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ABSTRACT Myxococcus xanthus is a common Gram-negative bacterium that moves by a process called gliding motility.
In myxobacteria, two distinct mechanisms for gliding have been discovered. S-type motility requires the extension, attachment,
and retraction of type IV pili. The other mechanism, designated as A-type motility, may be driven by the secretion and swelling of
slime; however, experiments to confirm or refute this model are still lacking and the force exerted by this mechanism has not
been measured. A previously published experiment found that when an M. xanthus cell became stuck at one end, the cell
underwent flailing motions. Based on this experiment, I propose an elastic model that can estimate the force produced by
the A-motility engine and the bending modulus of a single myxobacterial cell. The model estimates a bending modulus of
3 3 10�14 erg cm and a force between 50–150 pN. This force is comparable to that predicted by slime extrusion, and the
bending modulus is 30-fold smaller than that measured in Bacillus subtilis. This model suggests experiments that can further
quantify this process.

INTRODUCTION

Bacteria are exceptionally diverse; they have found an enor-

mous number of different ways to achieve similar functions.

Even common processes such as motility and maintenance

of shape are accomplished by many different mechanisms. A

biophysical understanding of these processes requires mea-

surement of some basic features. For motility, one needs to

know how much force is required to move the bacterium

through its environment and what produces that force. To

understand how a bacterium maintains its shape, the mate-

rial properties of the cell must be measured. In some bacte-

ria these measurements are easier than in others. Since

Escherichia coli is an ellipsoidal cell that moves through

a fluid environment, it is straightforward to estimate the force

that is required to drive this process (for example, see Berg

(1). Microscopic advances such as optical traps have also

made it possible to measure forces and elastic properties at

the cellular level. Using an optical trap to bend filamentous

Bacillus subtilis cells enabled the Young’s modulus of the

cell wall to be estimated (2). The force/velocity relation for

Mycoplasma mobile was also measured recently using both

optical traps and fluid drag (3).

Myxococcus xanthus is a common Gram-negative bacte-

rium that has been extensively studied due to its complex life

cycle (4). When a colony is starved, cell movement and cell-

cell signaling lead to rippling motions across the colony and

eventually to the formation of fruiting bodies in which some

cells sporulate (5). Cells are rod-shaped with an average

length of 5–7 mm and a diameter of 0.5 mm (6,7). The inside

of the cell is enclosed by an inner membrane bilayer that is

surrounded by a cell wall that is composed of a protein mesh-

work made predominantly of peptidoglycan. The cell wall

provides much of the structural rigidity to the cell. Outside

the cell wall is a second membrane bilayer.

M. xanthus translocates by gliding. This motility is ge-

nerically defined as translocation in the direction of the long

axis of the cell when in contact with a substrate (8). Due to

this vague definition, it is not surprising that there is more

than one mechanism by which gliding is achieved. Indeed,

M. xanthus possess two distinct mechanisms for gliding

motion: adventurous (A) motility and social (S) motility (9).

S-motility is driven by type IV pili which extend, attach to

nearby cells or the substrate, and then retract, pulling the cell

forward (10–14).

A-motility remains more elusive; however, recent exper-

imental evidence strongly suggests that slime extrusion from

a surface organelle drives this type of gliding motility. Ex-

periments on cyanobacteria showed that slime is extruded

from these cells at velocities comparable to the rate at which

the cells glide (15). In addition, electron microscopy revealed

a pore-shaped organelle embedded in the cell wall near sites

of slime extrusion (15). Investigations on M. xanthus re-

vealed similar pores and showed that slime emanated from

the back of the cell in narrow bands near the sites of these

pores (16). Wolgemuth et al. developed a mathematical

model that showed that hydration of a polyelectrolyte gel

could produce sufficient force to propel A-motility in myxo-

bacteria and cyanobacteria (16). If this model is correct,

A-motility is driven by a pusher motor: force is generated at

the rear of the cell that pushes the cell forward, much like

a rear wheel drive car. This model predicts the force/velocity

relation and the total force that can be produced by this

mechanism. Experiments to measure these properties have

not been performed yet.

Another unique feature of myxobacteria is its flexibility.

