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ABSTRACT The determination of diffusion coefficients from fluorescence recovery data is often complicated by geometric
constraints imposed by the complex shapes of intracellular compartments. To address this issue, diffusion of proteins in the lumen
of the endoplasmic reticulum (ER) is studied using cell biological and computational methods. Fluorescence recovery after
photobleaching (FRAP) experiments are performed in tissue culture cells expressingGFP–KDEL, a soluble, fluorescent protein, in
the ER lumen. The three-dimensional (3D) shape of the ER is determined by confocal microscopy and computationally
reconstructed. Within these ER geometries diffusion of solutes is simulated using the method of particle strength exchange. The
simulations are compared to experimental FRAP curves of GFP–KDEL in the same ER region. Comparisons of simulations in the
3D ER shapes to simulations in open 3D space show that the constraints imposed by the spatial confinement result in two- to
fourfold underestimation of the molecular diffusion constant in the ER if the geometry is not taken into account. Using the same
molecular diffusion constant in different simulations, the observed speed of fluorescence recovery varies by a factor of 2.5,
depending on the particular ER geometry and the location of the bleached area. Organelle shape considerably influences diffusive
transport and must be taken into account when relating experimental photobleaching data to molecular diffusion coefficients. This
novel methodology combines experimental FRAP curves with high accuracy computer simulations of diffusion in the same
ER geometry to determine the molecular diffusion constant of the solute in the particular ER lumen.

INTRODUCTION

Most cellular processes depend on the diffusion of macro-

molecules and substances of small molecular weight, such as

metabolites and ions. The presence of internal membranes

restricts diffusion in general to specific organelles and com-

partments. The technique of fluorescence recovery after

photobleaching (FRAP) is often used to determine how sub-

stances move within confined geometries, or within cellular

membranes. In FRAP, an area of a live cell that contains the

fluorescently tagged molecules of interest is bleached using

strong light from a laser, and the movement of nonbleached

molecules from the adjacent areas into the bleached area is

recorded and analyzed over time. When applied quantita-

tively, this technique allows the determination of molecular

diffusion coefficients for fluorescent molecules including

soluble and membrane-bound proteins (1).

The use of FRAP is rapidly increasing with the availability

of methods to tag intracellular proteins with green fluores-

cent protein (GFP) and its derivatives. This method allows

visualization of the protein and enables measurements of its

dynamics in living cells. Diffusion constants (D) of GFP and

GFP-tagged proteins have been reported for the cytosol (2),

nucleus (3), endoplasmic reticulum (ER) (4,5), mitochondria

(6), Golgi complex (7,8), and for different membranes of the

cell (9–11). Although theoretical descriptions of particle

diffusion in two-dimensional (2D) membranes have been

derived for a variety of situations including nonplanar mem-

branes (12), binding, particle crowding (13), and mobile as

well as immobile obstacles (14,15), no such theory exists for

the three-dimensional (3D) lumen of compartments.

To obtain molecular diffusion constants from fluorescence

recovery curves, the dependence of the curve’s shape on the

molecular D needs to be modeled. Fitting such a model to an

experimentally determined recovery curve yields the mea-

sured D. Current modeling techniques do not take fully into

account that the organelles in which the fluorescent molecules

are confined often have a complex three-dimensional shape,

and that they may only occupy a fraction of the bleached and

nonbleached volumes. Moreover, diffusion is either calcu-

lated as motion in a plane rather than in three dimensions (4),

or by using a semiempirical model based on time-dependent

(anomalous) diffusion in two dimensions (16).

The importance of accounting for the specific geometry of

the organelle increases with increasing complexity of the

organelle’s shape and with decreasing volume fraction in the

bleached and nonbleached volumes. This issue has been

frequently discussed in the literature (4,17), but no procedure

exists to estimate the magnitude of the uncertainty intro-

duced, let alone to calculate more accurate molecular diffu-

sion coefficients from FRAP curves.

Theoretical considerations by Sciaky et al. (8) came to the

conclusion that the effectively observed diffusion constant in

a homogeneous isotropic collection of tilted tubes in three

dimensions is three times lower than the molecular diffusion

constant along each tube. The assumptions made about the

tube geometry and the distribution of tilting angles are not

connected to a specific organelle geometry and the connec-

tivity between the tubes was neglected.
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The question of connectivity was addressed by Ölveczky

and Verkman (18). Using the classical method of random

walk (19) they performed computer simulations to calculate

solute diffusion in an orthogonal meshwork of interconnected

cylinders. Randomwalk is an intuitive method for simulating

diffusion and is suitable for handling complex geometries. Its

slow convergence rate, however, hampers the accuracy of the

results. Ölveczky and Verkman found that the apparent

diffusive transport in the cylinder meshwork is about half as

fast as in free space. Moreover, they found the diffusion to

effectively appear anomalous even if the molecular diffusion

is normal. This showed that geometry does have a significant

impact on apparent diffusion, and that diffusion constants

will be underestimated bymodels neglecting the confinement.

The shape of real organelles may, however, not be accurately

mimicked by random artificial cylinder meshes.

