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ABSTRACT Simulation andmodeling is becomingmore andmore important when studying complex biochemical systems.Most
often, ordinary differential equations are employed for this purpose. However, these are only applicable when the numbers of
participating molecules in the biochemical systems are large enough to be treated as concentrations. For smaller systems,
stochastic simulations on discrete particle basis aremore accurate. Unfortunately, there are no general rules for determiningwhich
method should be employed for exactly which problem to get the most realistic result. Therefore, we study the transition from
stochastic to deterministic behavior in a widely studied system, namely the signal transduction via calcium, especially calcium
oscillations. We observe that the transition occurs within a range of particle numbers, which roughly corresponds to the number of
receptors and channels in the cell, and depends heavily on the attractive properties of the phase space of the respective systems
dynamics. We conclude that the attractive properties of a system, expressed, e.g., by the divergence of the system, are a good
measure for determining which simulation algorithm is appropriate in terms of speed and realism.

INTRODUCTION

Improved experimental technology has led to the possibility

of studying increasingly large biochemical systems in vivo.

However, the experimental results are often very complex,

which is of course due to the underlying complexity of the

biochemistry in the living cell itself. This has resulted in the

more and more heavy use of computational means to support

experimental investigations. Simulation and modeling are

now being employed regularly to understand the dynamic

properties of a biochemical network. The integration of ex-

perimental and computational approaches for the investiga-

tion of biochemical systems has been termed systems biology.

One problem of computational investigations is that the

choice of, e.g., the simulation method relies on rather heu-

ristic, if any, rules. However, the more intensive use of these

methods asks for reliable and analytical decisions.

Simulations of biochemical systems have mostly been per-

formed by integrating ordinary differential equations (ODEs)

or stochastic algorithms. When using ODEs one computes

continuous concentrations of the participating species. The

integration is very fast, but of course it is only suitable when

the participating molecule numbers are high enough to be

approximated as concentrations. For low particle numbers,

stochastic algorithms that compute discrete particle numbers

are more accurate, but also computationally expensive. The

decision regarding which of these methods to employ to get a

realistic result and at the same time to use the fastest possible

method for this goal has commonly been made using in-

tuition because there are no reliable and rational rules.

To compensate for some of the computational expenses of

the stochastic methodologies, approximate stochastic meth-

ods (1,2) and hybrid methods (3–5) have been developed

recently. The approximate stochastic methods try to speed up

the stochastic simulation by sacrificing exactness whereas

the hybrid methods treat parts of the system deterministically

and other parts stochastically. The hybrid methods need to

partition the system into a deterministic and a stochastic sub-

system. Again, this is so far mostly done rather heuristically

by considering the velocity of reactions or the particle num-

bers of involved species.

This heuristics is partially justified because there are already

a lot of heuristics and simplifications involved when setting

up the model itself. One example of this is the inclusion or

negligence of spatial dimensions in the model. If space is

considered as well, the system can be described by ODEs,

partial differential equations, or the respective stochastic

algorithm. However, even though space doubtlessly plays a

very important role in the functioning of the cell, many

models are built assuming homogeneity of the system. This

is due to multiple reasons. First of all, even modern experi-

mental technology still prevents the observation of spatially

localized concentration changes in the cell for many species.

Therefore, spatially resolved experimental data are still rare.

Second, many questions concerning, e.g., biochemical mech-

anisms in small cells like the or leukocytes hepatocytes

discussed below can be answered to some extent with the

homogeneity assumption (e.g., (6)) saving computational

time. Still, neglecting the spatial dimension of the system is

almost always a severe simplification.

Nevertheless, the simplifications and assumptions made

while setting up a model are usually thought through and

actively done by the scientist who is studying the respective
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biochemical system. However, the choice of the suitable sim-

ulation method is often more passively done because explicit

knowledge about when which method is the appropriate one

is largely missing. Gonze et al. related the appropriateness of

deterministic simulations to the rate constants in a model of

the circadian rhythm (7). However, a generalization of this

result for any model is hard to infer.

Therefore, we think that it is of general interest to find a

rational basis to actively decide for or against a specific sim-

ulation method. This basis should allow the scientist to select

the best methodology for his/her specific model with all its

assumptions and simplifications.

We therefore studied the transition between stochastic and

deterministic behavior in a common model system, namely

calcium oscillations, to find a measure that supports this de-

cision process. The findings should not only be applicable

for the specific system studied, but also for other systems as

well.

Calcium ions act as second messengers in a variety of cell

types (8). They influence cellular functions such as excit-

ability, contraction, metabolism, or exocytosis directly via the

modification of enzymatic functions or gene expression (8).

Calcium ions are therefore an integral part of the information-

processing machinery in living organisms.