Cells can bend much more readily than many other bacteria,

which is most likely due to the structure of their peptido-

glycan (17). Kaiser and Welch suggested that the flexibility
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of myxobacteria may provide a method by which ‘‘traffic

jams’’ are overcome during rippling and fruiting body for-

mation (6). This flexibility is exemplified in Spormann and

Kaiser (18) when a gliding M. xanthus cell became stuck at

one end while the other end was still free. Time lapse images

of this cell suggest that the free end is still pushing on the

cell, trying to move it forward. The stuck end prevents this

motion and the cell bends and flails about in a periodic

fashion (Fig. 1). Though this case, where one end becomes

stuck and the other remains free, is rare, it provides a useful

method to study the gliding motility of myxobacteria.

In this article, I propose a model that can explain the

periodic motions of a flexible cell that is stuck at one end and

propelled by a pusher motor from the other. This model

provides an estimate of both the force produced by the motor

and the elastic parameters of the M. xanthus cell body. As
experiments to measure these parameters have not been

possible yet, this model provides a novel method to estimate

them in M. xanthus and other gliding bacteria.

THE MODEL

Myxobacteria cells are much longer than they are wide.

Therefore, I begin by treating the cell as an elastic filament of

length, L, and radius, a. The distance along the filament is

parameterized by the arc length, s, and the shape of the

filament is described by the vector r(s). At s ¼ 0, the end is

clamped in place with r ¼ 0 and @r/@s ¼ 0. The other end

(s ¼ L) is acted on by a force, F, produced by the A-motility

engine, but is otherwise free. The force is assumed to be

applied tangentially at the free end of the cell (Fig. 2). Since

the cell is cylindrical and confined to the two-dimensional

plane of the surface, the only material parameter that is impor-

tant is the bending modulus, A. I assume that the cell body is

linearly elastic. Therefore, the elastic energy for deforming

the cell away from its straight state is quadratic in the cur-

vature, k ¼ ð@2r=@s2 � @2r=@s2Þ1=2. The assumption of linear

elasticity should hold for curvatures that are less than 1/a. The
elastic restorative force per length, f, arises from variational

derivatives of the energy (19),

f ¼ � A
@
2
k

@s
2 1

1

2
k
3

� �
1Lk

� �
n̂� @L

@s
t̂; (1)

where n̂ is the normal vector and t̂ ¼ @r=@s is the tangent

vector. The function L is effectively the tension in the fila-

ment, which accounts for the presence of the force, F, as well
as maintains the total arc length of the filament.

The cell is in contact with the surface, but presumably this

contact is lubricated by the slime that the bacterium secretes.

For cellular systems, the force that comes from friction

between surfaces or drag from fluids dominates over inertia.

Therefore, the force that acts on the cell is proportional to the

velocity rather than the acceleration. We define two drag

coefficients, z? and zk; which are the proportionality

constants for movement perpendicular to or along the

tangent direction, respectively. For motion of a filamentary

object in bulk fluid, resistive force theory for slender bodies

predicts that z? ¼ 2zk (20). This result is not valid for cases

where distal points of the filament come in close contact with

each other, as the cell does in Fig. 1 at 45 s and 120 s. The

FIGURE 1 Movement of an M. xanthus

cell where the right end is fortuitously stuck

to the agar substrate. Note that frames at

t ¼ 210 s, 250 s, and 280 s essentially repeat

the behavior at t ¼ 45 s, 80 s, and 100 s.

Moving segments of the cell are indicated by

arrows. Scale bar is 2 mm. Figure reprinted

with permission from Spormann and Kaiser

(18).
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presence of the wall, however, damps out nonlocal fluid

effects, as the inverse 4th power of distance (21). For cases

where the spacing between distal points on the cell is larger

than the spacing between the cell body and the substrate, d,

we expect that these effects will be negligible. Furthermore,

M. xanthus cells typically follow slime trails (22). If the drag

is predominantly due to the slime, rather than the surround-

ing fluid, nonlocal effects will only be present if the slime

bands from distal points on the cell are connected. As the

slime is a polymeric fluid, the drag perpendicular to the long

axis of the cell may be significantly larger than the parallel

drag. Therefore, I will use that z? ¼ bzk ¼ 2z. Balancing the

restorative force with the drag force produces a dynamic

equation for the shape of the filament,

z?
@r
@t

¼ f1 ðb� 1Þðf � t̂Þt̂: (2)

This model does not account for internal drag due to cell

wall viscoelasticity. As little is known about the magnitude

of viscoelastic effects in bacterial cells, I assume that the

external drag due to the slime and/or fluid dominates.