Siggia et al. (20) used finite differences (21) to compu-

tationally solve the diffusion equation in the imaging plane

of the observation microscope. The geometry was treated by

taking a smoothed postbleach fluorescence intensity micro-

graph as initial value. In the course of the simulation, the

geometry was, however, no longer explicitly taken into

account, mainly due to numerical limitations of the em-

ployed finite difference method. A statistically averaged

model for confined diffusion was introduced in an attempt to

compensate for this. Depending on the particular geometry

model, variations in the apparent diffusion constant of up to

a factor of three were observed (20). The model relies on the

basic assumption that the local density of fluorescence

equally represents the density of connections in a reticular

network. As already stated in the original publication (20),

the validity of the model is questionable when 3D effects

become important, or when image regions of saturated pixel

intensities exist. The former situation will, for example, occur

when two compartments that overlap in the projection are in

fact disconnected in 3D.

A more recent approach by Braga et al. (22) made use of

finite difference simulations to derive a FRAP model in the

nucleoplasm. Their model thoroughly considers the initial

condition of the recovery dynamics by taking into account

the 3D intensity distribution of the bleaching laser beam as

well as premature recovery during bleaching. They report a

molecular diffusion constant of 33.36 3.6 mm2/s for GFP in

the nucleoplasm of HeLa cells. This work as well did not

account for the geometric shape of the compartment under

consideration. The model as well as the simulations were

done in 3D free space. For short times this certainly is a valid

assumption for the nucleoplasm. Compartments of more

complex shape, such as, e.g., the ER or mitochondria, cannot

be expected to be treated accurately with this scheme.

Finite differences are based on numerical approximations

of the derivatives of the governing equations. These ap-

proximations result in reformulating the governing partial

differential equations as sets of linear systems of equations

that can be solved computationally. For simple geometries,

the resulting algebraic systems can be structured (e.g., in

tridiagonal matrices), so that efficient numerical solvers can

be applied, resulting in computations that scale linearly with

the number of the discretization points. However, the effi-

ciency of grid-based methods is drastically reduced when

discretizing complex geometries. The resulting discretized

equations fail to have the ‘‘nice’’ structure associated with

simpler geometries, resulting in fuller systems whose so-

lution often scales with the square or even the cube of the

computational elements. Moreover, the generation of the grid

in complex geometries is not a trivial task, although several

methods are available to render such procedures automatic.

In addition, the order of the accuracy of the numerical ap-

proximation of the governing equations is reduced near com-

plex boundaries.

A more accurate three-dimensional analysis of diffusion in

complex-shaped organelles is needed to overcome the lim-

itations of present methods to measure molecular diffusion

constants from FRAP data, and to provide much-needed

validation of the variousmodels andmethods currently in use.

In this article, we describe simulations using the method

of particle strength exchange (PSE) ((23); cf. Supplementary

Material) to estimate the influence of organelle shape on

FRAP of a lumenal solute. The same simulations also lead

to a novel method enabling more accurate measurements

of molecular diffusion constants in vivo. The PSE is a de-

terministic particle method to simulate diffusion (24). The

method is based on replacing the Laplace operator with

an integral operator that is subsequently discretized using

particle locations as quadrature points. This deterministic

method is orders of magnitude more accurate than random

walk for the same number of particles. The grid-free char-

acter of PSE avoids the geometric limitations of finite dif-

ferences, thus allowing fully resolved 3D simulations in

realistic whole-organelle geometries using ;106 particles.

Resolving a full ER using random walk would require

some 1010 particles (cf. Supplementary Material), which is

infeasible on present-day workstation computers. Fully

resolved simulations eliminate the need for modeling either

the geometry or the process of confined diffusion, and ef-

fectively allow assessment and refinement of existing FRAP

models.

As an application we consider FRAP experiments in the

ER, a characteristic example of a complex-shaped organelle.

The ER is generally described as a highly convoluted, inter-

connected, closed network of tubular and lamellar structures

in three dimensions (25). To obtain realistic geometries of

the ER, live tissue culture cells expressing a soluble, res-

ident, recombinant protein (ssGFP–KDEL; (26)) are imaged.

Using this marker and a stack of serial confocal sections, we

can experimentally define and computationally reconstruct

the 3D shape of the ER. These shapes are then used to

simulate diffusion within them, and to compute the corrected

molecular diffusion constant in the vicinity of the bleached

portion of the ER lumen.
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In this article, we distinguish between ‘‘molecular diffusion

coefficients’’ and ‘‘apparent diffusion coefficients’’. The for-

mer ones are those that are determined by single-molecule tech-

niques such as single-molecule tracking (27,28) or fluorescence

correlation spectroscopy (29), and whose values have to be

used in the diffusion equation to computationally model the

process. The latter ones are those coefficients determined by

coarse-grained methods such as FRAP, averaging over a

certain observation volume. These values depend on the

geometry of the observation volume. Deriving molecular dif-

fusion coefficients from apparent ones is important for com-

parisons of experiments made in different organelles or cells

as well as for mathematical modeling and computational

simulations.

MATERIALS AND METHODS

Cells and DNA construct

VERO cells were grown on coverslips at 37�C in Dulbecco’s minimal es-

sential medium supplemented with 10% fetal calf serum, 2 mM glutamine,

100 g/ml penicillin, 100 units/ml streptomycin (GibcoBRL; Life Technol-

ogies, Eggstein, Germany) at 37�C in a 5% CO2 incubator and were used in

all experiments. Cells were transiently transfected with a reporter gene con-

taining the ER targeting signal sequence fused to GFP and the ER retention

sequence (ssGFP–KDEL; derived from pCMV/myc/ER/GFP, Invitrogen,

Carlsbad, CA) using Superfect (Sigma, St. Louis, MO). Alternatively, cells

were transfected using Nucleofactor by amaxa (Köln, Germany) according

to the protocol for COS-7 cells (Kit V, program A24). Briefly, 13106

VERO cells were pelleted and resuspended in 100 ml of solution V, and

electroporated with 1–2.5 mg of DNA. The electroporated cells were

resuspended in 350 ml MEM. Of this solution, 100 ml were seeded on one

18-mm coverslip and incubated over night (15 h) at 37�C and 5% CO2;

12–16 h posttransfection cells were imaged live on a temperature-controlled

stage at 37�C.

