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ABSTRACT Wemodel the dynamics of energy transfer and primary charge separation in isolated photosystem II (PSII) reaction
centers. Different exciton models with specific site energies of the six core pigments and two peripheral chlorophylls (Chls) in
combination with different charge transfer schemes have been compared using a simultaneous fit of the absorption, linear
dichroism, circular dichroism, steady-state fluorescence, transient absorption upon different excitation wavelengths, and time-
resolved fluorescence. To obtain a quantitative fit of the data we use the modified Redfield theory, with the experimental spectral
density including coupling to low-frequency phonons and48 high-frequency vibrations. The best fit has beenobtainedwith amodel
implying that the final charge separation occurs via an intermediate state with charge separation within the special pair (RP1). This
state isweakly dipole-allowed, due tomixingwith theexciton states, andcanbepopulateddirectly or via 100-fs energy transfer from
the core-pigments. The RP1 and next two radical pairs with the electron transfer to the accessory Chl (RP2) and to the pheophytin
(RP3) are characterized by increased electron-phonon coupling and energetic disorder. In the RP3 state, the hole is delocalized
within the special pair, with a predominant localization at the inactive-branch Chl. The intrinsic time constants of electron transfer
between the three radical pairs vary from subpicoseconds to several picoseconds (depending on the realization of the disorder).
The equilibration between RP1 and RP2 is reached within 5 ps at room temperature. During the 5–100-ps period the equilibrated
core pigments and radical pairs RP1 and RP2 are slowly populated from peripheral chlorophylls and depopulated due to the
formation of the third radical pair, RP3. The effective time constant of the RP3 formation is 7.5 ps. The calculated dynamics of
the pheophytin absorption at 545 nm displays an instantaneous bleach (30% of the total amplitude) followed by a slow increase of
the bleaching amplitude with time constants of 15 and 12 ps for blue (662 nm) and red (695 nm) excitation, respectively.

INTRODUCTION

Photosystem II (PSII) is one of the two photosystems that

performs the initial reaction in oxygenic photosynthesis:

primary charge separation in the D1/D2/Cytb559 reaction

center (RC) (1–4). According to the x-ray structure (5–7), the

PSII-RC comprises eight chlorins and two carotenes, all of

which participate in the energy transfer and/or electron

transfer processes. Four chlorophyll (Chl) and two pheo-

phytin (Phe) molecules are arranged in two branches D1 and

D2 in the central part of the complex. The D1 branch is

known to be active in charge separation (2). Two Chls are

bound at the periphery of the complex at distances of ;24 Å

from the core pigments. The biophysical processes in this

complex including energy transfer and primary steps of

charge separation have been studied by nonlinear spectro-

scopic techniques, such as visible pump-probe (8–16), visible

pump-IR probe (M.-L. Groot, N. P. Pawlowicz, L. J. G. W.

van Wilderen, J. Breton, I. H. M. van Stokkum, and R. van

Grondelle, unpublished results), time-resolved fluorescence

(16,17), photon echo (18), hole-burning (19,20), and Stark

spectroscopy (21).

Room temperature pump-probe studies performed by

Klug and co-workers (8–11) showed transient absorption

(TA) spectra with a negative peak at 681 nm (assigned to the

bleaching of P680 and Phe Qy absorption bands), a negative

peak at 545 nm (assigned to the bleaching of Phe Qx ab-

sorption), and a positive band at 460 nm (assigned to the Phe

anion absorption). Kinetics in the 660–695-nm region gave

100-fs, 3-ps, and 21–27-ps components reflecting energy

transfers and dynamics of the bleaching associated with the

radical-pairs formation. The 100-fs component changes its

sign upon tuning the excitation from 665 to 695 nm, thus

suggesting fast downhill and uphill transfers between the

excited states at the blue and red side of the band (8). The

slower 3-ps component reflects the decay of excited states

due to the primary charge transfer step. The 21-ps com-

ponent was assigned to Phe� formation, since it was found to

be the dominant component in the 545- and 460-nm kinetics

upon 695-nm excitation (9,11). Decay of the stimulated

emission sideband at 730 nm occurs with the same 21-ps

time constant as well as the growth of the radical pair ab-

sorption in this region (11). Tuning the excitation to 665 nm

slows this component down to 27 ps (10), which was at-

tributed to a slow energy transfer from peripheral Chls ab-

sorbing near 670 nm.

Slow picosecond dynamics in the Phe anion band and Phe

Qx band bleach was also observed by Wasielewski and co-

workers (15), who reported time constants of 7 and 48 ps at

460 nm and 9 and 54 ps at 545 nm upon long-wavelengthSubmitted January 24, 2005, and accepted for publication May 25, 2005.
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excitation. These authors also found a large instanta-

neous bleach at 545 nm, which they fully attributed to

singlet-excited Phe. These time constants differ from the

21 ps observed earlier (9–11). Similar time constants for

charge separation have been obtained by Holzwarth with

co-workers using time-resolved fluorescence (FL) (17)

and pump-probe (12) studies. Both techniques gave visible

(i.e., apparent) rates of charge separation of ;100–150 ns�1

corresponding to time constants of 7–10 ps. At cryogenic

temperatures, time constants of 5 ps (22) and 3 ps (23)

were found at 545 nm.

Groot et al. (14) have measured a 400-fs component of the

TA kinetics and attributed it to the formation of the inter-

mediate state of low dipole strength that has charge-transfer

character and lies below the excited states. The second 20-ps

component was assigned to charge separation dynamics limited

by slow energy transfer.

Modeling of the PSII-RC was performed using the so-

called multimer model (24–26), where the transition energies

of the six core pigments (PD1, PD2, ChlD1, ChlD2, PheD1, and

PheD2) were taken to be equal, giving rise to delocalized

states. Dynamics was calculated with the Redfield theory (weak

exciton-phonon coupling). Magic-angle TA and anisotropy

decays calculated for short time delays (0–1.5 ps) upon 694-

nm excitation were in good agreement with the measured data

(25). Kinetics of charge separation in the 0–200-ps range was

modeled by including the coupling of the excited states to the

radical pairs (26). No attempt was made to model the non-

linear responses at different probe wavelengths.

The multimer model with equal transition energies for all

six core-pigments was used (in combination with Redfield

theory) to model the photon echo at 1.3 K (18) and pump-

probe spectra at 77 K (27). From the photon echo modeling it

has been proposed that, at least at low temperatures, the

accessory Chl on the active branch ChlD1 acts as primary

electron donor and that the Chl1D1Phe�D1 pair occurs first,

followed by electron transfer from PD1 to ChlD1 and P1
D1

Phe�D1 formation (18).

An adaptation of the multimer model was also proposed

(28), which implies that PheD2 in the inactive branch D2 is

100 cm�1 blue-shifted with respect to the other pigments (the

so-called pentamer model). The blue-shift of PheD2 was,

however, not confirmed by chemical exchange of this pig-

ment (29).

Renger and co-workers (30) extracted the site energies

from a fit of the 5 K linear spectra (absorption, i.e., OD;

linear dichroism, i.e., LD; circular dichroism, i.e., CD, fluo-

rescence, i.e., FL) and temperature dependence of OD in the

6–277 K range using the modified Redfield theory. These

site energies were verified by calculations of the absorption

difference spectra for RCs with: 1), modified PheD2; 2),

modified PheD1 and PheD2; 3), reduced PheD1; 4), absorption

of the RC-5 complexes that lack one of the peripheral Chls;

and 5), triplet minus singlet (T-S) spectra at 10 K and 277 K,

assuming a thermal distribution of the triplet state between

PD1 and ChlD1. The thus-obtained site energies differ from

those of the multimer model. The accessory ChlD1 was

suggested to be the redmost pigment which acts as the pri-

mary donor, in agreement with results obtained from site-

specific mutagenesis on the ligands for PD1 and PD2 (31),

thereby supporting the original suggestion by van Brederode

et al. (32) and van Brederode and van Grondelle (33).

The assignment of the final radical pair state as P1
D1Phe�D1

(i.e., with the hole localized at the active-branch Chl of the

special pair) implies that the PD1 is reduced by tyrosine res-

idue D1-161(YZ), which oxidizes the Mn cluster (2,31,34).

