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ABSTRACT As double-stranded DNA is stretched to its B-form contour length, models of polymer elasticity can describe the
dramatic increase in measured force. When the molecule is stretched beyond the contour length, it further shows a highly
cooperative overstretching transition. We have developed a theoretical description for this transition by coupling the two-state
model and the elasticity theory proposed earlier by others. Furthermore, we have extended this model to account for monovalent
salt effects on elastic moduli during the transition. We find that this theoretical description is in very good agreement with recent
measurements for the salt dependence of the overstretching transition, allowing us to gain insight into the mechanisms that
govern the transition. In double-stranded DNA, the effective length per unit charge varies with salt in agreement with the Manning
and Poisson-Boltzmann models for thin polyelectrolyte rods, whereas the other model parameters describing structural features
have barely any salt dependence. The results thus suggest that the electrostatic component of force-induced overstretching is
mediated mesoscopically via elasticity.

INTRODUCTION

A variety of biologically important processes involving the

key molecules of life such as DNA and proteins are accom-

panied by structural transitions in these molecules (1).

Thanks to the recent development of single-molecule ma-

nipulation techniques (2–5), the intriguing aspects of these

transitions and related implications for biomolecular func-

tion can nowadays be studied in quantitative detail.

DNA, in particular, has recently been subject to thorough

experimental and theoretical investigations by many groups,

with a view to understanding the elastic properties of DNA

and its stability against force-induced overstretching (2,6–9).

These studies all focus on how double-stranded B-DNA is

stretched and bent, and how, at some critical force of;70 pN,

it will give way to an elongated partner, here for simplicity

denoted S-DNA. Perhaps surprisingly, the molecular origin

of the overstretching transition is still somewhat unclear.

Here, for reasons that will be explained later, we shall take the

view that S-DNA is denatured or melted into a defective helix

with bubbles of single strands (9), rather than a stretched

ladderlike structure as advocated (implicitly or explicitly) by

Clausen-Schaumann et al. (2) and Ahsan et al. (10).

The nature of force-induced denaturation on DNA puts

severe constraints on theoretical modeling: the passage from

B-DNA to S-DNA involves mesoscopic elastic deformations

as well as more localized processes, notably breaking of base-

pairs. A reasonable overstretching and denaturation model

must, therefore, contain two distinct, but coupled, sets of

state variables for elasticity and breaking of basepairs, re-

spectively. Models along those lines, with particular views of

the denaturation process, have been proposed by Ahsan et al.

(10), and (implicitly) by Rouzina and co-workers (7–9).

These models both are appealing and have been able to

describe some of the key features of the overstretching

transition. Yet, they are incomplete in some respects.

Although Rouzina and co-workers do offer comments on

the cooperative nature of the denaturation process, their

otherwise very careful and far-reaching analysis assumes that

denaturation is a straightforward first-order phase transition

with an associated Clausius-Clapeyron equation. However,

a transformation of that kind is not allowed for in

intrinsically one-dimensional systems such as DNA. Ahsan

et al. (10), in turn, propose a faithful (Ising-type) model of

denaturation and couple it, in an elegant way, to the

mesoscopic elastic deformations. Yet, the model used to

describe elasticity in this case is perhaps too approximative as

it assumes the elastic parameters of B-DNA and S-DNA to

be similar. In comparison, the approach proposed by

Podgornik et al. (11) seems to be highly promising for this

purpose.

A related issue is that the existing models of the B-to-S

transition have ignored the salt dependence of this trans-

formation or described that in a manner that invites a number

of questions. First of all, one wonders if the electrostatic com-

ponent of the B-to-S transition is a manifestation of effects

already included in the mesoscopic elasticity, or whether

other (local or global) effects are involved. Based on ideas

by Manning (12,13), the data fitting and analysis by Wenner

et al. (9), supports the latter view, yet the mesoscopic

elasticity model proposed by Podgornik et al. (11) does not

rule out the possibility of merely including the contribution

to denaturation of electrostatics through the elastic param-

eters. Second, one can ask how well the data conform to the

much-invoked Manning condensation theory (13). Rouzina

and Bloomfield have discussed that approach in the context

of thermotropic properties of DNA (14), and irrespective of

the detailed correctness of the Manning theory (15), it would
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be worthwhile to shed further light on the Manning

approach.

This study will address the above questions theoretically

on the basis of a hybrid model that combines the Ising-model

approach of Ahsan et al. (10) and the elasticity theory by

Podgornik et al. (11). A detailed analysis of the hybrid model

allows us to compute force-extension curves that depend on

(phenomenological) electrostatic, Ising, and elastic parame-

ters, and that fit experimental data very well. By fitting

elastic parameters well away from the overstretching plateau,

i.e., for small extensions (pure double-stranded (ds) elas-

ticity) and for very large extensions (pure single-stranded

(ss) elasticity), roughly as in Wenner et al. (9), we can focus

on the salt dependence of the remaining Ising and structural

parameters by fitting close to the overstretching plateau.

Thorough fitting to the experimental data (9) reveals that

there is one key parameter that is strongly salt-concentration

dependent: the effective length per unit charge a. In double-

stranded DNA, we find that a varies with salt in surprisingly

detailed agreement with the Manning condensation theory,

i.e., from ;0.67 nm at low 10 mM (monovalent) salt, to 0.17

nm at 1000 mM salt. Furthermore, the fitting reveals that the

other Ising and structural constants have barely any salt

dependence. These results suggest that the electrostatic com-

ponent of force-induced overstretching is mediated meso-

scopically via elasticity.

The organization of this article is as follows. In ‘‘DNA

elasticity’’ we outline essential theory of DNA elasticity

needed later in the article, and in ‘‘Overstretching transition’’

we present the model used to describe the overstretching

transition. The model proposed here is confronted and com-

pared with experiments in ‘‘Comparison with experiments’’,

and a discussion of our results ends this article in ‘‘Dis-

cussion and summary’’. Finally, details of calculations are

given in the Appendix.

DNA ELASTICITY

Consider a polymer chain of contour length L. After allowing

the chain to thermally equilibrate we can measure the force f
required to maintain the end-to-end distance at a fixed value

x. The resulting force-extension ( f-x) curve is then the

equation of state for the chain under study.