Photobleach experiments

FRAP experiments were performed on an inverted Zeiss LSM510 confocal

microscope, using the 488-nm line of a 30 mW Argon/2 laser with a 1003,

1.4 N.A. objective. A defined region of interest (ROI; 4 3 4 mm) was

photobleached at full laser power (100% power, 100% transmission, 20

iterations); recovery of fluorescence was monitored by scanning the ROI at

low laser power (50% power, 3% transmission). The scanning laser intensity

did not significantly photobleach the specimen over the time course of the

experiment. Images were acquired as 8-bit TIFF files (5123 512 pixel frame)

and processed using NIH Image 1.62. The average fluorescence in the ROI

and the average background were determined from the images. After

subtracting the background, the fluorescence values were normalized

according to Phair and Misteli (3) to correct for the loss in fluorescence

caused by imaging. To be able to compare FRAP curves from different cells,

these values F(t) were further normalized by their respective asymptotic

value F(t / N), determined as outlined in the Supplementary Material.

FRAP(t) ¼ F(t)/F(t / N) is shown in all the figures.

Z-sectioning and reconstruction of ER geometries

Before FRAP analysis, 50 0.1 mm optical z-sections of the cell to be

bleached were collected with a lateral resolution of 0.18 mm/pixel. The

image file series were reconstructed as a 3D gray level iso-surface in space

using Imaris 3 (BitPlane, Zurich, Switzerland), and the same number of

voxels as the section images had pixels. Detached parts of the surface were

removed and only the largest contiguous shape was kept. Its surface was

discretized in Imaris and stored as a triangulation using planar triangles. The

intensity threshold used for the iso-surface was set as high as possible to still

yield a connected domain. Error analysis of the 3D reconstructions using

artificial ER-like geometries has shown this threshold to be optimal (see

Supplementary Material). After reconstruction, the triangulation was

checked for consistency. It was required to enclose a connected space and

to not contain any surface intersections or holes in the surface.

Measurement of the fractal dimension

Among the numerous definitions of fractal dimensions (see, e.g., Table 1 in

Cross (30)), we use the generalized Renyi dimensions (31)

dq ¼ � lim
d/N

Iq
logd

; q 2 R; (1)

which are based on the Renyi entropies Iq, defined as follows: assume a

disjoint partitioning of the embedding Euclidean space En, n ¼ 2, 3, into

MðdÞ Cartesian cells Cd
i

� �MðdÞ
i¼1

, each of volume d. Let pi be the probability
for the geometry under consideration to fill cell Ci. The Renyi entropies are

then given by

Iq ¼

1

1� q
log +

MðdÞ

i¼1

p
q

i ; q 6¼ 1

� +
MðdÞ

i¼1

pi log pi; q ¼ 1

:

8>>><
>>>:

(2)

The Renyi dimensions dq are always positive and their values decrease

with increasing q, converging to a limit dN. For q ¼ 0, the dimension d0 is

identical to the capacity (box counting) dimension. We considered the Renyi

dimensions q ¼ �1, 0, 1, 2 to verify the fractal scaling behavior; i.e., check

that d�1 . d0 . d1 . d2 holds over a sufficiently large range of length

scales. To estimate the Renyi dimensions, the probabilities pi need to be

approximated. This was done by uniformly scattering 500 random points per

triangle of the reconstructed triangulated surface of the ER (;300 million

points in total) and then counting the number of such points falling into

every Cartesian cell Ci. Dividing this count by the total number of scattered

points approximates pi for the cells. The grid defining the cells Ci was then

coarsened and the whole procedure repeated until the number of cells in any

direction fell below two. To minimize spurious effects from the random

number generator or aliasing effects due to grid sampling, the whole

algorithm was repeated with five different random seeds and six different,

slightly shifted, bounding boxes for the cell mesh. The measured entropies

were averaged from all 30 repetitions. The Renyi dimensions were

determined as least squares regressions of the corresponding entropies

versus the logarithm of the box sizes at each reduction step.

Governing equation for diffusion

Isotropic diffusion of a scalar quantity in the three-dimensional space of the

ER lumen is described by the spatiotemporal evolution of the local con-

centration cðx; tÞ for a time interval 0 , t # T. The governing partial dif-

ferential equation for a constant molecular diffusion coefficient D is given

by:

@c

@t
¼ D=

2
cðx; tÞ inside the ER for 0, t# T ; (3)

where =2 is the Laplace operator. The initial concentration field in the ER is

specified by cðx; t ¼ 0Þ ¼ c0ðxÞ. As soluble proteins do not spontaneously

cross the ER membrane the assumed boundary condition for diffusion of

soluble proteins in the ER lumen is the zero-flux Neumann condition
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@c

@n
¼ =xcðx; tÞ � n ¼ 0 on the ERmembrane for 0, t# T ;

where n is the outer unit normal on the ER membrane and =xc is the gradient
of the concentration field c with respect to the location x ¼ ðx; y; zÞ: Bold
symbols denote vector quantities.