Recently, room temperature transient absorption and time-

resolved fluorescence have been measured for PSII RC com-

plexes purified from spinach (16). In this article we model

this data using the modified Redfield theory. We put forward

a model of energy transfer and charge separation in the RC

based on simultaneous fits of OD, LD, CD, steady-state FL

spectra, TA kinetics upon different excitation wavelengths,

and FL kinetics. The model suggests that charge separation

occurs through an intermediate state with charge separation

within the special pair PD1–PD2 as the primary event. The

mixing of this state with the exciton states of the core-

pigments results in a charge-transfer intermediate that lies

below the pure exciton states, has significant dipole strength,

and which can be reached via fast energy transfer from the

core-pigments. The time constants for the next charge sepa-

ration steps strongly depend on the realization of the dis-

order. Knowledge of the key microscopic parameters of

the model adjusted from a quantitative fit of the data allows

us to explore the pathways and timescales of the energy and

electron transfer. The proposed model is compared with al-

ternative exciton models and charge-separation schemes.

THE MODEL

We consider an isolated PSII-RC complex consisting of eight

pigments, arranged in the D1 and D2 subunits with pseudo-

C2 symmetry, i.e., two chlorophylls of the special pair P, two

accessory chlorophylls, two pheophytins, and two additional

chlorophylls (denoted as Chlz). We will number them as: 1,

PD1; 2, PD2; 3, ChlD1; 4, ChlD2; 5, PheD1; 6, PheD2; 7, ChlzD1;

and 8, ChlzD2, where the active branch corresponds to the D1

subunit. The primary steps of charge separation are accoun-

ted for by considering a sequence of two radical pairs (RP1

and RP2) or of three radical pairs (RP1, RP2, and RP3). Thus,

the excited-state manifold consists of electronically excited

sites 1–8 and radical pair states, i.e., 9-RP1, 10-RP2, and

11-RP3.

The one-exciton Hamiltonian includes unperturbed site

energies Enn of the excited (n ¼ 1–8) and charge-transfer

(n ¼ 9–11) states as diagonal elements and off-diagonal

interaction energies Mnm. The interaction energies between

the excited states (n, m ¼ 1–8) have been obtained from the

structural data (6), file 1IZL in the Protein Data Bank, http://

www.rcsb.org/pdb) in the dipole-dipole approximation, as-
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suming a dipole strength of 18 and 10 D2 for the Qy-tran-

sitions of Chl and Phe, respectively.

Generally, the dipoles of the Qy-transitions of Chl and Phe

can form some angle with the NB–ND axis. In our modeling

the value of this angle necessary to obtain a good fit is no

more than 5–6�. The first radical pair is coupled to the elec-

tronically excited sites 1, 2, or 3 (depending on the model;

see below), the corresponding energies are M91, M92, or M93.

Couplings between radical pairs are M10,9 and M11,10 (other

interactions are neglected for simplicity). The couplings

involving radical pair states are not known and should be de-

termined from the fit of the data together with the site ener-

gies.

The two-exciton Hamiltonian is constructed on the basis

of double-excited states S1(n)–S1(m) of molecular pairs n–m,

and double-excited monomeric states S2. The ratio of the

transition dipoles for the S1–S2 and S0–S1 transitions in the

Chl monomer is taken to be 0.5, and the S1–S2 transition

energy is blue-shifted by 150 cm�1 with respect to the S0–S1

transition energy. In the radical pair state n1m� the S0–S1(n)

and S0–S1(m) transitions are forbidden, giving rise to a

bleaching of the exciton states with contributions of the nth

and mth pigments. We do not consider the absorption of the

radical pairs, i.e., dipole moments of the n1m� / (n1m�)*

transitions are supposed to be negligible. We also do not

include the electrochromic shifts of the site energies due to

radical-pairs formation.

The site inhomogeneity (diagonal disorder) is 120 cm�1

(full-width at half-maximum, i.e., FWHM of a Gaussian dis-

tribution) for the excited states and 350 cm�1 for the charge-

transfer states. This threefold increase in static disorder

reflects the stronger coupling of charge-transfer states to

slow nuclear motions and conformations of the surrounding.

Diagonalization of the one- and two-exciton Hamiltonian

for each realization of the disorder gives us energies and

eigenfunctions of the N¼ 11 one-exciton eigenstates (includ-

ing a mixing of purely exciton and charge-transfer states) and

N(N11)/2 ¼ 66 two-exciton eigenstates. Then the linear and

third-order nonlinear spectral responses can be calculated us-

ing the expressions from Appendices A–D. The exciton re-

laxation and charge-transfer dynamics are described by the

modified Redfield theory.

The electron-phonon spectral density C(v) (Eq. D2)

includes an overdamped Brownian oscillator with the pa-

rameters l0, g0, and 48 high-frequency modes with fre-

quencies vj, couplings lj ¼ Sjvj (where Sj is the Huang-Rhys

factor of jth mode), and damping constants gj (which are

taken to be small, i.e., gj ¼ 3 cm�1). Parameters of the low-

frequency part (as determined from the simultaneous fit of

linear spectra) are l0 ¼ 35 cm�1 and g0 ¼ 40 cm�1.

Parameters of the high-frequency vibrations (from 97 to

1673 cm�1) were taken from the fluorescence line narrowing

(FLN) data (35), and further scaled and adjusted from the fit

of the 6 K OD, LD, CD, and FL spectra. The adjusted

parameters of the high-frequency modes are listed in Table 1.

The vn and wn factors (Appendix C) which determine

possible site-to-site variation of exciton-phonon couplings

(l0 and lj) are taken to be equal for all electronically excited

states, i.e., vn ¼wn ¼ 1 for n¼ 1–8. To account for a stronger

coupling of radical pairs to phonons and vibrations we use

vn ¼ wn ¼ 1.5 for n ¼ 9–11.

The total reorganization energy in the site representation

(given by Eq. D2) is l ¼ 598 cm�1. Below (see Table 2) we

use the site energies that do not include a reorganization

shift. Diagonalization of the Hamiltonian containing the

thus-determined site energies gives the energies correspond-

ing to the first moment of the absorption of the kth exciton

state vk. The zero-phonon line (which determines the main

absorption peak of the kth component) will be red-shifted

from vk due to reorganization effects. The value of this shift

in the exciton representation is equal to vnl multiplied by the

participation ratio (PR) of the kth state (Eq. D3). The PR

value for our models lies in the range 0.4–0.75 (see below),

thus the reorganization shift for the pure exciton states (with

vn ¼ 1) is expected to be 240–450 cm�1, where more lo-

calized states display a larger red-shift. For the charge trans-

fer states (characterized by a stronger coupling to fast nuclear

motions) this shift is even bigger. Such large reorganization

shifts are determined mostly by coupling to high-frequency

modes (note that low-frequency phonons are responsible for

a reorganization energy of l0 ¼ 35 cm�1, which is only a

small part of the total reorganization energy l ¼ 598 cm�1).

This coupling to high-frequency modes manifests itself as

an intense vibrational wing in the absorption and fluores-

TABLE 1 Frequencies vj, cm
21, and Huang-Rhys factors

S j for nuclear modes j 5 1248 (+ S j 5 0.75)

vj Sj vj Sj vj Sj vj Sj

97 0.0371 604 0.0034 1143 0.0303 1354 0.0057

138 0.0455 700 0.005 1181 0.0179 1382 0.0067

213 0.0606 722 0.0074 1190 0.0084 1439 0.0067

260 0.0539 742 0.0269 1208 0.0121 1487 0.0074

298 0.0488 752 0.0219 1216 0.0111 1524 0.0067

342 0.0438 795 0.0077 1235 0.0034 1537 0.0222

388 0.0202 916 0.0286 1252 0.0051 1553 0.0091

425 0.0168 986 0.0162 1260 0.0064 1573 0.0044

518 0.0303 995 0.0293 1286 0.0047 1580 0.0044

546 0.0030 1052 0.0131 1304 0.0057 1612 0.0044

573 0.0094 1069 0.0064 1322 0.0202 1645 0.0034

585 0.0034 1110 0.0192 1338 0.0037 1673 0.0010

TABLE 2 Unperturbed transition energies of the pigments

n 5 1–8 for different exciton models of RC (Models A–D);

transition energies are given in cm21, and do not include

the reorganization energy shift

n 1 2 3 4 5 6 7 8

Pigment PD1 PD2 ChlD1 ChlD2 PheD1 PheD2 ChlzD1 ChlzD2

Model A 15,130 15,165 15,095 15,110 15,175 15,280 15,435 15,430

Model B 15,110 15,425 15,090 15,330 15,190 15,290 15,420 15,470

Model C 15,210 15,210 15,019 15,233 15,091 15,151 15,461 15,438

Model D 15,300 15,105 15,030 15,130 15,100 15,100 15,425 15,420
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cence spectra (see below). Due to this wing the first moment

of the spectral line (for the kth exciton component) differs

significantly from the position of a relatively narrow low-

frequency peak (for the same component).