Demanding that the filament is inextensible leads to an

ordinary differential equation for L (19),

@
2
L

@s2
� k

2
L ¼ A k

@
2
k

@s2
1

1

2
k
4

� �
: (3)

The tangentially directed force at s ¼ L imposes the bound-

ary condtions @2r/@s2(L)¼ @3r/@s3(L)¼ 0 and L(L)¼ F. At
the clamped end, @L/@s(0) ¼ 0.

RESULTS

For small applied forces at the free end, compression is

insufficient to bend the cell body, and the bacterial cell

remains straight. At higher forcing, the force should buckle

the filament. Once bent, though, the direction of the

tangentially applied force shifts relative to the position of

the clamped end. A component of the force will point in the

direction perpendicular to the line defined by the straight

filament, which will act to torque the free end about the fixed

end. For small deformations of the filament, this torque

should cause the free end of the filament to slide roughly

perpendicular to the line connecting the free end and the

clamped end (Fig. 2) and should lead to periodic oscillations

of the free end.

Before solving the full nonlinear model equations (1–3),

we note that there are five physical constants that can

influence the dynamics of this problem (A, L, F, z?, and b).

Nondimensionalizing the equations using the filament

length, the characteristic timescale (z?L
4/A), and the

characteristic force (A/L2), leaves only two dimensionless

parameters (FL2/A and b), which completely define the

dynamic shape evolution of the oscillating filament.

To solve the model equations, an intrinsic representation

(See Appendix) was used to simulate the dynamics of the

filament, as this method was found to be more stable numer-

ically than direct solution of Eq. 2. A Crank-Nicolson routine

was used to integrate Eq. 4, and Eq. 3 was integrated using an

implicit method. All simulations were started using an ini-

tial configuration of the filament that was perturbed slightly

from the straight state with kðt ¼ 0Þ ¼ 0:05cosð
ffiffiffiffiffiffiffiffiffi
F=A

p
sÞ.

For values of F , 37.5 A/L2, the straight filament shape

was stable, confirming the linear stability analysis (See

Appendix). When F . 37.5 A/L2, the filament bent and

waved back and forth about the line defined by the straight

filament. The period of this oscillation was finite at the

onset of the instability, which was also consistent with the

linear stability analysis. As F was increased beyond this

critical force, the amplitude of the oscillation increased.

Fig. 3 shows a time series of the simulation with F ¼
250A/L2 and b ¼ 2.0. This instability is the zero Reynolds

number version of the fluttering instability of an elastic

beam under tangentially applied follower forcing, which

has been studied theoretically and experimentally in the

inertial limit where the drag is ignored (23). The critical

force for the flailing instability calculated here is ;3 times

larger than the critical force for the inertial instability (23).

Plotting the end displacement as a function of time shows

that the deformation of the filament is periodic (results not

shown). At values of FL2/A . 100, secondary instabilities

begin to incorporate higher frequency oscillations in the

shape of the filament. As shown in Fig. 3, the filament

oscillates between a U-shaped form and an S-shaped form

during each half period; the higher frequency oscillation is at

roughly twice the frequency of the primary frequency. At

even higher forces, these secondary instabilities can lead to

quite interesting dynamical behavior. Fig. 4 shows the results

of a simulation with FL2/A ¼ 500 and b ¼ 2.0. During the

course of this simulation, the morphology of the filament

transitions between a flailing form similar to that seen at

lower forcing (similar to that shown in Fig. 3) and a rapid

fluctuation with three wavelengths along the length of the

filament.