Diffusion simulation using random walk

The random walk method (19) in m dimensions (m ¼ 1, 2, 3) starts by either

uniformly or randomly placing N particles p at initial locations x0p;
p ¼ 1; . . . ;N: Each particle is assigned a strength of Gp ¼ vpc0ðx0pÞ where
vp is the particle’s volume. The particles then undergo an m-dimensional

random walk by changing their positions at each positive integer time step n

according to:

xn11

p ¼ xn

p 1N n

p ð0; 2mDdtÞ ; (4)

where N n
p ð0; 2mDdtÞ is a vector of independent, identically distributed

Gaussian random numbers with each element having mean zero and

variance 2mDdt; D is the molecular diffusion constant and dt is the sim-

ulation time step. The boundary condition was treated by reflecting particles

at the boundary.

Diffusion simulation using particle
strength exchange

The PSE method as introduced by Degond and Mas-Gallic (23) ap-

proximates the Laplace operator by an integral operator that allows consis-

tent evaluation on the particle locations. This integral operator is found to be:

=
2
cðxÞ � e

�2

Z
ðcðyÞ � cðxÞÞheðy� xÞ dy; (5)

where heðxÞ ¼ e�3hðx=eÞ is a kernel function in 3D that has to fulfill the

moment conditions stated in references (23,24). The approximation error of

the operator is O(er) with r being the order of the method and e the core size

of the particles. Using the rectangular quadrature rule with the locations xp
of the N particles as quadrature points and dropping the error term leads to

the discrete version of the approximated operator:

=
2

e;hc
hðxpÞ ¼ e

�2 +
q 6¼p

c
h

q � c
h

p

� �
vqheðxq � xpÞ ; (6)

where vq is the volume of particle q such that Gq ¼ vqcq
h is the rectangular

rule quadrature approximation for the strength cðyqÞ dy (mass in the context

of diffusion). The quadrature error is O(h/e)s where s is the number of

continuous derivatives of the kernel function hðxÞ and h is the interparticle

spacing. The approximation ch to the continuous concentration c at any

location and time can be reconstructed from the values cp
h at particle loca-

tions using

c
hðx; tÞ ¼ +

p

c
h

pðtÞheðx� xpðtÞÞ : (7)

The final PSE scheme reads:

@c
h

p

@t
¼ De

�2 +
q6¼p

c
h

q � c
h

p

� �
vqheðxq � xpÞ1 f ðcmembraneÞ

" p 2 f1; . . . ;Ng :
(8)

The function f (c) is used to account for the boundary condition at the ER

membrane. The homogeneous boundary conditions are treated using the

method of images (cf. Supplementary Material). Because the kernel he is

chosen to be local, only the nearest neighbors of each particle significantly

contribute to its sum. Hence, the computational cost of the method scales

linearly with the number of particles. Details about the PSE methods are

contained in the Supplementary Material.

RESULTS

The influence of dimensionality

We report first 2D and then 3D simulations to study the in-

fluence of dimensionality in the absence of complex shapes.

We compare simulation results from a 2D plane and a 3D

box. Diffusion is simulated using the method of random walk

as described in Materials and Methods. Both 2D simulations

in the plane [0, L] 3 [0, L], and 3D simulations in the box

[0, L] 3 [0, L] 3 [0, L] are conducted with the same

molecular diffusion constant D ¼ 1.56 3 10�4 L2/dt (scaled
with the domain length L and the simulation time step dt).
Zero-flux boundary conditions are imposed, which means

that no mass is allowed to leave the domain. The bleached

areas for the two cases are [0.5L, 0.75L]3 [0.5L, 0.75L] and
[0.5L, 0.75L] 3 [0.5L, 0.75L] 3 [0, L], respectively. All
simulations use 105 particles and are repeated five times to

obtain ensemble averaged results.

The results show that the fluorescence recovery curves

on the 2D square plane and the 3D cubic box do not signif-

icantly differ (Fig. 1 a in Supplementary Material). This

implies that dimensionality does not have a detectable in-

fluence on the simulated FRAP curves under zero-flux

boundary conditions, if the initial condition is independent of

the third direction, and when the intersection planes between

the bleached area and the organelle lumen form an axes-

parallel rectangle or box. This is a more restrictive require-

ment for dimensionality invariance than the one stated by

Siggia et al. (20). As soon as confinement or the three-

dimensional structure of the organelle start to be important,

i.e., if the intersection surface is not a simple box, dimen-

sionality cannot be neglected any more, as we will show

next.

The influence of confinement in complex shapes

To study the effects of organelle geometry, we make the

transition from the 3D box to ‘‘real’’ ER geometries. We

express a well-characterized, fluorescent, recombinant pro-

tein (ssGFP–KDEL; Terasaki et al. (26)) in the ER of VERO

cells. The protein is synthesized with a cleavable signal

sequence sufficient for ER-lumenal targeting. At the

C-terminus, it has a KDEL sequence that serves as an ER

localization sequence and prevents secretion (32). The

molecular diffusion of the closely related ssYFP–KDEL

has been shown to be nonanomalous, i.e., it does not exhibit

subdiffusive properties on molecular length and timescales

(M. Weiss, personal communication, 2002). The proposed

simulation method, thus, solves the normal diffusion equa-

tion as stated in the Materials and Methods section. Using
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confocal fluorescence microscopy and a set of serial confocal

sections (z-stacks), the 3D shape of the ER filled with the

fluorescent protein is defined in 19 different cells (Fig. 1 a).
The stacks are used to computationally reconstruct the 3D

shape of the ER (Fig. 1 b), and the ER surface is represented

by a connected, closed mesh of triangles (Fig. 1 c) as out-
lined in the Materials and Methods section.