Extraction of the parameters

The unperturbed site energies of the excited states (n ¼ 1–8)

have been determined from the linear OD/LD/CD/FL spectra

fit based on evolutionary algorithm. (The site inhomogeneity

value and parameters of the spectral density necessary to

explain the experimental lineshapes have been adjusted from

the fit as well). An evolutionary-strategy-based search for the

best fit allows us to find several models with different site

energies. These models have been further checked by fitting

the TA and FL kinetics. The TA/FL fit allowed an adjust-

ment of other parameters, i.e., parameters of the double-

excited and radical-pair states.

The S1–S2 transition energies and oscillator strengths of

the Chl and Phe have been adjusted from the fit of the TA

spectral shape. Variation of these parameters changes the

relative intensities and positions of the negative bleaching

and positive excited-state absorption bands. The scaling fac-

tor of the S1–S2 transition dipole and the corresponding shift

of the transition energy (with respect to the S0–S1 transition)

were taken to be the same for the Chl and Phe monomers.

The couplings and energies of the radical-pair states can

be determined by modeling the time evolution of the TA and

FL dynamics in different timescales (from subpicosecond to

picosecond and 10–100-ps regions). Simultaneous fit of the

fast TA decay and long-lived FL requires a radical-pair

sequence with specific energies and couplings producing an

effective (fast) charge transfer, together with the channels of

back transfers to the emitting excited states. We also have

found that a quantitative fit of the data is impossible without

increasing the energetic disorder of the radical pairs.

RESULTS

Exciton models

We have found that a simultaneous fit of OD, LD, CD, and

FL spectra can be obtained in many different ways, i.e., using

different sets of the site energies. In Table 2 we show a few

possible configurations with different energies of the pig-

ments n ¼ 1–8. Notice that the site energies given in Table 2

do not include the reorganization energy shift due to strong

coupling to phonons and vibrational modes.

Model A is the multimer model: the redmost pigments 1–4

(i.e., PD1, PD2, ChlD1, and ChlD2) are almost isoenergetic, re-

sulting in strong exciton coupling. The lowest exciton state is

super-radiant, being delocalized over pigments 1–4 with

some coherent admixture of pigments 5 and 6. Notice that

PheD2 in the inactive branch D2 is blue-shifted, so that this

configuration resembles an adaptation of the multimer model,

i.e., the pentamer model (28).

Model B can be denoted as the asymmetric multimer

model: the exciton states are delocalized over the pigments

1-3-5 of the D1 branch, which are red-shifted with respect to

the pigments 2-4-6 of the D2 branch.

Model C is characterized by a symmetric special pair with

isoenergetic PD1 and PD2 shifted to the blue. The redmost

pigment is the accessory Chl of the active branch (ChlD1),

which is a good candidate for the primary electron donor

(31). Model C is close to the model recently proposed by

Renger with co-workers (30).

Model D is similar to Model C but with an asymmetric

special pair. The lowest exciton state is delocalized over pig-

ments 2 and 3 (PD2 and ChlD1 with a bigger contribution of

ChlD1), pigment 1 (PD1) is blue-shifted, pigments 4, 5, and 6

(ChlD2 and Phes) are red-shifted, 7 and 8 (extra-Chlzs) are on

the blue. Notice that the Models C and D agree with the

suggestion of Diner et al. (31) that PD1 absorbs more to the

blue than the redmost ChlD1.

The Models A–D allow a simultaneous fit of the room-

temperature OD, LD, CD, and FL spectra with the site en-

ergies given in Table 2. The OD, LD, CD, and FL spectra at

6 K can be explained with the same models, but in this case

a little adjustment of the site energies (within 1–3 nm) is

needed for some of the pigments.

Radical pair states

To describe the charge-separation dynamics, we have to

include coupling between the exciton states and the charge-

transfer states with lower energies. Due to this coupling the

lowest exciton states become mixed with the highest radical-

pair states. As a result, the higher radical pair will become

dipole-allowed, borrowing some dipole strength from the

excited-state manifold. In its turn, the mixing with charge-

transfer states increases the exciton-phonon coupling for the

lowest exciton states.

The simplest schemes (proposed in the literature) imply

a sequence of two radical-pair states RP1/RP2:

P
1

D1Chl
�
D1/P

1

D1Phe
�
D1ð13-15 schemeÞ

Chl
1

D1Phe
�
D1/P

1

D1Phe
�
D1ð35-15 schemeÞ:

The first scenario is possible for Models A and B, where

the primary donor PD1 contributes significantly to the lowest

excited state. The second scheme is better for Models C and

D, where the third pigment (ChlD1) is redmost. But this

scheme is also suitable for Model B, where pigments 1 and 3

contribute equally to the lowest state. In the multimer model

(Model A) the relative contribution of ChlD1 to the lowest

state is lower, but still significant, so that the second scheme

(or some superposition of the 13–15 and 35–15 pathways)

can work. Both schemes also agree with the suggestion (31)

that, after long time, the cation resides preferentially on PD1.
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These schemes allow us to obtain a qualitative explanation

of the TA and time-resolved FL (including the correct time

constants and the signs of the main kinetic components), but

no quantitative fit can be obtained (it is difficult to reproduce

the amplitudes of the main kinetic components). However,

a fit is possible by using P1
D2 instead of P1

D1; i.e., using 23-25

and 35-25 sequences. Both schemes allow a quantitative fit

of the kinetics (in the Qy region of Chls and Phes), at least for

Model B. The 23-25 scheme is in agreement with the kinetics

in the Qx band of Phe (measured by Klug with co-workers;

see Refs. 9 and 11, and Wasielewski with co-workers; see

Ref. 15), whereas the 35-25 scheme predicts much faster

kinetics of the Phe Qx bleaching. In both schemes there is

electron or hole transfer between the sites 2 and 3. Most

probably such a transfer occurs via the intermediate site 1.

This can be explicitly taken into account in modified schemes

with a sequence of three radical pairs, RP1/RP2/RP3:

ðP�
D1P

1

D2 6 P
1

D1P
�
D2Þ/P

1

D2Chl
�
D1/

P
1

D2Phe
�
D1ð21-23-25 schemeÞ

Chl
1

D1Phe
�
D1/P

1

D1Phe
�
D1/P

1

D2Phe
�
D1ð35-15-25 schemeÞ:

In the first scheme, it is supposed that the lowest exciton

state of the special pair is mixed with the superposition of

charge transfer states (P�
D1P1

D2 6 P1
D1P�

D2). The lowest state of

this superposition (with some contribution of P1
D2P

�
D1) acts

as a donor for the next radical pair P1
D2Chl�D1: In the second

scheme the final state also could be a superposition like

(P1
D2Phe�D1 6 P1

D1Phe�D1), but the data can only be reproduced

with a predominant localization of the hole at PD2.

In the following sections we will discuss in detail the

Model B with the 21-23-25 charge-transfer sequence, which

allows the best fit of the kinetics. Then we will compare it

with the results obtained with Model B and the 35-15-25

scheme. Finally we will show some results for the multimer

Model A, which is quantitatively not as good as Model B.

The Models C and D gave no fit to the observed FL and TA

kinetics even at a qualitative level.

Asymmetric multimer model (electron transfer
from special pair)

In this section we discuss the results obtained with Model B
and the 21-23-25 charge-transfer sequence. The site energies

of the eight pigments are given in Table 2. The energies of

radical pairs (counted from (E11 1 E22)/2 are DERP1 ¼�100

cm�1, DERP2 ¼�340 cm�1, and DERP3 ¼�480 cm�1. These

energies do not include a reorganization shift. The inter-

action energies determined from the fit are M91 ¼ M92 ¼ 50

cm�1, M10,9 ¼ 70 cm�1, and M11,10 ¼ 30 cm�1. These values

are close to the interaction energies in the bacterial RC. Thus,

the coupling between the primary donor and the first radical

pair is 20–50 cm�1 according to molecular dynamics (36),

path integral simulation (37), and Redfield theory modeling

of the coherent electron-vibrational dynamics (38). The cou-

pling between the first and second radical pair is 80–135

cm�1 (36,37).