The elastic properties of the standard B-form DNA can be

modeled very conveniently by a simple theory known as the

worm-like chain (WLC), borrowed from studies of stiff

polymers (16). Let us first consider a case without charge

effects. The leading parameter associated with the theory is

the elastic bending modulus KC. At small force f, bends are

removed from DNA and the double strand acts as an entropic

spring. This portion of the force-extension curve in the limit of

small f is well described by the WLC model and is dominated

by polymer flexibility expressed in terms of the bending

rigidity KC. In the opposite limit of large force the end-to-end

distance approaches molecular contour length and sub-

sequently the force-extension curve begins to rise quickly.

At these large forces, DNA can be extended slightly beyond

its contour length, which is accounted for by the elastic

stretching modulus l. The stretching modulus takes into

account the energy involved in stretching the chain by a certain

amount.

Although the above picture is a very convenient one, it

does not account for the role of electrostatics. After all, DNA

is strongly charged due to the phosphate groups, and the

influence of charges can be considerable regarding the elastic

properties of DNA. Thus, to account for the charged nature

of DNA, the theoretical model has to include also an elec-

trostatic potential between charged monomers. It turns out

that the effect of electrostatic interaction can be included by

tuning of elastic parameters KC and l. An appropriate way to

demonstrate this matter is to consider DNA in an aqueous

solvent with monovalent salt ions. If the salt concentration is

high, then to a good approximation the electrostatic inter-

action is described by the screened Debye–Hückel potential,

which reads in continuum limit as

VðrðzÞ; rðz9ÞÞ ¼ kBTlB

a
2

expð�kjrðzÞ � rðz9ÞjÞ
jrðzÞ � rðz9Þj ; (1)

where lB is the Bjerrum length defined by

lB ¼ e
2

4pekBT
: (2)

Here a is the effective separation between the charges after

counterion condensation has taken place and k is the inverse

Debye length. Furthermore, z and z9 are the coordinates that

parameterize the polymer along its contour length. It has

been shown (9) that in the limit of large external force the

force-extension relation reads as

x

L
¼ 1 � kBT

2

ffiffiffiffiffiffiffiffiffiffi
K

ðRÞ
C f

q 1
f

l
ðRÞ [ yð f Þ; (3)

where K
ðRÞ
C and l(R) are renormalized elastic moduli. Their

dependencies on the parameters in electrostatic potential are

given by the following relations

l
ðRÞ ¼ l� kBTlB

D
2
a

2 ðe
kb � Eið�kbÞÞ;

K
ðRÞ
C ¼ KC 1

kBTlB

4D
3ðkaÞ2; (4)

where KC and l are the bare values of elastic parameters

corresponding to a limit of infinite concentration of salt. The

Ei(x) is the standard exponential integral function and D is

the local stretching parameter introduced as

D ¼ l1 f

l
ðRÞ

� �
: (5)
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In classical elasticity theory the bending rigidity and

stretching modulus of a thin rod made of homogeneous,

elastic continuum should be proportional to each other (17).

However, here the situation is different. From relations Eq. 4

it is clear that a decreasing salt concentration leads to an

increase in the bending modulus, while the stretching mod-

ulus is decreased. These effects were explained qualitatively

in Podgornik et al. (11): the change in the bending modulus

is related to the fact that the effective interaction between

distant segments along DNA is repulsive, thus the inter-

actions oppose bending and give rise to higher bending

modulus. The stretching modulus, in turn, is proportional to

the second derivative of the interaction potential with respect

to the polymer curve coordinate. This, in turn, implies that if

the chain is charged, then the Debye-Hückel repulsion will

locally stretch the segment length. As this length becomes

longer, the profile of the interaction energy at the minimum

becomes less steep, and its second derivative thus smaller.

Therefore, a stronger electrostatic repulsion leads to a smaller

value of the stretching modulus.

Clearly Eq. 3 can be inverted to give the required force as

a function of the relative elongation x/L. However, we can

straightforwardly calculate the free energy Gel( f, L) of the

chain related to the external force by

�@Gelð f ; LÞ
@f

[ x; (6)

which is the condition of mechanical equilibrium in a fixed

force ensemble. This can be easily integrated to give

Gelð f ;LÞ ¼ L
f

1=2

b

ffiffiffiffiffiffiffiffi
K

ðRÞ
C

q � f � 1

2

f
2

l
ðRÞ

2
64

3
75 ¼ Lgð f Þ; (7)

where b¼ 1/kBT. Equation 7 provides the elastic free energy

of a charged semiflexible chain under external force f. This

expression for the free energy can be taken as a starting point

when a model for the DNA overstretching transition is

developed in ‘‘Overstretching transition’’.

OVERSTRETCHING TRANSITION

Two-state model

It has been shown in many experiments (9,3,18–21) that

when a double-stranded DNA is stretched beyond its B-form

contour length, it shows a highly cooperative overstretching

transition. It seems that the DNA molecule abruptly

increases its length by a factor between 1.5 and 2 when the

external force f exceeds a threshold in the range of 60–70 pN.

This phenomena is recapitulated in Fig. 1. At this point the

DNA molecule suddenly extends with little additional force.

After this point, the force again rises rapidly with a slope that

depends on the stretching rate (9,22).

To describe this transition, Cluzel et al. proposed a model

of an overstretched DNA as a new double-stranded form of

DNA, referred to as S-DNA (6). According to this model, if

the ends of the molecule are allowed to rotate freely under

traction, then the structure of S-DNA is ladderlike and can be

considered as an unwound double helix. This unwinding

leads to an elongation of S-DNA compared to B-DNA. Two

main facts supporting this model are that DNA does not

break at the end of the overstretching transition, and that

a cross-linked DNA exhibits an overstretching transition

somewhat similar to unmodified DNA. Although the model

describing S-DNA did predict an overstretching transition,

the predicted transition was less cooperative and occurred at

a higher force than that observed experimentally (18,19).

Rouzina and Bloomfield and Williams et al. (7,8,20,21)

approached the issue from a different perspective and pro-

posed that the overstretching transition is a force-induced

melting transition. In this model, the basepairs holding the two

DNA strands together break as DNA unwinds during the

transition. However, DNA does not break at the end of the

FIGURE 1 Room temperature force-extension curves for a single dsDNA

molecule in different salt concentrations. The solid lines correspond to

theoretical curves calculated using the global coupling theory developed in

this work. Experimental data are by Wenner et al. (9). (A) Data over all

regimes showing the complete force-extension curves. (B) The same data

showing only the overstretching portion.
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overstretching transition because some bases remain paired or

unmelted. To test the force-induced melting model, Williams

et al. (20,21) measured the DNA overstretching as a function

of pH and temperature. The resulting parameters describing

these dependences—the heat capacity of DNA upon melt-

ing and the entropy of DNA upon melting at the melting

temperature—were in good agreement with measurements

(20,21). Finally, they also measured the monovalent salt

dependence of DNA overstretching and showed that the DNA

strands must remain close together during the transition (9).