The ER reconstructions are used as computational do-

mains for the PSE simulations of diffusion of lumenal solutes

(cf. Supplementary Material). The speed of diffusive re-

covery is determined by the geometry of the organelle near

the bleached region. The specific shape of the organelle far

from the region of interest is insignificant. Still our sim-

ulations include the entire ssGFP–KDEL-labeled ER of each

cell because it is not clear what boundary conditions would

have to be imposed around an isolated ER subregion.

Using PSE, diffusion of a solute such as ssGFP–KDEL in

the lumen of all reconstructed ER samples is simulated with

an assumed zero-flux boundary condition implying that

the protein cannot cross the membrane. The numerical (root

mean square) error is as low as 6 3 10�3 in all simulations.

Details of the method, its assessment, and a validation

case can be found in the Supplementary Material. Computer-

generated images of ER samples at different stages of

simulated recovery are shown in Fig. 2, a–d. The local

concentration of unbleached solute is shown as a density

cloud inside the reconstructed ER structure. The bleached

volume is depicted by its outline. The solute can be seen to

diffuse into the bleached region from the edges, and the rate

by which each element in the bleached region recovers

depends on the distance from the edge and on the local

geometry.

To study the effects of confinement in the ER lumen, we

compare the PSE simulations of diffusion in the ER samples

to the aforementioned simulations in the cubic 3D box. Only

bleached regions in the cell periphery are considered because

the geometry of the dense perinuclear ER is not well resolved

(cf. Fig. 1 b).

When the same molecular diffusion constant is used in both

simulations, much faster recovery is observed in the box (cf.

Fig. 1 b in Supplementary Material). Depending on the actual

ER geometry, the apparent diffusion constant observed in the

ER is 1.8–4.2 times lower than the one observed in the box.

Ignoring the effect of 3D confinement in complex geometries,

thus, leads to significant underestimation of molecular dif-

fusion constants.

The complexity of the ER geometry is quantified using the

notion of fractal dimensions (33). To test whether the ER

membrane can be viewed as a continuous fractal surface in

3D space, the reconstructed ER from nine cells are analyzed

in the computer as outlined in the Materials and Methods

section. For the ER shapes the capacity dimension d0
is 2.4 6 0.1. The fractal scaling persists over 1.7 orders of

magnitude in length scales ranging from 0.01 cell diameters

to 0.5 cell diameters. The fractal scaling is confirmed by the

correct ordering of the Renyi dimensions (cf. Materials and

Methods). The bleached region in a standard FRAP

experiment usually has a diameter or edge length of ;0.1

cell diameters. This means that at length scales relevant to

FRAP, the ER surface is complex enough to exhibit fractal

characteristics. The laws of lateral diffusion in the membrane

as well as of diffusion inside the lumenal space change when

considering a fractal domain (34–36). In particular, the

expected mean square displacement of a normally diffusing

particle during the time period dt is not given by

E
�
jXðt1 dtÞ � XðtÞ j2

�
} d t, but by Barlow and Perkins (34)

EðjX ðt1 dtÞ � XðtÞj2Þ} dt
2=dw : (9)

X(t) denotes the position of the particle at time t and dw is

called the ‘‘dimension of the walk’’. Confined diffusion in

the ER is thus expected to appear anomalous (37) at length

scales comparable to the size of the bleached region, even if

the underlying molecular diffusion is normal (18,38,39).

This is a direct effect of the complexity of the ER geometry,

and the experimental results reported by Weiss et al. (29)

give evidence that the observed anomaly is purely caused by

FIGURE 1 Three-dimensional reconstruction

of an ER sample from a VERO cell. (a) The recons-
truction is done starting from a stack of 50 serial

sections with Dz ¼ 0.1 mm from confocal micro-

scopy of a VERO cell expressing ssGFP–KDEL.

(b) Computer visualization of the triangulated 3D

reconstruction consisting of 739,956 triangles. (c)

Detail view of the top right section of the recons-

truction with individual triangles shown. Hidden

lines are removed for better clarity. Note that due to

microscope resolution limitations, only the periph-

eral areas are trustworthy. FRAP simulations are

thus only made close to the cell periphery.
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the geometry of the organelle and is independent of

molecular structure and events.

Comparison to experimental data

To compare the results obtained from the computations

with experimental data, FRAP experiments are conducted in

ssGFP–KDEL expressing cells for which the ER shape is

first established from a 3D confocal reconstruction as de-

scribed above. In the bleached regions, the ER occupies on

the average one-third of the total volume. Using the PSE

method, simulated FRAP curves are computed in the same

geometries as those used in the actual experiment. This is

done for 12 different FRAP experiments in eight different

cells. The simulated curves are then fitted to the experimentally

measured FRAP curves using time stretching only (cf. also

Siggia et al. (20)). Stretching time by a factor of f and at the

same time multiplying D by 1/f leaves the solution unchanged,
as the diffusion constant can be incorporated into the governing

equation as a scaling in time (cf. Materials and Methods).