Linear spectra

The fit of the linear spectra is shown in Fig. 1. The main

peaks in the OD near 675 nm and the FL at 680 nm are

FIGURE 1 Fit of the linear spectra (OD,

LD, CD, and steady-state FL) at room

temperature. Experimental OD and steady-

state FL data measured in Andrizhiyev-

skaya et al. (16) and LD and CD states

(E. G. Andrizhiyevskaya, unpublished re-

sults) are shown by points, a calculation

according to Model B, assuming the 21-23-

25 charge separation scheme, is shown by

solid lines. Thin lines correspond to the

exciton components of the overall spectra.
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determined by the main Qy transitions coupled to low-

frequency phonons. The broad absorption at 620 nm and the

FL shoulder with a maximum at 740 nm are determined by

high-frequency vibrations (in our modeling we neglect the

Qx transitions that may contribute to the absorption near 630

nm). Notice that the experimental CD spectra of PSII-RCs

are nonconservative with intense positive peaks both in the

visible and the Soret bands (39). To improve the fit of the CD

we assume a monomeric CD contribution proportional to the

linear absorption. In Fig. 1 the amplitude of this monomeric

CD is 20% of the excitonic CD maximum. The calculated

red wing of the OD spectrum is more intense than the ex-

perimental one due to the fact that the tails of higher exciton

states are broadened due to ultrafast relaxation. This is a well-

known lineshape artifact of the Redfield theory (40,41), ap-

pearing due to the exponential relaxation term (see Eq. D1)

which determines a Lorentzian lineshape with broad wings.

A more realistic lineshape should probably be closer to

a Gaussian profile (at least in the red edge of the absorption

band). For example, using the Redfield theory it is impos-

sible to correctly explain the polarization of fluorescence of

LH1/LH2 complexes (due to off-resonance excitation of

higher exciton states even upon excitation at the very red

edge), but it can be done by assuming a Gaussian lineshape

for the exciton states (with the same FWHMs) (41). On the

other hand, this Redfield theory artifact typically has a minor

effect on isotropic TA and FL kinetics.

Participation ratio

The PR for the 11 exciton states calculated for 4000 re-

alizations of the disorder are shown in Fig. 2 (bottom frame).

Depending on the realization of the disorder the exciton

states of the six core pigments (between 650 and 680 nm) are

delocalized over 1.3–3 sites. The states determined by the

monomeric Chlzs (with PR close to unity) are clearly dis-

tinguishable between 665 and 675 nm. The three lowest

states below 680 nm (with PR from 0.5 to 1) are determined

by radical pairs mixed with exciton states and mixed with

each other. Each radical pair state is treated as one site, so the

PR ¼ 0.5 below 700 nm implies a delocalization of the

charge-separated state over two radical pairs, i.e., RP2 and

RP3. Below 715 nm we find the localized RP3 state. Aver-

aging over realizations gives delocalization over 1.5–2 sites

(without including the Chlz states) in the main absorption

band between 660 and 685 nm (Fig. 1, top frame).

Density matrix for exciton states

The origin of the exciton states can be unraveled by the

density matrix averaged over disorder for each exciton state

as shown in Fig. 3. The three lowest states k¼ 1, 2, and 3 are

determined by the sites 11, 10, and 9—i.e., RP3, RP2, and

RP1, respectively. Off-diagonal density matrix elements

within the (9–11) 3 (9–11) area reflect coherent coupling

between radical pairs. In the k ¼ 3 state there are coherences

between the highest radical pair (the ninth site) and pigments

2 and 3. Due to this coherent mixing the charge-transfer state

k ¼ 3 borrows significant dipole strength from the excited

states (see Figs. 1 and 2).

In the lowest exciton state (k¼ 4) the pigments 1 and 3 are

most populated with some population of pigments 5, 7, and

the first radical pair. See diagonal elements (1,1), (3,3), (5,5),

(7,7), and (9,9). There is coherence within the D1 branch,

i.e., (1,3), (3,5); the D2 branch (2,4), (4,6); the special pair

(1,2); and between the special-pair and the accessory

Chls—i.e., the (2,3) and (1,4) elements. Thus, k ¼ 4 is the

lowest level of the 1-2-3-4-5-6 multimer with a predominant

localization of the excitation on the D1 pigments 1, 3, 5 and

with some coherent admixture of RP1. A partial charge

transfer character of the lowest exciton states was suggested

FIGURE 2 Participation ratio (PR) of the exciton states for Model B. (Top

frame) OD spectrum with the exciton components (the same as in Fig. 1)

together with the PR as a function of the wavelengths corresponding to the

zero-phonon lines (ZPL) of the exciton states. Bars 1–11 show the averaged

positions of ZPLs for the exciton states from k ¼ 1 to k ¼ 11. Blue and

magenta curves show PR averaged over disorder with (blue) and without

(magenta) including the states localized at peripheral Chlzs. (Bottom frame)
PR as a function of ZPL shown for 4000 realizations of the disorder. Each

realization is presented by 11 points (shown by different colors) corres-

ponding to a PR for the exciton states k ¼ 1–11. Colors of the exciton states

correspond to the colors of the bars in the top frame.
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by Frese et al. (21), who observed unconventional features in

the Stark spectra at the red wing of the PSII-RC Qy absorp-

tion band.

The structure of the next three states (k ¼ 5, 6, and 7) is

similar to that of the k ¼ 4 state with increasingly more

population on sites 3 and 5 and less population on site 1.

Notice that the coherences between sites 1, 3, and 5 are

relatively small for all the states from k¼ 4 to k¼ 7. It means

that the delocalization over the core pigments of the D1

branch is not completely coherent, thus containing a non-

coherent mixture of states with a predominant localization

around sites 1, 3, or 5 depending on the realization of the

disorder.

The states from k ¼ 8 to k ¼ 11 contain more contribution

from the D2 pigments. Levels k ¼ 9 and 10 are coherently

delocalized between pigments 4 and 6. Level k ¼ 11 is the

higher exciton state of the special pair with a predominant

population of PD2.

Pigments 7 and 8 (peripheral Chlzs) participate in the

states from k ¼ 4 to k ¼ 10 with a maximum contribution to

k ¼ 7 and k¼ 8, but there is no coherence between them and

any of the other sites. Such a completely noncoherent mix-

ture means that in different realizations each of the states

k ¼ 4–10 can be multimeric (delocalized over the core pig-

ments without presence of Chlzs) or monomeric with

localization at Chlzs.

Transient absorption

The fit of the TA kinetics upon 662- and 695-nm excitation is

shown in Figs. 4 and 5 together with the population

dynamics in the site representation.

Upon 662-nm excitation (Fig. 4) we have the predominant

excitation of pigments 2, 4, and 6 from the D2 subunit

(which are blue-shifted), followed by their fast depopulation

during a few hundred femtoseconds. This fast decay is

FIGURE 3 Density matrix for the exciton states from k ¼ 1 to k ¼ 11 averaged over disorder. Bars show the density matrix elements (n,m) in the site

representation. Numbers of the sites correspond to the eight pigments and three radical pairs in the following order: 1, PD1; 2, PD2; 3, ChlD1; 4, ChlD2; 5, PheD1;

6, PheD2; 7, ChlzD1; 8, ChlzD2; 9, RP1; 10, RP2; and 11, RP3. Data corresponds to Model B with 21-23-25 charge separation scheme.

1470 Novoderezhkin et al.

Biophysical Journal 89(3) 1464–1481



mirrored by a fast rise of excited state population on the red-

shifted pigments 1, 3, and 5 of the D1 subunit. After 500 fs,

the largest part of the excitation density is concentrated on

pigments 1, 3, and 5. It is interesting, however, that pigment

1 is more populated initially (at time zero) than pigment 2

because the higher exciton level of the special pair 1–2 (with

a larger contribution of PD2) is only weakly allowed (see

Figs. 2 and 3). That is why, even at short-wavelength ex-

citation, this level is less populated than the lower exciton levels

of the complex with a significant contribution of PD1.

The fast exciton relaxation results in a quick population of

the first radical pair, which is strongly mixed with the core

pigments. The fastest component of ;100 fs is determined

by the coupling of RP1 with PD2 (see the 0–2-ps frame of Fig.

4, where a very fast decay of site 2 is mirrored by a rise of site

9). The coupling of RP1 with PD1 gives slower transfer rates.

The intrinsic rates are strongly dependent on the realization

of the disorder. For different realizations the time constant of

PD1 /RP1 transfer varies from subpicoseconds to several

picoseconds. The intrinsic rates of the next charge-separation

steps RP1/RP2 and RP2 /RP3 are of the same order. This

large spread of values is connected with the big disorder

(which is comparable or even larger than the splitting

between the unperturbed energies of the radical pairs). The

effective rates (shown in Figs. 4 and 5) reflect a complicated

interplay of forward and back transfers averaged over

disorder. Superposition of many forward and back transfer

pathways results in the occurrence of slow components (up

to 10–30 ps) in the overall equilibration dynamics. This slow

dynamics is superimposed with the even slower transfers

from the peripheral Chlzs (pigments 7 and 8) with time con-

stants of 10–100 ps.