It is remarkable that the salt-dependence data obtained

through experiments are consistent with both the S-DNA and

force-induced melting models (7,21). Then the question is

how to find a simple and general elastic model able to de-

scribe the overstretching transition and reveal the mechanism

that governs this process.

Cluzel et al. approached this problem as follows. They

proposed a two-state model (or Bragg-Zimm model) coupled

to external traction (6). In the model, the B and S sections are

separated by narrow borders (‘‘junctions’’), which are

energetically unfavorable. The higher the junction energy,

the more the B-to-S transformation becomes cooperative.

Although the model produced a good fit to their force-

extension curves in the region of the B-to-S transformation,

one should note that this model does not include the elastic

properties of the chain and thus fails in the low force regime.

Moreover, it further does not account for the role of salt.

Later, Ahsan et al. proposed a two-state WLC, which is

a combination of the two-state model and the WLC (10). This

approach is highly appealing, because the pure WLC and the

pure two-state model are limiting cases of this two-state

WLC, and the new force-extension curve reduces to Eq. 3 in

the limiting case of small force, where the entropic part of the

free energy due to the bending elasticity dominates. Thus, we

consider this approach to be a highly suitable starting point

for our purposes, where we aim to design a model for the salt

dependence of the DNA overstretching transition.

To define the two-state model more precisely, we divide

the DNA chain into a sequence of short segments of length

a0 such that every segment can be said to be either in the B or

S state, si. The state of a ‘‘B segment’’ is denoted by spin up

([) and si ¼ 11, whereas that of a ‘‘S segment’’ by spin

down (Y) and si ¼ �1. The easiest possible description of

this kind of system is provided by a nearest-neighbor one-

dimensional Ising model, in which the energy spectrum takes

on four different values: DE([[), DE([Y), DE(Y[), D(YY),

depending on the state of two neighboring segments. As-

suming a symmetric spectrum around the middle level

DE([Y) ¼ DE(Y[), this spectrum can be parameterized by

two quantities, J and H, as

DEð[[Þ ¼ 2H1 4J (8)

DEð[YÞ ¼ DEðY[Þ ¼ 2H (9)

DEðYYÞ ¼ 2H � 4J: (10)

The Hamiltonian for this kind of nearest-neighbor Ising

model can be written as

Hint ¼ �J +
N

i¼1

sisi11 � H +
N

i¼1

si: (11)

The quantities H and J describing the internal degrees of

freedom of DNA must be determined either by molecular

modeling or by taking them as fitting parameters to be

determined by comparison with experiments. Physically, 2H
can be identified as the zero-tension free-energy difference

per segment between the B and S states. The parameter

J measures the correlation energy between adjacent seg-

ments, and by analogy to the Ising model we can interpret

exp(�4J/kBT ) as a measure of the degree of cooperativity.

Next an additional parameter d is included in this model,

describing the fractional elongation of the S state over the B

state. Although one assumes here that the elastic bending

energies of the S and B states are identical, it will be shown

later that relaxing this constraint makes it possible to include

the description of force-induced melting transition into

the picture. Finally, the global coupling between the inter-

nal structure and chain conformation is provided by the

constraint:

LðfsigÞ ¼ L0 1 � d

2N
+
N

i¼1

ðsi � 1Þ
� �

; (12)

with L0 being the length of the chain in the pure B phase,

N � 1 the number of the segments, and a0 ¼ L0/N the seg-

ment length. Thus, we see that the chain length L has become

a statistical variable whose expectation value has to be de-

termined over the canonical distribution of energy states.

From Eqs. 11 and 7 we can write the total effective

Hamiltonian as

Heff ¼ Hint 1 Lgð f Þ: (13)

By using this simple description of the tension-induced

B-to-S conversion, it is possible to analytically obtain a new

force-extension relationship. The derivation is shown else-

where (10), and the result is

xð f Þ
L0

¼ yð f Þ 11
d

2
ð1 � ÆsæÞ

� �
; (14)

where the thermodynamic average of the state variable is

given by

Æsæ ¼ e
bJ

sinh ðbH̃Þ1 1

2
e

2bJ
sinh ð2bH̃ÞZ

e
bJ

cosh ðbH̃Þ1 Z
; (15)

with

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

2bJ
cosh

2ðbH̃Þ � 2sinh ð2bJÞ
q

: (16)

970 Punkkinen et al.

Biophysical Journal 89(2) 967–978



Furthermore, the equation of state y( f) ¼ x/L as derived by

Ahsan et al. (10) is given by Eq. 3 using the bare values of

elastic parameters. Finally, the renormalized external field H̃
is given by

H̃ ¼ H1
da0

2
gð f Þ: (17)

Ahsan et al. (10) applied their model to the experimental

data by Cluzel et al. over the whole force-extension curve (6)

and found good agreement except for relative extensions of

;1. The remarkable agreement in this case lends consider-

able support to this model and encourages one to ask whether

it could describe the salt dependence as well.

Thus, using the force-extension relation Eq. 14 of the com-

bined model of Ahsan et al. (10), but with the equation of

state for the self-interacting WLC according to Eq. 3 (11), we

tried to fit this description to the experimental data of

Wenner and Williams (9) for different salt concentrations.

The salt dependence was included in the elastic moduli

according to Eq. 4, whereas H, J, and d were given fixed

values assumed in the study of Ahsan et al. (10), J ¼ 1.25,

H ¼ 1.75, and d ¼ 0.78. Furthermore, the segment length

was taken to be a0 ¼ 0.34 nm corresponding to one basepair,

following again the assumption made by Ahsan et al. There-

fore, the additional piece of information used here, compared

to Ahsan et al. (10), is the salt dependence of elastic moduli.

By plotting the resulting theoretical curves against experi-

mental results we readily found that this kind of descrip-

tion cannot adequately describe the equation of state of

the polymer chain for all values of salt concentration (data

not shown). More precisely, the above model for the force-

extension relation cannot reproduce the change in the over-

stretching force according to the experiments of Wenner and

Williams (9), as salt concentration is varied.

One can speculate that the above approach failed because

the elastic energies of the B and S segments were treated as

equal. This idea is supported by experiments. It has been

shown that the force required to stretch the chain rises again

after the plateau in the force-extension curve, with a slope

that depends on pulling rate. The rise continues up to ;140

pN, where the f-x curve of double-stranded DNA (dsDNA)

then matches that of single-stranded DNA (ssDNA) (23).