As shown in Fig. 3 a for two of the cases, the simulated

and experimentally determined FRAP curves are virtually

indistinguishable after fitting. Similar overlap is observed in

all instances. We conclude that the simulations are consistent

and accurate enough to capture geometric effects, and can be

used to predict effects of organelle geometries on FRAP as

well as to derive geometry-corrected molecular diffusion

constants from FRAP data.

Fig. 3 b shows a similar comparison between simulated

and experimentally measured FRAP curves for two different

bleached regions in the same ER. The two bleached regions are

overlapping; the recovery curves thus expected to be similar.

Fig. 4 visually compares the fluorescence recovery dy-

namics from an experiment and the corresponding simula-

tion. Note that the experimental images show confocal

sections whereas the simulation visualization shows the top

view onto the closed three-dimensional object. The recovery

percentages of simulation and experiment match within 61%.

The influence of the particular geometry

The observed variation in the factor of underestimation is

due to the different shapes of the individual ER samples.

This is illustrated in Fig. 5 a where simulated recovery

curves for different ER geometries are compared. All

simulations are done using the same value for the molecular

diffusion constant. Still, the recovery curves and recovery

half-times scatter over a wide range. Not surprisingly,

changes in the size or the position of the bleached area in the

same ER lead to similar variations (Fig. 5 b). The specific

local geometry of the organelle around the bleached area is

thus responsible for variations of about a factor of 2.5 in the

observed diffusion constant. Methods trying to deduce

molecular D values using an approximate model geometry

or statistically averaged shape models are unable to account

for this situation.

A proposed method for determining molecular
diffusion constants from FRAP data in the
lumen of complex-shaped organelles

Putting the pieces together, our simulations and experiments

lead to a novel method of determining molecular diffusion

constants from FRAP data. The procedure is as follows:

FIGURE 2 Snapshots of concentration distribution

from a sample PSE simulation in a reconstructed ER

geometry. The results at times t¼ 1 dt (a), t¼ 25 dt (b),

t ¼ 150 dt (c), and t ¼ 300 dt (d) are shown for

a molecular diffusion constant of D ¼ 3 3 10�5 b2/dt.

All units are scaled with the simulation time step dt and

the lateral edge length b of the bleached region. The ER

membrane is visualized as a transparent surface and the

concentration of green fluorescent protein as a volume

density cloud inside it. The bleached region is repre-

sented by the outline of a cube. Only the part of the ER

around the bleached region is shown.

Organelle Shape Effects on FRAP 1487

Biophysical Journal 89(3) 1482–1492



1. After transfection and incubation, the organelle of in-

terest is imaged as a z-stack of serial confocal sections.

After this recording of the geometry, the actual FRAP

experiment is performed. It is important that the organelle

under consideration does not significantly move or de-

form during this step.

2. The z-stack of images is used to determine the re-

constructed surface of the organelle as an iso-surface of

pixel intensity. Various commercial and free software

packages are available to do this. The iso-value is chosen

such that the topological features of the organelle are

conserved (e.g., the ER should be connected).

3. The reconstructed volume is used as the computational

domain for PSE simulations of diffusion using scaled

units of time and an arbitrary, scaled, computational dif-

fusion coefficient. The initial condition is given by the

FRAP setup.

4. The computed fluorescence recovery curve is fitted to the

measured data points using a linear least squares fit in

time.

5. The molecular diffusion constant in the experiment is

calculated from the computational diffusion constant, the

timescale factor (from the fit) and the length scale factor

(from microscope/camera resolution).

In one of our examples, the simulation uses a computa-

tional D of 75 (in scaled simulation units). To convert from

scaled simulation units to physical units, the time- and

lengthscales need to be determined. The lengthscale is known

from the pixel resolution of the z-stack images and the voxel

size used in 3D reconstruction. In our example, images are

acquired with 0.18 mm/pixel (cf. Materials and Methods). In

3D reconstruction the same number of lateral voxels is used

as the z-stack images have pixels. The size of an individual

voxel is set to 66.7 (arbitrary units). One simulation length

unit thus corresponds to 2.7 nm in physical units.

The timescale factor is determined by fitting (in time) the

simulated recovery curve to the experimental one. In our ex-

ample, we find that (time unit) ¼ 1.6 3 10�5 s. The

molecular diffusion constant in the experiment thus is (unit

length)2/(unit time) times the computational one, yielding

about D ¼ 34.2 mm2/s for this example.

FIGURE 3 (a) Simulated FRAP curves compared to experimental

measurement data for different ER. The computer simulations are done

using the method of particle strength exchange as outlined in the Materials

and Methods section. The experiment is a standard FRAP experiment,

preceded by the recording of a stack of serial sections used for the

reconstruction of the geometry. The simulated FRAP curves (lines) are

stretched in time to fit the experimental data (symbols). As time and diffusion

constant are inversely proportional, this allows us to estimate the molecular

diffusion constant while fully taking the specific geometry into account (cf.

main text). For the two examples shown, the molecular diffusion constants

are determined to be 34.4 mm2/s (faster curve, 1), and 34.2 mm2/s (slower

curve,3), respectively. All curves are normalized by their asymptotic value

to allow comparison. (b) Simulated FRAP curves compared to experimental

measurement data for different locations of the bleached region. Two FRAP

experiments, followed by corresponding PSE simulations, performed for

two different, but overlapping, bleached regions in the same ER. The result

after fitting the simulation results (lines) to the measurement (symbols) is

shown. The two bleached regions are given in microscope coordinates as:

3 (191,190)–(229,228) and1 (218,196)–(256,234), corresponding to 43 4

mm, and the molecular diffusion constants are 1.8 mm2/s (3) and 1.6 mm2/s

(1), respectively. All curves are normalized by their asymptotic value to

allow comparison.