Thus we have several timescales of overall equilibration.

First, the 0–0.5-ps range, which corresponds to equilibration

within the core pigments, including formation of the first

radical pair (see left frames in Fig. 4). During the second,

0.5–5-ps scale the equilibrated core-pigments are depopu-

lated and equilibration between them and the first two radi-

cal pairs RP1 and RP2 is reached (middle frames in Fig. 4).

During the third, 5–100-ps period, the equilibrated core

pigments and two radical pairs are slowly populated from

Chlzs and depopulated due to the formation of the third

radical pair, RP3 (right frames in Fig. 4).

Note that the first radical pair in our model, i.e., the state

k ¼ 3 that is mixed with the excited states and populated

within 500 fs, resembles the intermediate state suggested

FIGURE 4 Kinetics of transient absorp-

tion (TA) at 680 nm upon 662 nm ex-

citation and population dynamics in the site

representation for Model B with 21-23-25

charge separation scheme. (Top frames)

Measured TA kinetics (red points con-

nected by thin lines; data taken from Ref.

16) and calculated ones (blue lines) for time

delays from 0 to 2 ps (left) 20 ps (middle),

and 80 ps (right). (Bottom frames) Pop-

ulations of the sites 1–11 (numbered as in

Fig. 3) calculated for the same timescales as

shown in the top frames.
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earlier by Groot et al. (14). Thus, the 400-fs component

observed in TA kinetics was attributed to the formation of an

intermediate state that 1), has low dipole strength, 2), has

charge-transfer character, and 3), lies below the excited

states (14). The state k¼ 3 in our model has exactly the same

features as characteristics 1–3, but the dynamics of its

population is more multiphasic, including fast pathways of

;100 fs together with the slower ones.

Upon long-wavelength, 695-nm excitation (Fig. 5), we

have the predominant excitation of red-shifted pigments 1, 3,

and 5 of the D1 subunit. The most populated are pigments 1

and 3, but after 500 fs the excitation is almost uniformly

distributed among 1, 3, and 5. Uphill relaxation also increases

the population of D2 pigments 4 and 6 (the population of

pigment 2 is initially high due to the strong exciton coupling

with pigment 1). Inversion of the initial conditions upon

tuning the excitation to the red changes the direction of energy

transfer (from D2/D1 to D1/D2, i.e., from downhill to

uphill) and leads to an inversion of the TA dynamics during

the 0–0.5-ps time region. This feature, observed in earlier

experiments (8) and in a recent study (16), is well reproduced

by the model (compare left top frames of Figs. 4 and 5).

FIGURE 5 The same as in Fig. 4, but for 695-nm excitation.
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The dynamics after 0.5 ps is not much different from the

case of 662-nm excitation. The only difference is associated

with the different initial excitation of extra-Chlzs (which af-

fects the slow dynamics during 10–100 ps). Upon short-

wavelength 662-nm excitation, the decay of initially excited

peripheral Chlzs increases the bleaching at 680 nm between

10 and 100 ps. This feature is absent upon long-wavelength

excitation, when Chlzs are almost non-populated, and so their

decay has not as pronounced an effect on the slow dynamics

in the 10–100-ps range.

Time-resolved fluorescence

The fit of FL kinetics in shown in Fig. 6. It is important that

the long-lived fluorescence suggests a reversible charge

transfer. We have found that the TA kinetics can be ex-

plained in terms of irreversible charge separation, i.e., sup-

posing slower transfer to low-lying radical pair states without

significant back transfer to the core pigments. This is pos-

sible because TA is mainly sensitive to bleaching of pig-

ments participating in radical pairs and does not depend on

the energy of the radical pair states, which are dark states (in

the case of a large energy difference between the RP states

and the excited states). In contrast, FL is determined by the

excited-state populations that decay very fast in the irre-

versible scheme. To explain the FL decay with time con-

stants of 40–80 ps and even longer, we have to reduce the

energy separation between the radical pairs and the excited

states. In such a scheme the intrinsic times of charge separa-

tion can be very short (subpicoseconds to a few picosec-

onds), but due to efficient back transfers we have a long-lived

equilibration process.

Furthermore, a simultaneous fit of the fast TA decay (in

the 0–20-ps timescale) and the slower 40–80-ps FL decay is

impossible without introducing a big energetic disorder for

the charge-separated states (up to 350 cm�1). This is the case

for all the models that we tried. In the case of a low disorder,

the FL decay becomes too fast. Reduction of the energy

difference between the RP and the excited states results in

slower FL decay (making it closer to the measured one), but

in this case the TA dynamics (in the 0–20-ps timescale)

becomes too slow. Moreover, the FL kinetics in the case of

a low disorder has a pronounced bi-exponential character,

with a fast decay during 0–20 ps followed by a slow decay

with the 60–100-ps time constant (in contrast with the almost

mono-exponential decay of the measured FL in the 0–100-ps

time interval).

Alternative charge-separation pathways

Now we wish to compare alternative charge-separation

schemes. In particular we have found that the asymmetric

multimer model (Model B, described in the previous section)

allows a reasonable fit of the data (linear spectra, TA kinetics

upon different excitation wavelengths, and FL kinetics)

using the 35-15-25 charge-transfer sequence. At short time,

the exciton equilibration is almost the same as for the 21-23-

25 scheme discussed above. The only difference is connec-

ted with the faster decay of the site 3, which is connected to

the formation of the first radical pair Chl1D1Phe�D1: Remember

that when charge separation starts from the special pair,

pigment 1 decays faster than pigment 3 for both excitation

wavelengths (see the dynamics during the 0–2-ps time

interval shown in Figs. 4 and 5). The dynamics of the further

steps of charge separation is quite similar in both schemes.

The final state is the same, i.e., P1
D2Phe�D1; thus giving the

same spectrum of the bleaching. The intermediate states for

the two schemes include different combinations of the

pigments 1, 2, 3, and 5. But all these pigments are coherently

and noncoherently mixed in levels k ¼ 4–6, thus giving

strongly overlapping (and hardly distinguishable) bleaching

components. Although the 21-23-25 scheme gave a better fit

of the data we still conclude that it is difficult to distinguish

between the two pathways using pump-probe data in the Qy

absorption region (at least at room temperature).

On the other hand, the two schemes predict very different

dynamics of the Phe absorption bleaching and Phe anion

formation. For the 21-23-25 scheme the Phe bleaching

appears due to excitation of pigments 5 and 6, and due to the

P1
D2Phe�D1 radical pair formation. Thus, the bleaching ampli-

tude is given by the sum of populations of the sites 5, 6, and

11. In Fig. 7 we show populations of these sites upon 662-

and 695-nm excitation. Formation of the anion band is given

by the formation of the P1
D2Phe�D1 state, which occurs in both

cases with a time-constant of ;7.5 ps. The effective Phe

FIGURE 6 Fluorescence kinetics measured at 680 nm with 6-ps

resolution upon 665-nm excitation (points connected by thin lines; data

taken from Ref. 16) and calculated with the same model as in Figs. 4 and 5

(solid line).
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absorption bleaching displays time constants of 15 and 12 ps

for the blue and red excitations, respectively. We remind

that, according to the measured bleaching of the Phe Qx band

at 545 nm, Klug and co-workers (9,11) estimated these time

constants as 27 and 21 ps. Wasielewski and co-authors (15)

reported the Phe anion band formation (at 460 nm) and Phe

bleaching (at 545 nm) upon red-side excitation with the time

constants of 7 and 9 ps. This is close to our 7.5- and 12-ps

values. Notice that experimental kinetics at 545 nm showed

instantaneous bleaching of ;40% from the total bleaching

amplitude (15). In the model the instantaneous bleaching due

to the initial excitation of the two Phe pigments is ;30%.

This instantaneous bleaching is followed by the slow

dynamics due to charge separation (as shown in Fig. 7).

In contrast, the 35-15-25 scheme predicts very fast Phe

dynamics, because Phe is involved in all three radical pairs.

It means that the bleaching kinetics is given by the sum of

populations of the 5, 6, 9, 10, and 11 sites (see Fig. 7, right
frame). The dynamics of the first two radical pairs is rather

fast, including subpicosecond components. According to our

modeling, more than half of the Phe bleaching develops with

a time constant of ;0.8 ps. Thus, the model with accessory

Chl as a primary donor is in contradiction with the available

pump-probe data in the 545- and 460-nm region (15).