FIGURE 2 Schematic of the model. A cylindrically-shaped cell of length,

L, is stuck down at one end (black arrow) and is pushed on by a force, F,

directed along the tangent at the other end. Due to the slime secreted by the

cell, the cell sits at a distance, d, above the substrate. If the applied force is

large enough, the cell bends. The direction of the applied force then torques

the free end of the cell about the fixed end, leading to flailing motion.
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To quantify the magnitude of the oscillation, I used the

maximum displacement of the free end in both the x and y
directions, which are denoted by Xend and Yend, respectively.
In Fig. 5, the end displacements and the frequency are plot-

ted as a function of the applied force. As is expected, the

amplitude of the x displacement is zero at the critical force

and the filament is straight (Yend/L ¼ 1). As the force rises,

the amplitude of the deformation increases. At a value of

FL2/A � 60, the x displacement plateaus, but the y displace-
ment continues to increase. At higher forces, the filament

remains more bent during the course of the motion, and there-

fore, the end displacements do not continue to increase.

The bottom panel of Fig. 5 shows that for FL2/A . 100, the

frequency of the oscillation is not strongly dependent on the

applied force.

The discrepancy between the tangential and perpendicular

drags also affects the dynamics of the instability. For 1 , b

, 3, the amplitude of the oscillation is weakly dependent on

b, with larger values of b leading to larger displacements of

the end of the filament as shown in Fig. 6. For b . 3, the

FIGURE 3 Simulation of the model equations

shown at nine different times, showing periodic flailing

motion. F ¼ 250 A/L2 and b ¼ 2.0. Comparison of the

top three panels to the bottom three panels shows that

the induced motion of the filament is periodic. A movie

of this simulation is available in the online supple-

mentary material.

FIGURE 4 At larger forces, F ¼ 500 A/L2, higher

order modes influence the dynamics. Simulation of the

model equations shown at nine different time segments

comprising half a period. In panel 4, the filament tran-

siently bends into a shape with three wavelengths

present. b ¼ 2.0. A movie of this simulation is avail-

able in the online supplementary material.
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amplitude does not change significantly. Simulations show

that smaller values of b lead to higher curvatures along the

filament (movies of simulations with b¼ 1.5 and b¼ 5.0 are

available in the online supplementary material). For b . 6,

the filament is more rigid due to the high cost for moving

perpendicular to the filament axis. The curvature along the

filament at these larger values of b is more uniform than at

smaller values of b. The frequency of the oscillation is also

not strongly dependent on the value of b (Fig. 6), varying by

less than a factor of 3 for 1 , b , 11.

DISCUSSION

Here I have presented a model that can describe the peri-

odic motions of a gliding myxobacteria with one end stuck

to the substrate. The force produced by the A-motility pusher

motor at the unstuck end acts as a tangentially directed

follower force. If this force exceeds the critical force, then the

bacterium bends and periodically flails about. The amplitude

of the cell body deformation is dependent on two physical pa-

rameters, the force of the A-motility engine and the aniso-

tropy between the tangential and perpendicular drag

coefficients.

Simulations of the model equations produce qualitatively

similar shapes to time lapse images of M. xanthus cells (18).
Based on the amplitude of the oscillations from the exper-

iment, this model suggests that the dimensionless force

exerted by the A-motility engine is in the range 100, FL2/A
, 300. In addition, the simulations suggest that 1.5, b, 4.

For a filament immersed in bulk fluid, slender-body hydro-

dynamics calculations give b ¼ 2 (20), and so the ratio be-

tween the tangential and perpendicular drag coefficients is

not strongly affected by the presence of the substrate or the

lubrication of the secreted slime.

