bars correspond to the propagation of

the SD of the IF recovered by ICCS for

each image. (B) Plot of relative error of the

IF of particles obtained using ICCS (IFfit)

compared to the IF set in the simulation

(IF0) as a function of the counting noise

WF. The mean result for 300 trials for each

set of conditions is plotted. The images were 2563 256 pixels in size, and the e�2 radius of the Gaussian convolving function was set to 5 pixels. The error bars

correspond to the propagation of the SD of the IF recovered by ICCS for each image.
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minimum signal level expected. However, in many cases it is

possible to apply a higher threshold for background correc-

tion and remove more of the background noise distribution.

This results in a significant reduction or even elimination of

this systematic error in the number density measurement by

ICS (depending on S/B ratio). This type of correction is

possible in situations where the fluorescent particles of in-

terest are clearly visible above background, such as in the

case of resolvable dendritic spines in neurons (23). It is also

possible if the minimum fluorescence signal level can be

established by imaging a monomeric form of the fluorophore

of interest under the same collection conditions as a control

(13). Following this approach, a subtraction of the mean plus

the SD of the background noise distribution leads to an S/B

¼ 46 and a density of 47 mm�2 (16 particles/BA) with 10%

accuracy.

It is not possible to obtain the WF from just one standard

image. To be able to estimate this counting noise factor, 512

3 512 pixel images of 25 mg/ml rhodamine 6G chloride

solutions were collected at different laser powers and volt-

ages of the PMT detector. From the intensity histograms of

these images, it was possible to compute the WF for our

system at the laser intensity used in the cell imaging experi-

ments and this data is shown in Fig. 2S in the Supplementary

Material Appendix. The results show that at;560V, the WF

is so high that the maximum density of the sample at which

ICS would yield an accurate and precise result is 100

particles/BA and that the WF would increase for higher PMT

voltages. This value is still above the receptor density for

many of the cell membrane proteins of interest in normal

(nonoverexpressing) cell types. This suggests that in most

cases, the noise due to photon detection and collection can be

safely neglected for spatial ICS studies. Other experiments

with dye solutions at higher PMT voltages yielded WF

factors as large as 25 (data not shown).

CONCLUSIONS

We have used simulations to determine the accuracy and

precision of spatial ICS and ICCS, given a specified image

size, radius of the Gaussian convolution function, and noise

levels. Using this information as a guide, it is possible to

estimate in advance the accuracy and precision that spatial

ICS analysis will yield for a measured number density given

specific collection parameters. Furthermore, the simulations

for spatial ICCS showed that the interaction fraction in a

two-channel dual label study can also be obtained with im-

pressive accuracy for densities typically encountered for

membrane receptors.

In the case of ICCS analysis, we have established density

and interaction fraction bounds that yield acceptable accu-

racy and precision. We demonstrated that the NIF is the most

important parameter to take into account in terms of sta-

tistical sampling, and we have given guidelines to observe

when changing the effective sampling through image magni-

fication or image subregion analysis. We have provided

estimates of the expected error of the ICS and ICCS methods

as a function of the sample particle density and the charac-

teristics of the background and counting noise sources.

We also imaged GFP transfected CHO cells to obtain

typical values for the parameters that influence the accuracy

and precision of the spatial ICS analysis. Using the CLSM

image of a cell and information from control experiments on

dye solutions, we could characterize the noise sources and

then use the simulation results to estimate the precision of the

ICS method. This work presents general results that can be

used as a guide for spatial ICS and ICCS experiment design

for any arbitrary LSM system.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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