Multimer model

Finally we will briefly discuss the results obtained with a

traditional multimer model (18,24,25,26) with equal or al-

most equal energies of the core pigments. Any changes in the

exciton structure of the model should, in principle, influence

the fast components of the dynamics during 0–0.5 ps. We

have seen that this fast TA component is determined by a

combined action of many relaxation channels (including the

fastest one of ;100 fs superimposed with slower compo-

nents). It is important that this component that changes its

sign when tuning the excitation from blue to the red. An

asymmetric model can reproduce this feature at a quantitative

level. Due to the D1–D2 asymmetry a blue or red pump pulse

allows the selective excitation of either the D2 or the D1

pigments. Subsequent equilibration within the D1–D2 core

produces a fast TA component with different sign. Upon blue

excitation we got a fast increase of the D1 branch bleaching

at 680 nm due to D2–D1 relaxation (Fig. 4, 0–2 ps frame).

Red excitation results in uphill dynamics within D1 and from

D1 to D2 with a fast decrease in D1 bleaching at 680 nm

(Fig. 5, 0–2-ps frame).

In the multimer model (Model A) there is 1), a strongly

coupled core-cluster giving a super-radiant exciton level on

the red side, and 2), blue-shifted peripheral Chlz pigments.

Blue excitation results in the excitation of the peripheral sites

and some (weaker) excitation of the coherent superposition

of core pigments. There is no fast transfer from blue Chlz

pigments, and there is no significant redistribution of excited

state population within the core pigments either (see Fig. 8,

left frame). As a result, the fast component of TA is almost

absent. Exciton relaxation within the core-cluster, including

fast transfer to the first radical pair, does not significantly

FIGURE 7 Dynamics of the Phe bleaching and Phe�D1 formation calculated according to Model B with different charge-separation schemes. (Left frame)
Populations of PheD1, PheD2, and radical pair P1

D2Phe�D1 are shown for the 21-23-25 scheme upon 662-nm excitation, together with the sum of these kinetics

(giving the Phe bleaching). Horizontal bar shows the amplitude of the instantaneous bleaching. (Middle frame) The same as in left frame, but for 695-nm

excitation. (Right frame) Populations of two Phes and of three radical pairs involving Phe�D1 are shown for the 35-15-25 scheme with 695-nm excitation,

together with the sum of these kinetics (giving the Phe bleaching for this scheme).
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change the bleaching amplitude during the subpicosecond

time-interval. The calculated amplitude of the TA decay

during 0–5 ps (reflecting the transfer from the core pigments

and RP1 to the radical pairs RP2 and RP3) is also less than in

the experiment (due to the weak initial excitation of the core

pigments in the multimer model).

Upon red excitation, we mostly excite the core-cluster.

Because core-pigments participate nonuniformly in the lowest

states, there is some equilibration dynamics during 0–0.5 ps

(see Fig. 8, right frame) with a decrease in the special pair

(pigments 1 and 2) and accessory Chls (pigments 3 and 4)

populations. This results in a decrease of the 680-nm bleach-

ing, in qualitative agreement with the experiments, but the

amplitude of this decrease is always much less than the mea-

sured one.

Altogether, we got a quantitative fit for Model B and

a qualitatively correct picture for the multimer Model A.

Models C and D gave no fit, even at a qualitative level. For

these models the sign of the fast TA component is opposite to

the experiment both for blue and red excitation. In the Mod-

els A and B the excitation of the long-wavelength states gives

rise to larger TA values (due to the specific exciton structure

of the lowest states and due to the large bleaching of the

special pair in the first radical pair state). Thus, the downhill

exciton relaxation increases the bleaching. The Models C and

D have a different structure of the excited and charge-transfer

states. In particular, the first radical pair is characterized by

smaller bleaching values, giving rise to a lower bleaching at

the red side. Correspondingly, a downhill relaxation reduces

the bleaching amplitude, thus changing the sign of the fast

component.

Note that the TA modeling is done in the doorway-

window representation (Appendix A), by neglecting a co-

herent artifact due to pump-probe overlap. The latter has

FIGURE 8 Site populations and density matrix

for the multimer Model A. Population kinetics

are shown upon 662- and 695-nm excitation

(colors of the sites are the same as in Figs. 4 and

5). The density matrix (with the same represen-

tation as in Fig. 3) is shown for the k ¼ 10 and

k ¼ 4 states, which are initially most populated

upon 662- and 695-nm excitation, respectively.
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a duration of ;O2t, where t is the pulse duration (40). Thus,

for t ¼ 100 fs (16) the pulse overlap is important from �70

fs to 170 fs delays. Such an artifact can contribute, for

example, to the amplitude of the sharp bleaching near 0-fs

delay at 695-nm excitation TA, but cannot affect the TA

kinetics for larger delays. Note that, in this respect, the

Models C and D give a wrong sign of the overall relaxation

dynamics during at least 500 fs.

DISCUSSION AND CONCLUSIONS

The simultaneous fit of linear spectra and nonlinear kinetics

allowed us to test various exciton models for the PSII RC and

to unravel the pathways and timescales of excited state

relaxation and primary charge separation.

The first features that occur in the subpicosecond region

(below 500 fs) are exciton relaxation, dephasing, and mi-

gration within the core-RC, i.e., pigments 1–6. The fastest

components (up to 100 fs) correspond to relaxation from the

blue- to red-shifted exciton states, including the lowest states

with pronounced charge-transfer character due to their mix-

ing with the first radical pair. These fast components result in

excitation-wavelength-dependent TA kinetics during 0–0.5

ps. This fast TA dynamics is extremely sensitive to the

model of the RC. First of all, to the choice of the site energies

of the core pigments, which is a good test for the exciton

models that can be proposed? We found that simultaneous fit

of OD, LD, CD, and steady-state FL spectra allows multiple

solutions. Many of them, however, fail to explain the shape

of the TA dynamics during 0–500 fs upon different ex-

citation conditions, and should therefore be ruled out. Thus,

only Model B survived from the models listed in Table 2. In

Model B, fast relaxation occurs between two groups of states

determined by pigments 1-3-5 (D1-branch) and 2-4-6 (D2-

branch), respectively. We did not model the anisotropy

dynamics, but it appears that the 400-fs anisotropy decay

upon red-side excitation (25) is connected with a dephasing

between the exciton states, within the 1-3-5 group superim-

posed with migration within the D1 branch.

After 0.5–1 ps, the excited core-pigments are almost com-

pletely equilibrated. Their total population decreases due to

transfer to the charge-transfer states, but their relative pop-

ulations during this process are not changing. There is no

significant redistribution between these pigments. If we

switch off the coupling to the radical pairs, then the excited-

state populations will be constant after 0.5 ps. Thus, the

decay of the excited states after 0.5 ps and within ;5 ps

reflects the formation of the second radical pair (the first one,

strongly mixed with the exciton states, is populated during

the exciton relaxation, i.e., during the 0–0.5-ps period). By

formation we mean that the population of the second radical

pair reaches its quasi-equilibrium with the core-pigments and

the first radical pair (so that the equilibrium of sites 1–6 and

9–10 is reached).

After 5 ps, we have the slow transfers between three

groups, i.e.: 1), sites 1–6 and 9–10 acting as one equilibrated

subsystem; 2), a third radical pair, i.e., site 11; and 3),

peripheral pigments 7 and 8. Transfer from group 1 to group

2 occurs with 7.5-ps effective time constant, i.e., a visible

time constant averaged over forward and back transfers with

intrinsic pairwise constants ranging from subpicosecond to

2–3 ps. Transfer from group 3 to groups 1 and 2 has time

constants within the 10–100-ps range (the spread is due to

the disordered character of the system).

The TA kinetics in the Qy transition region (together with

time-dependent FL of the corresponding excited states) as-

sociated with charge separation between 0.5 ps and 100 ps

can be reproduced using different radical pair sequences.

These different schemes give approximately the same time-

constants for the first, second, and third pair formation. But

the assignment of the radical pairs in these models is dif-

ferent. For example, in the 21-23-25 scheme the Phe�D1 ap-

pears in the third charge-separation step and thus must have

a 7.5-ps rising time. In contrast, in the 35-15-25 scheme, a

fast subpicosecond dynamics is expected for the Phe�D1

formation, which already occurs in the first step. To dis-

tinguish between the two schemes some technique is needed

sensitive to the Phe anion population (for example, IR excited-

state spectroscopy, or visible pump-probe in the Phe anion

absorption or Qx bleaching region). At the moment such

measurements have led to controversial results. Thus, the TA

kinetics at 460 and 545 nm suggested slow Phe�D1 formation

(7 ps) and Phe Qx bleaching (9 ps), close to 7.5 ps and 12 ps

in our 21-23-25 model with the special pair as a primary

donor. On the other hand, recent infrared data gave evidence

for a 0.6–0.8 ps Phe�D1 dynamics (M.-L. Groot, N. P.