Because it is well known that the elastic moduli of ssDNA

differ significantly from those of dsDNA (24), one is tempted

to conclude that models where elastic parameters along DNA

are treated as constants are not adequate. Rather, it would be

justified to aim for a full description of the force-extension

curve through a model in which the elastic parameters are

allowed to change along DNA, including their salt depen-

dence. In the following section we develop a formalism in

which this view has been accounted for.

Coupling of elastic moduli in two-state model

The reasons for the failure of Eq. 14 at interpreting the salt-

dependent experimental data are not difficult to identify, if

we analyze qualitatively the physics that is associated with

the salt-dependent, force-induced overstretching of a DNA

molecule. The internal B-to-S structural change, which

underlies the DNA overstretching, has several consequences.

It results in an inhomogeneity in the elastic properties along

the molecule; it also generates an inhomogeneous charge

distribution; moreover it leads to a reduced average charge

density. The first two aspects are not included in the two-

state WLC model described by Eq. 7 at all.

As an improvement on that model, we propose a model

of our own. In our model, an internal structural state of the

DNA molecule is described by segments in so-called B-state,

or double-stranded state and segments in so-called S-state, or

the denatured state. We model the segments in the S-state as

two slightly separated, but parallel strands still coupled

together electrostatically, in the sense that they interact

electrostatically in a way similar to segments in the B-state.

In other words, we do not make distinction between an

overstretched DNA molecule and one that is fully in the

denatured state. This assumption is consistent with the

experimental finding (9,23), that the behavior of a DNA

molecule stretched beyond the overstretching plateau is close

to that of an ssDNA molecule.

We then construct the following ansatz for the effective

free energy associated with an internal structural state of a

WLC under a constant force:

HWLC ¼ L

N
+
N

i¼1

½dsi ;11 gdsð f Þ1 dsi ;�1 gssð f Þ�; (18)

where Kronecker symbols dsi;61 have their usual mathe-

matical meaning. Here gds( f ) and gss( f ) are free-energy

densities corresponding to a pure B-state (double-stranded

state) and a pure S-state (denatured state) DNA molecule,

respectively. They have the same functional dependence on

the applied force f as that described in Eq. 7, but involve

different renormalized elastic moduli, corresponding to the

B-state and the S-state DNA, respectively. The renormalized

ds-state and ss-state moduli have the same functional

dependences on their respective ‘‘bare’’ values, which are

described explicitly in Eq. 4, and a single, effective charge

separation a enters the renormalization. The only difference

lies in the different values of the ‘‘bare’’ elastic moduli. This

distinction between gds( f ) and gss( f ), and their linearly

combined contribution to the total internal free energy, thus,

form a simple description of the inhomogeneity in the elastic

properties of an overstretched DNA molecule, incorporating

one of the important aspects mentioned above. This simple

description has, however, its limitation in that it assumes that

the contribution to the total interaction energy from the ds-

segments is independent of that from the ss-segments.

Clearly, this assumption neglects the long-range effects of

electrostatic interactions that must be there necessarily due to

the inhomogeneities both in the charge distribution and in the

elastic properties.

DNA Overstretching Transition 971

Biophysical Journal 89(2) 967–978



Our model ansatz provides a simple, minimal remedy for

the limitation of the linear-combination model description

of the elastic properties. This point can be made clear if we

reexpress the total free energy—the sum of Eqs. 11 and

18—associated with an internal state in terms of the internal

state variables, si’s. With very little algebra, we arrive at the

following explicit form:

Heff ¼ �J +
N

i¼1

sisi11 � H̃ð f Þ+
N

i¼1

si

� L0d

4N
2½gdsð f Þ � gssð f Þ� +

N

i¼1

si

� �2

1
L0

2
11

d

2

� �
½gdsð f Þ1 gssð f Þ�; (19)

where the effective external field H̃ð f Þ is given by

H̃ð f Þ ¼ H � a0

2
½gdsð f Þ � ð11 dÞgssð f Þ�: (20)

It is easy to see that the second line in Eq. 19 indeed de-

scribes a global, or long-range, coupling between the internal

state variables, si’s.

We may argue further for the explicit form of our ansatz.

This ansatz assigns the WLC free energy the property that it

is an extensive function of the chain length. It also reduces to

the two right limit cases corresponding to a pure B-state

chain and a pure S-state chain. Within the framework of an

Ising model, the global coupling is the simplest form pos-

sible for the pairwise, long-range coupling between different

states. Of course, these arguments do not prove, in a fun-

damental sense, the validity of our ansatz. However, a quan-

titatively good and physically meaningful fitting between our

theoretical prediction and the experimental data will provide

the strongest argument, at the level of effective theories, for

the effectiveness of our model. As we will describe later,

such a fitting is achieved.

Another remark on the ansatz formulated in Eq. 18 is nec-

essary. The ansatz implies that we treat each segment of

length L/N as if it were a flexible polymer, because Eq. 4 was

derived for long WLCs. In a general case of a DNA molecule

consisting of very short stretches of one type of segments or

the other, this assumption is less justified. However, it works

correctly in the two limit cases of a pure B-state and a pure

S-state DNA molecule. Furthermore, if the force-induced

denaturing is sufficiently cooperative, then long enough

stretches of the same type of segments will appear to justify

the assumption. What is long enough, is clearly determined

by the persistence length of both dsDNA and ssDNA. We

have checked that for the parameters we have considered, the

coherence lengths of both the B-state and S-state domains are

reasonably large. We discuss this issue in more detail in

‘‘Comparison with experiments’’.

Theoretically calculated force-extension relation

Given the effective ‘‘Hamiltonian’’ associated with a single

internal structural state of the DNA molecule, Eq. 19, we can

now perform the statistical ensemble average over all pos-

sible internal states to evaluate the partition function and

calculate the force-extension relation. The presence of the

global coupling term prevents a straightforward evaluation

of the partition function, but the calculation can be facilitated

by the so-called Hubbard-Stratonovich transformation. We

relegate the presentation of the detailed calculation to the

Appendix, and only quote the final expression of the force-

extension relation, which is in fact exact in the thermody-

namic limit,

x

L0

¼ 1

2
11

d

2

� �
½ydsð f Þ1 yssð f Þ�

1
1

2
½ydsð f Þ � ð11 dÞyssð f Þ�Æsæ

� d

4
½ydsð f Þ � yssð f Þ�Æsæ2

; (21)

where the average state variable Æsæ and the renormalized

external field H̃ are defined in the Appendix. Furthermore,

we can take advantage of the condition of mechanical

equilibrium yds( f ) ¼�@gds/@f, as given by Eqs. 3 and 6, and

yss( f ) is defined correspondingly. These are just the force-

extension curves given by Eq. 3, but with the elastic

parameters replaced by appropriate ones for the ds-state and

the overstretched state, respectively.