Due to its central importance, the function of calcium as

second messenger has been studied intensively, e.g., in he-

patocytes. In this cell type, the principal chain of events

occurring during calcium signal transduction is rather well

known. Upon binding of agonist, e.g., a hormone to its spe-

cific receptor at cell membrane level, a receptor-coupled

G-protein is activated. Its Ga-subunit in turn activates phos-

pholipase C (PLC), which then leads to the production of

IP3, which diffuses through the cell and binds to receptors at

the endoplasmic reticulum. This leads to the liberation of

calcium from endoplasmic reticulum and in some cases to

the inflow of calcium from extracellular space.

The rise of calcium concentration in the cytosol is, how-

ever, not uniform. In most cases, the calcium concentration

oscillates in response to receptor stimulation. Information is

encoded in the frequency of these oscillations (e.g., (9–12)).

Moreover, there are indications that qualitative differences in

the shape of the oscillations are also important for conveying

information through the cell. The shape of the oscillations

varies from simple periodic (spiking) oscillations to more

complex oscillations with secondary oscillations (bursting)

and depends on the agonist, which stimulates calcium signal

transduction. Stimulation of hepatocytes with, e.g., vaso-

pressin results in spiking calcium oscillations (13). When

stimulated with ATP, bursting oscillations are observed (14).

These differences in dynamic behavior offer an explanation

for the differences in physiological response, which occur

when different stimuli are applied. Recently, it has been

shown how diverse different calcium signals can be easily

decoded by calcium-binding proteins making use of the co-

operative nature of calcium binding (15).

Many models have been developed to explain the occur-

rence of calcium oscillations in the cell (for review, see

Dupont et al. and others (16,17)). Most of these models focus

on the stimulation of simple periodic oscillations (spiking).

Only few models are able to display periodic (18–21), let

alone aperiodic bursting oscillations (20,21) in nonexcitable

cells. One of these models is able to display simple and

complex behavior, depending on the kinetics of the receptor

complex and thus depending on the agonist-specific receptor,

as occurs in real cells (20).

The number of receptors and ion channels in the cell can

be very low (in the range of 103–105 per cell), which leads to

the question of whether the deterministic approaches used

for modeling and simulating this system are valid and to

what degree they are valid.

Stochastic simulations of calcium oscillations have been

performed in the case of spiking oscillations (e.g., (22,23)).

However, in these cases, no detailed comparison to deter-

ministic simulations has been done. In the case of bursting

calcium oscillations, no simulations on discrete particle basis

of a system displaying deterministic bursting have been re-

ported at all. However, Falcke et al. showed that bursting

behavior can arise during the stochastic simulation of spiking

(24,25). Falcke and others also studied under which condi-

tions a deterministic description of calcium concentrations

based on channel kinetics is appropriate (25–27). Knowledge

like this is necessary to decide which simulation method should

be used for a particular system and its particular behavior.

With this in mind, we have studied the stochastic simu-

lation of spiking and bursting calcium oscillations and the

transition from stochastic to deterministic behavior. We pres-

ent experimental data on bursting calcium oscillations that

exemplify the need to perform stochastic simulations. For the

computational side we used tools developed recently to auto-

matically convert the corresponding differential equations to

the stochastic discrete equations and to perform the simu-

lations. We observed a transition at particle numbers in the

range of actual particle numbers in the cell.

The transition became apparent, when we compared the

results obtained by stochastic, discrete simulations according

to Gillespie (28) and the numerical integration of ODEs. For

high particle numbers the resulting simulations were basi-

cally the same. However, gradually lowering the number of

particles, some significant differences between both compu-

tational approaches emerged. Therefore, we defined a tran-

sition range as the approximate number of particles at which

significant differences between stochastic and deterministic

simulation start to occur (the solutions do not match any-

more). Minute fluctuations of the trajectory are not consid-

ered. It is of special interest to analyze whether this transition

range depends on the complexity of calcium oscillations.

Our results show that the transition range indeed changes

with changing dynamics of the system. Thus, the transition

range cannot be generally determined for a system being

valid for all parameter values, but is dependent on the
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individual dynamics of a certain parameter set. However, it is

not the degree of complexity (e.g., complex periodic versus

simple periodic behavior) that determines the transition

range. Our results show that it is rather the attractive property

of the respective phase space that plays a more important role

than the complexity of Ca21 oscillations. The attractive prop-

erties of the phase space have been quantified by the sum of

Lyapunov exponents (the divergence). Our results indicate

that at lower divergence the transition from stochastic to

deterministic behavior occurs at lower particle numbers,

which means that the system is well characterized by ODEs

at realistic particle numbers. At higher divergence values the

transition occurs at significantly higher particle numbers,

which indicates the need to employ stochastic modeling.

These findings are in accordance with the experimental ob-

servation that apparently stochastic behavior is more com-

mon in bursting calcium oscillations during high agonist

doses, which corresponds to high divergence value in the

corresponding model. The results were also verified with

other models and should apply for many types of bio-

chemical models.

MATERIALS AND METHODS

Computations

Deterministic simulations were performed by numerically integrating ODEs

with the Rosenbrock and LSODE algorithm.