Pawlowicz, L. J. G. W. van Wilderen, J. Breton, I. H. M. van

Stokkum, and R. van Grondelle, unpublished results), which

is in agreement with the 0.8 ps predicted by our 35-15-25

model where the electron transfer occurs from accessory Chl.

Other types of experiments that could lead to a better

understanding of the exciton structure, energy transfers, and

primary charge-separation reactions in PSII include: TA

pump-probe spectroscopy with improved spectral and

temporal resolution at room and low temperatures, steady-

state OD/LD/CD/FL, Stark spectroscopy on site-specific

mutants with changed site energies of certain core-RC

chlorophylls, and other methods. It is also useful to compare

the exciton model of RC with the absorption difference

spectra corresponding to modified/reduced Phe, removed

Chlz (RC-5 complex), and triplet formation (T-S spectrum)

(as was done recently by Renger and co-workers; see Ref.

30). Here we restrict to discussion of how the main features

of the Phe-modified, RC-5, and T-S spectra are reproduced

by our working Model B and Models A, C, and D.

In all the models (Models A, B, C, and D) we got

peripheral Chlzs with zero-phonon line (ZPL) distribution

peaked near 670 nm (the ZPL distribution of the Chlzs with

high PR values in the 665–675-nm region is shown in Fig.
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2). The absorption maximum of the monomeric states is

2–3-nm blue-shifted from the ZPL position. Thus, removing

of one of the Chlzs results in bleaching in the 665–670-nm

region is in agreement with the experiment (42).

According to our preliminary studies, the shape of the T-S

spectra with the main bleaching near 680 nm (29) can be

reproduced, supposing a delocalization of the triplet state

between PD1 and ChlD1 with predominant population of PD1

(for Model B at room temperature). Note that experimental

studies (31,46,47) suggested a distribution of the triplet

state between PD1 and ChlD1 at high temperatures; however,

with predominant localization at ChlD1 (the feature that

agrees with Models C and D), it is difficult to explain with

Model B.

In Model B the PheD2 contributes to the exciton states

k ¼ 7–10 (Fig. 3) absorbing in the 664–676-nm region (as

shown in Fig. 2) with the maximal contribution to the k ¼ 9

state peaked at 667 nm. The PheD1 contributes to the states

k ¼ 4–8 with absorption maximums in the 672–680-nm

region. The difference spectrum with reduced or modified

PheD2 has the main bleaching at 667–670 nm (depending on

small variation of the site energies around the values given

by Model B). Very similar results can be obtained with the

Model A (with the same energies of PheD1 and PheD2). Both

models (A and B) are in agreement with the experiment of

Jankowiak et al. (28) giving bleaching at 668 nm. Note that

this experiment is in contradiction with the exchange (PheD2-

modified) experiment (29) that showed bleaching at 679 nm.

The latter can be better explained by the Models C and D
with more red-shifted PheD1 and PheD2.

A new result of our model is that, in the radical-pair state

RP3, the hole is delocalized within the special pair with a

predominant localization at the P1
D2; at least in isolated PSII

reaction centers. We note, however, that this delocalization

may be different in isolated PSII reaction centers and in

intact, oxygen-evolving PSII core complexes. In intact PSII,

the redox active tyrosine on the D2 branch (Tyr160, or YD) is

usually oxidized, whereas in isolated PSII reaction centers

illumination does not result in the oxidation of YD (43). The

positive charge near this molecule may influence the charge

distribution between the special-pair molecules. In intact

PSII there is convincing evidence that (at long times) the

hole is localized predominantly on P1
D1 (2,31), implying a

hole localization near the Mn-cluster.

APPENDIX A: DOORWAY-WINDOW
REPRESENTATION OF PUMP-PROBE

We use a doorway-window representation (44,45) for the sequential two-

color pump-probe scheme. The excited-state dynamics is described with the

modified Redfield theory (45). The modified version in its present form (45)

neglects 1), the coherences between one-exciton states; 2), population

relaxation during the pump/probe pulse; and 3), transfers of ground- to one-

exciton coherences and one- to two-exciton coherences. In the basis of one-

and two-exciton eigenstates the transient absorption (TA) can be expressed

as a sum of the photobleaching (PB), stimulated emission (SE), and excited-

state absorption (ESA),

PB ¼ �v2 Wggðv2Þ +
k9

Dk9k9ð0;v1Þ

SE ¼ �v2 +
k

Wkkðv2ÞDkkðt;v1Þ

ESA ¼ v2 +
k

Ŵkkðv2ÞDkkðt;v1Þ; (A1)

where v1 and v2 are pump and probe frequencies, t is the pump-probe

delay, and g and k denote the ground and one-exciton states, respectively (an

average over the static disorder is implied in Eq. A1). In the sequential

pump-probe experiment the pump pulse creates a superposition of electronic

states in the one-exciton manifold with the doorway amplitudes Dkk(0,v1),

together with the hole in the ground state given by �+kDkk(0,v1). The evo-

lutions of the excited-state wavepacket due to exciton relaxation/migration

during pump-probe delay is given by Dkk(t,v1). The ground-state hole is

time-independent because one-exciton relaxation does not change the num-

ber of excitations, i.e., �+kDkk(t,v1) ¼ const. The absorption of a weak

probe is determined by the overlap of the doorway and window wavepackets

(Eq. A1). The initial doorway amplitude Dkk(0,v1), and the window ampli-

tudes Wkk(v2), Ŵkk(v2), and Wgg(v2) are given by

where e1 and e2 are the envelopes of the pump and probe pulses (they are

taken to be real). Here we use indices g, k, and q for ground, one-, and two-

exciton states, respectively. Transition dipoles dkg and dqk correspond to

g/k and k/q transitions, with the transition frequencies vkg and vqk,

respectively. Transition frequencies vab ¼ va � vb are given by the dif-

ference of frequencies of the a- and b-eigenstates. Superscripts e1/e2 denote

projection of the transition dipoles to the polarization vectors of the pump/

probe pulses. D, W, and Ŵ are the lineshape functions describing a dephasing

during the electronic coherence periods t1 and t3. They correspond to

ground-state absorption, excited-state emission, and excited-state absorp-

tion, respectively. Note that the window amplitude Wgg(v2) depends on the

Dkkð0;v1Þ ¼
Z N

�N

dt9

Z N

0

dt1 e1ðt9Þe1ðt9� t1Þd e1

kgd
e1

kg Dðvkg;v1; t1Þ1 c:c:

Wkkðv2Þ ¼
Z N

�N

dt

Z N

0

dt3 e2ðtÞe2ðt1 t3Þd e2

kgd
e2

kg Wðvkg;v2; t3Þ1 c:c:

Ŵkkðv2Þ ¼
Z N

�N

dt

Z N

0

dt3 e2ðtÞe2ðt1 t3Þ+
q

d
e2

qkd
e2

qk Ŵðvqk;v2; t3Þ1 c:c:

Wggðv2Þ ¼
Z N

�N

dt

Z N

0

dt3 e2ðtÞe2ðt1 t3Þ+
k

d e2

kgd
e2

kg Dðvkg;v2; t3Þ1 c:c:; (A2)
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D-function being determined by the ground-state absorption. Integration

over t and t9 can be done analytically if one specifies the pulse shape. For

example, supposing Gaussian pulses e1;2ðtÞ ¼ p�1=4t
�1=2
1;2 expð�t2=2t2

1;2Þ
with FWHM of 1.66t1,2, we get

Dkkð0;v1Þ ¼ d
e1

kgd
e1

kg

Z N

0

dt1 e
�ðt1=2t1Þ2

Dðvkg;v1; t1Þ1 c:c:

Wkkðv2Þ ¼ d
e2

kgd
e2

kg

Z N

0

dt3 e
�ðt3=2t2Þ2

Wðvkg;v2; t3Þ1 c:c:

Ŵkkðv2Þ ¼ +
q

d
e2

qkd
e2

qk

Z N

0

dt3 e
�ðt3=2t2Þ2

Ŵðvqk;v2; t3Þ1 c:c:

Wggðv2Þ ¼ +
k

d
e2

kgd
e2

kg

Z N

0

dt3 e
�ðt3=2t2Þ2

Dðvkg;v2; t3Þ1 c:c:

(A3)