FIGURE 4 Visual comparison between FRAP experiment and computer

simulation. Micrographs from a standard FRAP experiment (cf. Materials

and Methods) are compared to visualizations from the corresponding

computer simulation. The case corresponds to the slower curve in Fig. 3

a and the reconstructed geometry shown in Fig. 1. Experimental images

were acquired every 100 ms with a spatial resolution of 0.18 mm/pixel. The

simulation entailed 6.8 million particles and comprised the whole ER

(cf. Materials and Methods). The figure only depicts the portion of the ER in

the vicinity of the region of interest. The molecular diffusion coefficient is

determined from the fit shown in Fig. 3 a to be 34.2 mm2/s. The bleached

region is indicated by its outline. No experimental image was acquired

during bleaching. Note that the experimental images show a confocal section

through the middle of the cell, whereas the visualizations from the simulation

show the top view onto a closed three-dimensional geometry. The recovery

percentages of the simulation match those of the experiment to within 61%.
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Together with geometry-resolving simulations, this scal-

ing of units allows us to determine geometry-corrected dif-

fusion constants of fluorescently labeled proteins in the

organelle lumen. We determine the molecular diffusion

constant of ssGFP–KDEL in the ER lumen of VERO cells to

be 34 6 0.95 mm2/s, averaged from eight computer-

evaluated FRAP experiments. Depending on the particular ER

geometry, the molecular diffusion constant obtained with-

out correcting for organelle shape is 1.8–4.2 times lower.

Ignoring the effect of shape thus leads to underestimation of

molecular diffusion constants.

The reported diffusion constant of pure GFP in water at

room temperature is 87 mm2/s (4). This indicates that the

material filling the ER lumen is of.2.5-fold higher viscosity

than water.

Assessment of the method

The diffusion constants of GFP in the ER lumen are reported

in the literature as ;10 mm2/s (4). Our value being ;3.5

times larger is consistent with our previous result that

neglecting the geometry will lead to underestimation of the

molecular diffusion constant by a factor of 1.8–4.2. This is

further supported by work of Weiss and colleagues, where

fluorescence correlation spectroscopy (a molecular-level

method that directly determines molecular diffusion con-

stants) was used to measure the molecular D of the closely

related ssYFP–KDEL in the ER lumen of HeLa cells. The

value obtained by Weiss and colleagues is 30 mm2/s (M.

Weiss, personal communication, 2002), which is in nice

agreement with our results, given that two different cell types

are considered.

A thorough comparison with the method of Siggia (20)

was conducted on FRAP experiments of ssGFP–KDEL in

the ER lumen of VERO cells. Great care was taken to record

nonsaturated images and meet all requirements of both

methods. Comparing two different bleached regions from the

same ER we observe that the molecular diffusion constants

determined by the method presented in this article are much

less scattered than the ones obtained using Siggia’s program.

Even though we have no reason to expect the molecular D to

be constant throughout the entire ER, variations of a factor of

three, as predicted by Siggia’s method, seem unlikely.

The sensitivity of our method is assessed using an al-

ternative transfection method (cf. Materials and Methods).

Again, two different spots of the same ER are bleached and

analyzed. Evaluating the corresponding FRAP experiments

of ssGFP–KDEL in the ER lumen using the method set out

in this article, molecular diffusion constants of 1.13 mm2/s

and 1.63 mm2/s are determined for the two areas.

CONCLUSIONS AND DISCUSSION

The combined use of single-cell FRAP experiments, 3D

reconstruction techniques, and high accuracy computer

simulations allows us to estimate the magnitude of the

influences of dimensionality, confinement, and specific or-

ganelle geometry on the apparent diffusion of solutes ob-

served by FRAP.

The results demonstrate that for complex-shaped organ-

elles neither the confinement caused by the 3D shape of the

organelle, nor the specific geometry of the sample can be

neglected when experimental fluorescence recovery data are

used to derive molecular diffusion constants. Models used to

calculate diffusion in the ER or any other intracellular or-

ganelle have to take these influences into account if they

should be free of systematic errors. Unless corrected, molec-

ular diffusion constants are underestimated. In the case of the

ER, the correction factors are in the two- to fourfold range.

The actual magnitude depends on the complexity of the

particular 3D shape as well as the local density of small-scale

FIGURE 5 (a) Comparison of simulated FRAP curves for four different

ER samples. All simulations are done using the same computational

diffusion constant and the same simulation parameter settings (see

Supplementary Material for details). All curves are normalized by their

asymptotic value to allow comparison (cf. Supplementary Material). The

variation observed in the FRAP curves is therefore only caused by the

different geometries of the ER samples. The recovery half-times vary within

the interval [5.7. . .14.2] 3 100dt. (b) Comparison of simulated FRAP

curves for different bleached areas in the same ER sample. The bleached

regions are given by the microscope coordinates of their bottom left and top

right corners as follows:h (225,125)–(300,200); * (350,200)–(400,250);1

(250,125)–(300,175); 3 (80,300)–(130,350). Simulation parameters and

computational D are kept constant (cf. Supplementary Material). All curves

are normalized by their asymptotic value to allow comparison.