From Eq. 21 it is easy to see that the f-x curve reduces to

pure dsDNA in the limit Æsæ ¼11 and to pure overstretched

DNA in the limit Æsæ¼�1. This means that we have coupled

the change in the elastic parameters with the overstretching

transition in a nontrivial way that gives the correct limiting

behavior. Furthermore, electrostatic effects are incorporated

in this formulation through renormalized elastic moduli as

discussed in ‘‘DNA elasticity’’. Using the final interpolation

formula for the force-extension curve, Eq. 21, we may now

compare our theory with experiments.

COMPARISON WITH EXPERIMENTS

Overall comparison

In principle, the fitting involves two effective charge

separations, one for the B- and one for the S-state. It turns

out that numerically only one of them can be fitted accu-

rately, namely the charge separation a in the S-state. The salt

dependence of the fitting parameters J, H, a, and d are

determined by a nonlinear least-squares fitting method using

all the data measured by Wenner and Williams (9). This set

of experimental data was chosen for comparison because, to

our knowledge, it is the most comprehensive one in terms of

the salt dependence of the overstretching transition.
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The redundancy in the fitting involving many adjustable

parameters is reduced by first fitting the bare elastic pa-

rameters well away from the overstretching plateau, i.e., for

small extensions (pure double-stranded elasticity) and

for very large extensions (pure single-stranded elasticity),

roughly as in Wenner et al. (9). The salt-dependent part of

the elastic constants is assumed to be given by Eq. 4. The

remaining part of the fitting involves a highly nonlinear

fitting function, as given by Eq. 21. The salt dependence of

the remaining adjustable Ising structural and electrostatic

parameters are adjusted close to the overstretching plateau

in an almost unique fashion. Overall, we found that it was

not possible to prepare two equally good fits with different

sets of values for the structural and electrostatic parameters.

The results are hence optimal in the sense that we found no

other distinctly different solutions with comparable fitting

properties.

In the double-stranded or B-state we used the bare values

given by Wenner et al. in the 1-M case (9), i.e., lds ¼ 1256

pN and Kds/kBT ¼ 46 nm. In the single-stranded state we

fixed the bare values of elastic moduli to be such that our

theoretical force-extension curve interpolates between the

experimental results for dsDNA and the ssDNA f-x curve to

minimize the error (23). These bare values are given by lss ¼
920 pN and Kss/kBT ¼ 0.75 nm. It is worth noting that the

bare value of persistence length is the same as that obtained

by Smith et al. in the 150-mM case (24). This is consistent

with our fitting, because numerically we found that the

renormalized values of the bending rigidity in the S-state

almost coincide with the bare values. This is clearly con-

sistent also with elasticity theory; for large forces the f-x
curve is dominated by the stretching modulus, and bending

rigidity gives only minor contribution. On the other hand, it

is really the changes of stretching moduli in S-state com-

pared to B-state, that give the correct slope for f-x curve in

the overstretching regime.

The parameter values corresponding to the optimal fitting

are given in Table 1. Based on these values, as depicted in

Fig. 1, the theoretical model developed in this work de-

scribes the experimental data of Wenner et al. (9) notably

well for all salt concentrations. The only case where minor

deviations between the theory and experimental data appear

is the regime after the transition. In this regime for x/L0 .

1.6, our fitting procedure tries to optimize the agreement

between the theory and the ssDNA f-x curve for values f .
140 pN (23). However, the part of the force-extension curve

between 70 and 140 pN has been shown to be rate dependent

(22), which implies that this regime is not well defined and

quantitative details should be taken with caution.

Having found that this theory describes experimental data

very well, let us discuss the conclusions we can draw based

on this work. The numerical fitting was done using the force-

extension relation, Eq. 21, letting all the parameters vary as

a function of salt. Additionally, the elastic moduli were

treated as salt dependent according to Eq. 4. The main con-

clusion of the numerical study is that the whole force-

extension curve can be fitted only if the salt dependence of

the effective charge separation a is taken into account.

Importantly, we further find from Table 1 that a interpolates

between the structural length a0 of 0.17 nm at high salt (no

effect of electrostatics) and the Bjerrum length lB of 0.74 nm

in water in the no-salt limit (strong electrostatic coupling).

These results are consistent with the Manning and Poisson-

Boltzmann theories for thin polyelectrolyte rods (13,25). We

discuss the significance of these findings below.

All the other parameters remained by and large constant,

as can be seen from Table 1. For low salt concentrations, also

interaction strength parameter J varies slightly. However,

this is mainly due to the fact that the elasticity theory of

Podgornik et al. breaks down in the zero-salt limit (11). To

be more specific, the effective potential between monomers

described by the linearized Debye-Hückel theory, Eq. 1, is

valid only in the limit of high salt where effects due to

electrostatic interactions are not very prominent. It is there-

fore not surprising that in the opposite limit of low salt

concentrations one finds deviations caused by nonlinearities.

Nevertheless, they demonstrate the buildup of long-range

effects that could be incorporated in this theory, if needed:

instead of a nearest-neighbor interaction only, it might be

reasonable to complement the model by next-nearest neigh-

bor and higher-order interactions that could in part account

for the effects at low salt concentrations. However, we feel

that this is beyond the scope of this work.