For these ranges on the force and values ofb, the frequency

of the oscillation is fairly uniform. Therefore, we can estimate

that zL4v/A ; 300. If we assume that the tangential drag

coefficient between the cell body and substrate can be esti-

mated using the relation derived for a slender body immersed

in a fluid of viscosity h moving near a wall, then z ¼ 2ph/

cosh�1(11 d/a) where d is the distance between the cell body
and thewall and a is the radius of the cell body (21). Following
Wolgemuth et al. (16), I assume thath� 10 g/cm s and d¼ 10

nm. Therefore, z � 300 g/cm s. From the experiment (18),

v ¼ 4 3 10�2s�1 (Fig. 1). This analysis leads to a rough

estimate for the bending modulus, A ; 3 3 10�14 erg cm,

which is 30 times smaller than that measured in B. subtilis
fibers (2). The smaller radius of myxobacteria compared to

B. subtilis can account for a 10-fold difference in bendingmod-

ulus between these two bacteria. The difference between these

values could also be due to reduced cross linking of the pepti-

doglycan, as has been suggested previously (17). Using this

value for the bending modulus, we can estimate the force pro-

duced by the A-motility engine using the force estimates from

the simulations. We find that F¼ 50–150 pN, consistent with

the force predicted to be generated by hydration of slime (16).

One difficulty with measuring the propulsive force

generated in gliding bacteria is that though microspheres

will adhere to the cell body, they do not bind rigidly, and

therefore can translate along the cell length (24). Applying

calibrated forces opposite the direction of motion via optical

tweezers or fluid flow is not possible if the beads slide along

the cell surface. The model presented here suggests a new

method to measure propulsive force in gliding bacteria.

Using micropipettes or polylysine coated beads, it should be

possible to constrain one end of a gliding cell. By measuring

the deformation and frequency of periodic motions of the cell

body, the model allows a method to calculate the force

produced by the A-motility engine in myxobacteria and may

also be applicable for measuring forces in other gliding

bacteria such as flexibacteria and cyanobacteria. The one

lacking piece of information is the drag coefficient. Applying

a calibrated force in the direction of motion using fluid flow

or optical tweezers should be possible. Pulling a cell along

FIGURE 5 The extreme positions of the free end of the cell (Xend (top),

Yend (middle)), and frequency of flailing (bottom), zL4v/A, as a function

of force with b ¼ 3.

FIGURE 6 Extreme positions of the free end of the cell (Xend (top), Yend
(middle)), and frequency of flailing (bottom), zL4v/A, as a function of b

with FL2/A ¼ 120.
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the surface in the direction of the long axis at different ve-

locities can provide a method for measuring the tangential

drag. In addition, adhering two beads to the cell body and

pulling perpendicular to the long axis can provide a method

for measuring the perpendicular drag coefficient.

APPENDIX

Intrinsic representation

For problems involving the deformation of elastic filaments, it is often easier

to handle the mathematics using an intrinsic representation that does not

make reference to the actual spatial coordinate position of the filament and

only accounts for the filament conformation. These methods have proven

useful in a number of applications (for example, see Goldstein and Langer

(19) and Wolgemuth et al. (25)). Using the definition of the curvature, k,

Eqs. 1 and 2 can be rewritten in terms of k and L (19),

z?
@k

@t
¼ �A

@
2

@s
2 1 k

2

� �
@
2
k

@s
2 1

1

2
k
3
1

Lk

A

� �
1b

@k

@s

@L

@s
:

(4)

The clamped boundary condition is satisfied by setting the translational and

angular velocities of the filament to zero. Therefore, at s ¼ 0,

@
2
k

@s
2 1

1

2
k
3
1

Lk

A
¼ 0; (5)

@
3
k

@s
3 1

3

2
k
2
1

L

A

� �
@k

@s
¼ 0: (6)

At the forced end, the boundary conditions on k are

kðLÞ ¼ 0 ;
@k

@s
ðLÞ ¼ 0: (7)

Linear stability

Linearization of Eqs. 3 and 4 about the straight filament (k ¼ 0)

gives that L ¼ F and

z?
@k

@t
¼ �A

@
4
k

@s
4 � F

@
2
k

@s
2 : (8)

Assuming that the solution is of the form k¼ k(s) exp((g1 iv)t), leads to
a system of equations for g and v that can be solved if F is known. When

g , 0, the k ¼ 0 solution is stable and the filament remains straight. When

g . 0, the filament bends. Numerical solution of Eq. 8 found a critical force

(the point at which the filament is no longer straight) to be Fcr � 37.5 A/L2.
In addition, the value for v was nonzero: this instability is a supercritical

Hopf bifurcation (26).

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visit-

ing BJ Online at http://www.biophysj.org.
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