In modified Redfield theory, the lineshape functions are

Dðvkg;v1; t1Þ ¼ expf�iðvkg � v1Þt1 � gkkkkðt1Þg
Wðvkg;v2; t3Þ ¼ expf�iðvkg �v2Þt3 1 2ilkkkkt3 �g

�
kkkkðt3Þg

Ŵðvqk;v2; t3Þ ¼ expf�iðvqk � v2Þt3 � gkkkkðt3Þ � gqqqqðt3Þ
1 2gkkqqðt3Þ1 2iðlkkqq � lkkkkÞt3g: (A4)

The line-broadening g-functions and reorganization energy values l in these

expressions appear due to strong diagonal exciton-phonon coupling. They

are connected with the spectral density of electron-phonon coupling in the

eigenstate representation Cabcd(v),

gabcdðtÞ ¼ �
Z N

�N

dv

2pv
2 CabcdðvÞ cot h

v

2kBT
ðcosvt � 1Þ

�

� iðsinvt � vtÞ
�

labcd ¼ � lim
t/N

d

dt
ImfgabcdðtÞg ¼

Z N

�N

dv

2pv
CabcdðvÞ; (A5)

where a, b, c, and d indices denote k- or q-values numbering the states from

one- or two-exciton manifolds. Transition frequencies in Eq. A4 correspond

to the first moment of the absorption lines. They are determined by the

eigenvalues of the exciton Hamiltonian, i.e., vk and vq, which do not include

a reorganization energy shift. In the presence of strong phonon coupling the

thus-determined transition frequencies are different from the frequencies of

the zero-phonon transitions.

The time evolution of the initially created doorway packet is given by

d

dt
Dkkðt;v1Þ ¼ �+

k;k9

Rkkk9k9Dk9k9ðt;v1Þ; (A6)

with the initial conditions given by the first of Eqs. A2 or A3. Here R

is the relaxation tensor calculated according to the modified Redfield

approach.

The expression for a time-dependent fluorescence (FL) is formally

equivalent to a formula for SE (Eq. A1), but instead of probe-pulse envelope

some instrument response function should be used.

APPENDIX B: MODIFIED REDFIELD TENSOR

The modified Redfield tensor corresponding to the one-exciton population

transfers is (45)

Rkkk9k9 ¼ �2Re

Z N

0

dt Ŵðvkk9; 0; tÞfg̈kk9k9kðtÞ

� f _ggk9kk9k9ðtÞ � _ggk9kkkðtÞ1 2ilk9kk9k9g
3f _ggk9k9kk9ðtÞ � _ggkkkk9ðtÞ1 2ilk9k9kk9gg; (B1)

where g- and l-functions are connected with the spectral density of electron-

phonon coupling in the eigenstate representation Ckk9k$k$9(v).

APPENDIX C: UNCORRELATED DIAGONAL
DYNAMIC DISORDER

The matrix of spectral densities in the eigenstate representation (for example,

Ckk9k$k$9(V) needed to evaluate the relaxation tensor in Eq. B1 or the more

general form Cabcd(V) in Eqs. A4 and A5 containing two-exciton states) can

be expressed through the site-representation spectral density Cnn9n$n$9(v). To

do it we first specify the exciton-phonon Hamiltonian in the site

representation as

Hex�ph ¼ +
n;m

fnmjnæÆmj1 +
m.n;m9.n9

fnmn9m9jnmæÆn9m9j

1 +
n;n9

fnnn9n9jnnæÆn9n9j; (C1)

where the first and second sums account for a bath-induced relaxation in

the one- and two-exciton manifolds of an aggregate made of two-level

molecules. The third term appears in the case of three-level molecules and

reflects a contribution of doubly excited states. We neglected terms like

jgæ�Ænj,jgæ�jnmj, and jnæ�Ænmj, which are responsible for radiationless decay

of one- and two-exciton states, and jnæ�Ænnj, which is responsible for

singlet-singlet annihilation. We further suppose a diagonal disorder, i.e.,

fnm ¼ dnm fn, fnmn9m9 ¼ dnn9dmm9( fn 1 fm), and fnnn9n9 ¼ dnn9fnn without

intersite correlations, i.e., Æ fnfn9æ ¼ dnn9vn and Æ fnn fn9n9æ ¼ dnn9wn. This

model implies that each molecule has its own independent bath. We also

neglect correlation between singly and doubly excited states of one

molecule Æ fnnfnæ, which means that S1 and S2 also have independent coupling

to the bath. This is a stronger assumption, because the dynamic disorder of

different electronic states within one molecule is more correlated than the

disorder acting on different molecules. Notice, however, that generalization to

the case of more complicated disorder is straightforward: it will lead to

additional terms in the Redfield tensor that we reject here for simplicity.

For this model the spectral density in the site representation is

Cnn9n$n$9(V) .2¼ dnn9dn9n$dn$n$9vnC(v) or wnC(v) for double-excited states.

Here vn (or wn) is a dimensionless factor that reflects possible site-to-site

variation of exciton-phonon coupling (when n corresponds to electronically

excited states) and changing of coupling for charge-transfer states (when n

corresponds to radical-pair coupled to one-exciton manifold). A trans-

formation to the eigenstate representation is given by

jkæ ¼ +
n

c
k

njnæ; jqæ ¼ +
m$n

c
q

nmjnmæ: (C2)

In the model of uncorrelated diagonal disorder, the g-matrices are connected

with the g-function

gkk9k$k$9ðtÞ ¼ +
n

c
k

nc
k9

n c
k$
n c

k$9
n vn gðtÞ

gkkqqðtÞ ¼ +
n,m

c
q

nmc
k

n9

� �
Þ2ðdnn9vn 1 dmn9vmÞgðtÞ

gqqqqðtÞ ¼ +
n,m

n9,m9

cq

nmc
q

n9m9

� �2ðdnn9vn 1 dnm9vn 1 dmn9vm

1 dmm9vmÞgðtÞ1 +
n

c
q

nm

� �4
wn gðtÞ; (C3)
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and the same equations connect the l-matrices with the l-value, where

gðtÞ ¼ �
Z N

�N

dv

2pv
2 CðvÞ cot h

v

2kBT
ðcosvt � 1Þ

�

� iðsinvt � vtÞ
�

l ¼ � lim
t/N

d

dt
ImfgðtÞg ¼

Z N

�N

dv

2pv
CðvÞ: (C4)

APPENDIX D: LINEAR SPECTRA

The absorption (OD), circular dichroism (CD), linear dichroism (LD), and

steady-state nonselective fluorescence (FL) spectra are given by

where Pk denotes the steady-state population of the kth state, dkg is transition

dipole, and mkg is rotational moment of the kth exciton state (expressed

through a transition dipole dn and radius-vector Rn of the nth molecule), dkgz

denotes projection to the z axis which is normal to the membrane planes, and

dkgx and dkgy are the in-plane components. We have introduced into the

expressions in Eq. D1 a relaxation-induced broadening of the exciton states

given by their inverse lifetimes, i.e., Rkkkk. The expressions in Eq. D1 give

homogeneous lineshapes. In the presence of static disorder (for example, site

inhomogeneity) the homogeneous OD, LD, and FL profiles should be

averaged over a random distribution of the site energies that will perturb

energies and eigenfunctions of the exciton states. To construct the spectral

density profile we use the sum of an overdamped Brownian oscillator and

resonance contributions due to high-frequency modes,

CðvÞ ¼ 2l0

vg0

v
2
1 g

2

0

1 +
j¼1;2...

2ljv
2

j

vgj

ðv2

j � v
2Þ2

1v
2
g

2

j

;

lj ¼ Sjvj; l ¼
Z N

�N

dv

2pv
CðvÞ ¼ l0 1 +

j¼1;2::

lj; (D2)

where 2l is the Stokes shift, and Sj is the Huang-Rhys factor of the jth

vibrational mode. Parameters of vibrational modes can be taken from the

low-temperature FL line-narrowing data (or from molecular dynamics

simulation) and then adjusted from the fit of the linear spectra at different

temperatures using the expressions in Eq. D1. The thus-determined

g-function can then be used for simulation of nonlinear responses (see

Appendices A–C). Notice that according to Eq. C3,

gkkkkðtÞ ¼ +
n

ck

n

� �4
vn gðtÞ

lkkkk ¼ +
n

c
k

n

� �4
vn l;

(D3)

i.e., line-broadening functions and reorganization energies in the exciton

representation (gkkkk and lkkkk) are smaller than in the site representation

(vng and vnl) by a factor of 1=+ðck
nÞ

4: The latter is known as the inverse

participation ratio, which is equal to a delocalization length of individual

exciton states.
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