To characterize the cooperativity of the B-to-S transition, we

can use a similar analysis as introduced already by Rouzina

and Bloomfield (7). Due to the one-dimensional nature of the

B-to-S transition, one can define an average size of both B-type,

kds, and S-type, kss, clusters, for any point on the f-x curve along

the transition. This gives the average number of basepairs in

both types of regions as a function of force f.
To justify our free-energy ansatz Eq. 18, we have to

guarantee that the average sizes of both B- and S-domains

are larger or of the order of the persistence length. To this

end, we use the formulas given in Rouzina and Bloomfied

(7) to calculate the average sizes of the B- and S-clusters. At

the transition midpoint, i.e., H̃ ¼ 0; the average number of

basepairs in both type of domains is roughly 30. For S-DNA

the persistence length is only ;1.5 bp, which clearly satisfies

TABLE 1 DNA elasticity parameters comprising the results

of a nonlinear fit for the parameters J, H, a, and d with

different salt concentrations in a [Na1] buffer

[Na1] (mM) a (nm) H (kBT) J (kBT) d

1000 0.170 6 0.003 1.32 6 0.01 1.75 6 0.10 0.77 6 0.01

500 0.225 6 0.003 1.32 6 0.01 1.75 6 0.10 0.77 6 0.01

250 0.300 6 0.003 1.32 6 0.02 1.75 6 0.10 0.78 6 0.01

100 0.355 6 0.003 1.32 6 0.02 1.75 6 0.20 0.75 6 0.02

50 0.440 6 0.004 1.32 6 0.02 1.45 6 0.30 0.74 6 0.02

25 0.540 6 0.004 1.32 6 0.03 1.25 6 0.20 0.74 6 0.02

10 0.670 6 0.005 1.32 6 0.03 1.25 6 0.20 0.75 6 0.03
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the requirement set above. Obviously, 30 correlated base-

pairs is smaller than the number of basepairs per persistence

length in B-DNA, which is of the order of 150. However, it

should be noted that the number of correlated basepairs

changes very rapidly with force. Thus, at the regions where

the second derivative of the f-x curve changes sign (turning

points), the number of basepairs already exceeds the critical

value 150. For the 1-M case we found average numbers kss ¼
kds � 180 bp, and for the 10-mM case kss ¼ kds � 300 bp, at

the turning points. Interestingly, all the parameters in our

model are mostly determined by the curvature of the f-x
curve at these turning points.

Salt dependence of overstretching force

As we can see from Fig. 1, the increase in the overstretching

force is correctly reproduced by the interpolation formula

Eq. 21. This seems to rule out the need for any logarithmic

corrections in the free energy to explain the change in re-

ference state used by other groups (7–9). To better under-

stand the changes that take place during DNA overstretching,

we can use our analytical results to predict the explicit (Na1)

dependence of the overstretching force. A good estimate of

the overstretching force may be given by the force value, at

which the renormalized external field H̃ changes sign from

positive to negative. Mathematically, this is defined by the

following equation:

H̃ð f Þ ¼ H � a0

2
½gdsð f Þ � ð11 dÞgssð f Þ� ¼ 0: (22)

Thus, for all values of salt concentration we have an

estimate for the overstretching force. Clearly, for low ionic

strengths this equation agrees with the logarithmic form

given by Wenner et al. (9). In the regime of high salt con-

centrations, our model achieves more than that used by

Wenner et al. (9). Their model, which is based on the poly-

electrolyte theory, turns out to be inadequate for predicting

the salt dependence in this regime. In contrast, our model can

be linearized with respect to the limit of infinite salt con-

centration, ka* 1 and thereby gives the leading contribution

to the overstretching force, which arises from a high, but

finite, salt concentration. The ‘‘limit’’ or ‘‘bare’’ value of the

overstretching force is easily estimated from Eq. 22 by

setting the elastic moduli to their bare values and by using for

the Ising and structural parameters the numerical values

given in Table 1. It turns out to be f 0
ov ’ 81:73 pN. This value

may be taken as a theoretical upper bound for the over-

stretching force. For a high, but finite, salt concentration,

linearization of Eq. 22 by an expansion to the first order in

deviations dl and dKC immediately yields the leading-order

contribution to the force, which reads as,

�Dfov ’
4:29

ðkaÞ2 pN1 0:477 hðkbÞ pN: (23)

Combining the bare part of the overstretching force with

the salt-dependent part we get

fov ¼ f
0

ov 1D fov ’ 81:7 pN � 4:29

ðkaÞ2 pN � 0:477 hðkbÞ pN;

(24)

where h(x) is defined by h(x) ¼ ex �Ei(�x). Equation 24

provides a reasonably good approximation for the over-

stretching force with salt concentrations higher than 100 mM.

DISCUSSION AND SUMMARY

This article has dealt with the salt dependence of the force-

induced B-to-S transition of DNA, with a focus on two major

questions, namely: i), whether the electrostatic component of

the B-to-S transition is a manifestation of effects already

accounted for in the mesoscopic elasticity, or whether other

(local or global) effects are involved; and ii), how well the

data analyzed conform to the much-invoked Manning con-

densation theory (13).

To address these questions theoretically, we have de-

veloped a model that combines the Bragg-Zimm or Ising

model approach used by Ahsan et al. (10) and the elasticity

theory by Podgornik et al. (11,26). Furthermore, we have

extended the model to account for effects of electrostatics

(salt) on structural and Ising parameters.

In the model developed here, S-DNA is thought of as two

parallel, slightly separated but electrostatically coupled (8)

strands with fundamental electrostatic interactions largely

similar to those in B-DNA. The main difference between

B-DNA and S-DNA lies in the elastic parameters.

In addition, we have introduced a global coupling (Eq. 18)

between single- and double-stranded segments of an elas-

tically stretched DNA molecule. This coupling should be

seen as a minimal, effective description of the generic long-

range nature of the complex electrostatic interactions present

in the system.

Based on the theoretical model, we have predicted the

force-extension relation (or curve) as a function of the rele-

vant parameters, which in turn depend on the salt concen-

tration. We have then fitted the theoretical prediction with the

available experimental data, and from the fitting determined

the numerical values of the model parameters as functions of

the salt concentrations. We recapitulate here the most impor-

tant results obtained from the fitting:

1. Both the coupling of the elastic moduli to the B-to-S

structural change and the global coupling introduced and

described in Eq. 18 are necessary for successful fitting

over the whole range of force and extension that has been

investigated.

2. The fitting between the theoretical prediction and the

experimental data works remarkably well for all of the

salt concentrations investigated. Moreover, the fitting

reveals that the parameter that is most sensitive to the salt
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concentration is the effective length of charge separation.

As shown in Table 1, the salt dependence of this length

varies in agreement with the Poisson-Boltzmann and

Manning condensation theories for thin rods, i.e., from

;0.67 nm at low 1 mM (monovalent) salt, to 0.17 nm at

1000 mM salt. These results show that the fit between our

model prediction and the experimental data is not only of

good numerical quality, but is also physically meaningful.

3. Within the range of validity of the theory, corresponding

roughly to salt concentrations exceeding physiological

salt concentrations (100 mM for monovalent salt), the

Ising structural constants J and H have no salt-dependent

electrostatic components.