Organelle Shape Effects on FRAP 1489

Biophysical Journal 89(3) 1482–1492



structures. If one is interested in determining molecular weights

based on measured molecular diffusion constants, this cor-

responds to an 8- to 64-fold error in weight because the

diffusion cross-section area of the molecule depends quad-

ratically on the molecular diffusion constant. For membrane-

bound proteins the situation is even worse as their radius

depends exponentially on the diffusion constant (40).

The results in this article indicate that it is possible to

perform accurate and fully resolved computer simulations

in experimentally recorded whole-organelle shapes from

serial confocal sections. This enables the estimation of the

geometry-induced uncertainties in the calculation of molec-

ular diffusion constants obtained by FRAP. The employed

numerical method of PSE (23) is crucial in doing so, because

it avoids many of the problems that grid-based methods have

in complex geometries, and its convergence is fast enough to

limit the number of particles needed for a simulation to

feasible ranges. The computational cost of the PSE algorithm

is low enough for it to be used in quantitative analysis of

FRAP experiments. The simulation of a full ER sample with

;5 3 105 particles takes roughly 20 min on a 3-GHz Intel

Pentium IV computer. Because the simulation algorithm is

easily parallelized, this time can be proportionally reduced

by using a cluster of computers or several workstations

connected by a network. The computer time for 3D recon-

struction and initialization of the simulation algorithm is

;2–5 min.

We have also shown that the ER is a fractal shape at length

scales important to FRAP. Diffusion is thus expected to

appear anomalous at these length scales, even if the un-

derlying molecular diffusion is normal. This is in agreement

with the simulations described by Ölveczky and Verkman

(18) and the experimental results reported by Weiss et al.

(29,39). The observed anomaly is a direct effect of the

complexity of the ER geometry and needs not be connected

to any molecular events.

What do our findings mean in practical terms? When

monitoring diffusion of solutes in cellular organelles with

defined boundaries and a complex shape, FRAP analysis is

likely to give underestimated diffusion constants unless

properly corrected. To perform the correction one needs in-

formation about the shape of the organelle inside and outside

the bleached volume. This information must be digital, and is

most easily obtained by 3D confocal microscopy. Using the

simulation algorithm described together with the 3D geo-

metry of the organelle, one can determine a corrected value

of the molecular diffusion constants derived from FRAP

experiments in the same, defined geometry. Our data suggest

that the corrected values for the ER in the peripheral cyto-

plasm will be two to four times larger than the uncorrected

ones. The apparent diffusion constants determined in dif-

ferent ER samples are found to vary with a factor of 2.5 for

the same molecular D. For analysis of many biological pro-

cesses this difference will be of considerable significance.

Because the computational cost and applicability of the

simulation algorithm do not depend on the complexity of the

shape, it is also well suited for treating organelles or intra-

cellular structures other than the ER.

The limitations of our approach involve the resolution of

light microscopy. We find that a sufficiently detailed geom-

etry of the ER can only be obtained in peripheral regions of

the cytoplasm where the cell is thin and the ER relatively

coarse. It is important that the bleached region of any FRAP

experiment to be evaluated with this method is located in

well-resolved areas of the organelle. The speed of diffusive

recovery is determined by the intersection areas between the

bleached volume and the organelle lumen. The specific

shape of the organelle far away from the region of interest is

of no importance. Still the whole organelle is considered in

our simulations to have an estimate of the total fluorescence

reservoir and to avoid postulating hypothetical boundary

conditions. Another limitation of the method is that it cannot

be applied to organelles that change their shape during

a FRAP experiment or in the time between recording the

geometry and performing the FRAP measurement. The ER

is, however, quite a stationary organelle as judged from our

experiments. Its shape remains largely unchanged during the

few seconds of geometry recording and FRAP. A limitation

of our simulation technique is that it cannot be applied to

membrane components and their lateral diffusion. The

reason is that restricted diffusion on membranes is governed

by a different equation than diffusion in the enclosed space.

Ongoing work is concerned with extending the PSE tech-

nique to this problem.

The main advantage of our approach is that it does not

need a model geometry or a statistical model. This minimizes

the number of assumptions and ad hoc simplifications need-

ed and effectively relaxes some of the constraints and prereq-

uisites current methods impose on the experimental data. The

particular comparison to the method of Siggia (20) shows

that our method is well capable of handling saturated images,

as they are only used for the geometry reconstruction and no

density information is extracted from them. As a side effect

this allows much better signal/noise ratios to be achieved

during the microscopic video recording and helps reducing

errors and uncertainties in the geometry. By construction,

our method is not hampered by 3D effects and no assumption

about the connection density of the ER is made.

From the point of view of geometry, current methods of

determining diffusion constants are valid when applied to

relatively flat surfaces and completely volume-filling com-

partments. However, for intracellular organelles uncorrected

diffusion constants must be interpreted with caution. The

method set out in this article can be used to assess and

validate current models and methods of FRAP analysis, or to

directly obtain corrected molecular diffusion constants in the

specific organelle geometry at hand.

Combining the presented organelle geometry treatment

with realistic FRAP initial conditions (22,41) enables more

accurate fluorescence recovery analysis. This will be even
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more important as better microscopy techniques become

available to resolve the 3D shape and structure of intra-

cellular compartments and organelles.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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