Based on these results, we may draw the conclusion that

our model is successful in interpreting the experimental data,

despite its crudeness. On the one hand, this success is not

surprising. It is obvious, from a qualitative point of view, that

electrostatic effects must imply long-range coupling between

the charges distributed along a DNA molecule immersed in

an ionic solution and that they must renormalize the elastic

parameters of the molecule. These two features have been

included in our model. On the other hand, the same success

is less than obvious. The internal B-to-S structural change,

which underlies the force-induced overstretching of the

DNA molecule, changes the physical properties of the DNA

molecule in several respects. First, the elastic properties be-

come inhomogeneous along the length of the molecule.

Secondly, the charge distribution also becomes inhomoge-

neous. Finally, the average structural charge separation is

increased. It is not clear exactly how these two types of

inhomogeneities manifest themselves in the electrostatic

interactions, or in other words, how the free energy should be

expressed as the functionals of the inhomogeneities, and

what role the average charge density plays in the total free

energy. Our model proposes a very simple effective ap-

proach to this complex problem: 1), it recognizes the inho-

mogeneity in the elastic properties of the overstretched DNA

molecule by assigning different ‘‘bare’’ elastic moduli to

the B-segments and the S-segments; 2), it follows the phi-

losophy of the Manning theory by assuming pairwise,

salt-screened Debye-Hückel interactions between charge

distributed along the molecule; 3), it assumes that the electro-

static interactions make their influence primarily through the

renormalization of the elastic moduli (11); 4), it makes the

simplification that the inhomogeneity in the charge distribu-

tion does not affect the renormalization of the elastic moduli,

in other words, an average effective charge separation ap-

pears in the renormalized elastic moduli; and 5), it assumes

a minimal description of the long-range effects that must

arise from the inhomogeneity in the elastic properties as well

as the charge-distribution inhomogeneity. The good fit

between our theory and the experimental data suggests that

this simple effective approach may have captured in a non-

trivial way the most essential aspects of the complex elec-

trostatic interactions.

Two notes of caution are, however, called for. First, in

view of several fitting parameters in our model, the support

provided here for the Manning and Poisson-Boltzmann

theories of counterion organization near thin polyelectrolyte

rods (13,25), is somewhat indirect. Our model cannot fully

establish the detailed correctness of those models. However,

these theoretical models provide a framework for interpret-

ing our fitting parameters and for gauging the quality of our

fitting procedure. Second, it must be borne in mind that the

Manning theory has limited predictive powers: it does not

give a simple, explicit expression for the salt dependence of

the effective charge separation, which interpolates between

the chemical separation at large salt concentrations (no effect

of electrostatics) and the Bjerrum length of 7.4 Å in water in

the no-salt limit (strong electrostatic coupling). Furthermore,

there are limitations to be imposed in any successful appli-

cation of the Manning theory to further questions of interest

(15,25). For example, it is likely that colligative properties of

B-DNA (15,27) cannot be understood straightforwardly on

the basis of the Manning theory, except in infinite dilution.

Nevertheless, our results indicate that the Manning theory

provides one reasonable framework among other ones for

analyzing problems in biopolymer electrostatics.

APPENDIX: TWO-STATE MODEL WITH
GLOBAL COUPLING

The two-state model described in the text for the internal structure of the

chain is mathematically identical to the one-dimensional Ising model, as

described by Ahsan et al. (10). The Hamiltonian for this kind of the nearest-

neighbor Ising model can be written as

Hint ¼ �J +
N

i¼1

sisi11 � H +
N

i¼1

si: (A1)

Here, si ¼11 for a B segment, si ¼�1 for an S segment, and i¼ 1, 2, . . . ,

N runs over the N segments of the chain. The quantities J and H describing

the internal degrees of freedom of DNA must be determined either by

molecular modeling or taking them as fitting parameters to be determined by

comparison with experiments.

Next Hint must be complemented by the elastic energy of WLC. In the

original model of Cluzel et al. (6), it was assumed that the B-state and the

S-state have identical elastic moduli. We can immediately find this free

energy, which is related to the condition of mechanical equilibrium in the

fixed-force ensemble as follows

x ¼ �@Gel

@f
; (A2)

where we can use the explicit force-extension relation for the end-to-end

distance of the polymer, x, obtained by Podgornik et al. (11). It is easy to

show that the free energy can be written as

Gel ¼ L

"
f

1=2

b

ffiffiffiffiffiffiffiffi
KðRÞ

C

q � f � 1

2

f
2

l
ðRÞ

#
[ Lgð f Þ: (A3)
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The effective Hamiltonian is a sum of the Ising Hamiltonian Hint and

the elastic free energy Fel. The final force-extension relation (Eq. 14)

can then be straightforwardly derived by following the footnotes of Ahsan

et. al (10).

If we now want to relax the assumption of constant elastic moduli for

both states, we need to replace Eq. A3 by a new one, which reduces to the

pure B-state WLC free energy and to the pure S-state free energy in the limits

si ¼ 11 and si ¼ �1 for all i ¼ 1, 2, . . . , respectively. Using this idea we

construct an ansatz for the WLC free energy in the fixed-force ensemble

according to Eq. 18

where we have used a shorthand notation for elastic free energies in the

B- and S-states discussed in the text. Summing the Ising Hamiltonian

together with the WLC part (Eq. A4) one ends up with the effective

Hamiltonian

Heff ¼ �J +
N

i¼1

sisi11 � H̃ð f Þ+
N

i¼1

si

� L0d

4N
2½gdsð f Þ � gssð f Þ� +

N

i¼1

si

� �2

1
L0

2
11

d

2

� �
½gdsð f Þ1 gssð f Þ�; (A5)

where the effective external field H̃ð f Þ is now slightly modified from

Eq. 17 as

H̃ð f Þ ¼ H � a0

2
½gdsð f Þ � ð11 dÞgssð f Þ�: (A6)

Thus, the partition function can be written as a trace over spin variables

+
fsi¼61g

e
�bHeff ¼ exp �b

L0

2
11

d

2

� �
½gdsð f Þ1 gssð f Þ�

� �

3 +
fsi¼61g

exp b J +
Æi;jæ

sisj 1 H̃ð f Þ+
N

i¼1

si

" 

1
L0d

4N
2 +

N

i¼1

si

� �2
#!

; (A7)

where b ¼ 1/kBT. The Hamiltonian in the partition function is quite sim-

ilar to one used to derive the force-extension relation Eq. 14, but with

a difference that now a global quadratic term prevents the exact evaluation of

the configurational sum. To do further progress, we replace the global term

by a continuous fluctuating field. The price to be paid from this trick is that

instead of a tedious summation over discrete spin variables one has to carry

out a continuous integral over the fluctuating field. Now we formulate ex-

plicitly this trick often called the Hubbard-Stratonovich transformation

(28). We replace the quadratic term in Eq. A7 by the following Gaussian

integral

exp
1

2
b
L0d

2
½gdsð f Þ � gssð f Þ�

+
i
si

N

� �2
 !

¼
Z N

�N

dz
e

�
� 1

2
L0d

2
½gdsðfÞ�gssðfÞ�

bz
2
1bz+

i

si
N

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p L0d

2
½gdsð f Þ � gssð f Þ�=b

q : (A8)

This transformation enables us to recast the partition function into the form

similar to the one-dimensional Ising model as

Z ¼ C

Z N

�N

dz
e
�1

2

L0d

2
½gdsðfÞ�gssðfÞ�bz

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p L0d

2
½gdsð f Þ � gssð f Þ�=b

q

3 +
fsi¼61g

exp b J +
Æi;jæ

sisj 1
˜̃Hð f Þ+

N

i¼1

si

" # !
; (A9)

where a new external field ˜̃H and a constant factor C are defined as

˜̃H ¼ H̃ð f Þ1 z

N
(A10)

C ¼ exp b
L0

2
11

d

2

� �
½gdsð f Þ1 gssð f Þ�

� �
: (A11)

Now the trace over the configurational degrees of freedom fsig
produces

HWLC ¼ L

N
+
N

i¼0

½dsi ;11gdsð f Þ1 dsi ;�1gssð f Þ� ¼
L0

N
1 � d

2N
+
N

i¼1

ðsi � 1Þ
� �

3+
N

j¼1

1

2
ð11sjÞgdsð f Þ1

1

2
ð1 � sjÞgssð f Þ

� �

¼ 1

2
11

d

2

� �
½gdsð f Þ1 gssð f Þ�1

L0

2N
½gdsð f Þ � ð11 dÞgssð f Þ�+

N

i¼1

si �
L0d

4N
2½gdsð f Þ � gssð f Þ� +

N

i¼1

si

� �2

; (A4)

Z ¼ C

Z N

�N

dz
e
�1

2

L0d

2 ½gdsðfÞ�gssðfÞ�bz
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p L0d

2
½gdsð f Þ � gssð f Þ�=b

q 3 e
bJ

cosh ðb ˜̃Hð f ÞÞ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

2bJ
cosh

2ðb ˜̃Hð f ÞÞ�2sinh ð2bJÞ
q� �N

¼ C

Z N

�N

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p L0d

2
½gdsð f Þ � gssð f Þ�=b

q e
�bG½z; ˜̃

Hðf;zÞ�
: (A12)
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In the last row a definition of a new effective free energy G½z; ˜̃Hð f ; zÞ� is

used

G½z; ˜̃Hð f ; zÞ� ¼ 1

2

z2

L0d

2
½gdsð f Þ � gssð f Þ�

� N

b
log e

bJ
cosh ðb ˜̃Hð f ; zÞÞ

�

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

2bJ
cosh

2ðb ˜̃Hð f ; zÞÞ � 2sinh ð2bJÞ
q �

: (A13)

The final integral over the variable z cannot be evaluated exactly, but one

can find the value of z that minimizes the effective free energy G; namely the

saddle point of G with respect to z. Furthermore, G can be expanded to the

second order in z around the saddle point as

G½z; ˜̃Hð f ; zÞ� ’ G½�zz�1 1

2
G$½�zz�ðz� �zzÞ2

; (A14)

where the mean-field property of the point �zz is exploited to get rid of the first-

order term. This integral can be carried out trivially due to its Gaussian

nature

Z ’ C

Z N

�N

dz
e
�b G½z̃�1 1

2bG$½�zz�ðz��zzÞ2f gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p L0d

2
½gdsð f Þ � gssð f Þ�=b

q

¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0d

2
½gdsð f Þ � gssð f Þ�G$½�zz�

q e
�bG½�zz�

: (A15)

To simplify the above result further one has to calculate G$½�zz� explicitly.

Actually this cannot be done because the form of the saddle-point equation is

too complicated. However, it can be written in a more tractable form as

G$½�zz� L0d

2
½gdsð f Þ � gssð f Þ�

� �
¼ 11O 1

N

� �
; (A16)

which shows that in the thermodynamic limit the denominator of the

partition function truncated to second order becomes constant. Furthermore,

it can easily be shown that the higher-order terms in the expansion of G
around the mean field give rise to even higher order terms in 1/N, thus

vanishing in the limit N/N: Next the calculation of the free energy for the

two-state model with global spin-spin coupling is performed as

F ¼ �1

b
log Z ¼ L0

2
11

d

2

� �
½gdsð f Þ1 gssð f Þ�1G½�zz�:

(A17)

The final goal, the force-extension relation for the combined model, can be

calculated using the condition of mechanical equilibrium in the fixed-force

ensemble according to Eq. A2

x ¼ � @Fel

@f
jb ¼ � @G½�zz�

@ ˜̃H

@ ˜̃H

@f
� L0

2
11

d

2

� �
½g9dsð f Þ1 g9ssð f Þ�:

(A18)

Here one should notice that in the thermodynamic limit ˜̃H/H̃ for fixed �zz:

Thus, the previous equilibrium condition can be written as

where we have defined the average spin according to Eq. 15, but now H̃

is given by Eq. A6. The second term in the spin arising from the derivative

of �zz2 term with respect to ˜̃H in the free energy vanishes in the thermodyna-

mic limit as 1/N. Further simplification for the equation of state can be

done by noticing that according to Eqs. 3 and 7 g9( f ) ¼ �y( f ) for both

double-stranded and single-stranded chains. Thus, we arrive at Eq. 21

x

L0

¼ 1

2
11

d

2

� �
½ydsð f Þ1 yssð f Þ�

1
1

2
½ydsð f Þ � ð11 dÞyssð f Þ�Æsæ

� d

4
½ydsð f Þ � yssð f Þ�Æsæ2

; (A20)

which is quite similar to Eq. 14, but now a mixture of double-stranded and

single-stranded force-extension relations appears in the final equation of

state. This means that we have coupled the different elastic moduli together

in a highly nontrivial way, which reduces to the correct model at both limits

of the overstretching transition.
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