For the stochastic simulations, we used the stochastic algorithm devel-

oped by Gillespie (28). A reaction propensity am is assigned to each reaction

on a particle level:

am ¼ cmhm m ¼ 1 . . . : :M; (1)

where

cm ¼
km

Q
ðlmj

!Þ
V

Km�1 ; (2)

and

hm ¼
YLm
j¼1

� Yj

lmj

�
: (3)

In the above, the reaction index m ranges from 1 to M, because we have M

reactions in the system. The rate km includes any complex factors that might

arise from the kinetics of the reaction. Each reaction m has Km reactants, i.e.,

substrate molecules, taking part. There are Lm different types of reactants and

for each type, lmj
is the stoichiometric number, i.e., the number of identical

reactant molecules.

Thus Km ¼ +lmj
: The numbers Yj refer to the total particle number

present, in the volume of interest V, of each reactant j.

The propensity am determines the probability of a reaction of the specific

type within the next infinitesimal time step. This probability is therefore

proportional to the reaction rate, factors arising from the kinetics, the

molecularity, and a factor involving the total number of each particle that

potentially could react. Instead of solving the master equation, the Gillespie

algorithm simulates the reaction trajectory as follows:

1. First, the sum of all propensities for the M possible individual reactions

is calculated:

a0 ¼ +
M

m¼1

am: (4)

2. The stochastic time step is calculated:

Dt ¼ � 1

a0

lnj1: (5)

Here j1 is denoting a uniformly distributed random number in the range

]0, 1].

3. Finally, the reaction taking place is determined. For this purpose, a

second uniformly distributed random number j2 is generated and the

reaction m chosen according to the following criteria:

+
m�1

a¼1

aa

a0

# j2 # +
m

a¼1

aa

a0

(6)

The corresponding reaction is realized, i.e., the number of the partic-

ipating molecules is increased or decreased according to the stoichiometry,

and the time is incremented by Dt. The whole process (1–3) is repeated as

many times as necessary to reach the desired simulation time. On the basis of

this algorithm, software was implemented, which is able to automatically

convert a system of differential equations into the corresponding stochastic

system and to perform the stochastic simulations (e.g., STODE, which is

freely available from the authors (http://projects.villa-bosch.de/bcb/software)

or Copasi (http://www.copasi.org)).

Experimental

Single hepatocytes were isolated from fed, male Wistar-strain rats (150–

250 g) by collagenase perfusion as described previously (29). Briefly, the

hepatic portal vein was cannulated and an initial Ca21-free perfusion was

followed by perfusion with collagenase (0.04% w/v) and Ca21 (3.8 mM) for

15 min. The perfusion rate was 30 ml/min throughout. The cells were

harvested and incubated at 37�C at low density (103 cells per milliliter) in

2% type IX agarose in William’s medium E (WME). Single hepatocytes

were prepared for microinjection with the bioluminescent Ca21 indicator

aequorin, as described previously (30). The injected cell was transferred to a

perfusable cup held at 37�C, positioned under a cooled, low-noise photo-

multiplier, and continuously superfused with WME, to which agonists were

added. Photon counts were sampled every 50 ms by computer. At the end of

an experiment, the total aequorin content of each cell was determined by

discharging the aequorin by lysing the cell. The data were normalized ret-

rospectively by computer, by calculating the photon counts per second

divided by the total counts remaining. The computed fractional rate of

aequorin consumption could then be plotted as [Ca21]i using in vitro

calibration data and exponential smoothing with time constants: for resting

[Ca21]i, 12 s; for transients, 1 s.

Materials

Aequorin was provided by Professor O. Shimomura (Marine Biological

Laboratory, Woods Hole, MA). Collagenase was obtained from Roche

Diagnostics (Lewes, UK) and WME from Invitrogen (Paisley, UK). Agarose

and agonists were purchased from Sigma-Aldrich (Poole, UK).

RESULTS

Using ATP as the agonist for the activation of hepatocytes

results in bursting calcium oscillations for a wide range of

concentrations. An example for a low dose (1.2 mM) of ATP
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is shown in Fig. 1. Each main spike is followed by a series of

secondary oscillations. The overall oscillation is by no means

periodic and the number of secondary oscillations varies.

Increasing the agonist concentration successively results in

bursting oscillations, with increasing amounts and length of

secondary oscillations on average (Fig. 2). These bursts are

irregular in their nature, meaning that the amplitude of the

secondary oscillations are not simply decreasing with time.

Modeling these bursting oscillations in hepatocytes has so

far never been able to account for the long stretches of sec-

ondary oscillations seen in these time series and only models

generating chaotic bursting have been able to account for

some of the nonperiodicities visible. Prolonged secondary

oscillations might carry important information for the cell

because, e.g., a very prolonged elevated level of calcium

concentration in the cell can be responsible for apoptosis (8).

For a detailed computational analysis of calcium oscil-

lations in hepatocytes, we restrict ourselves firsthand to using

a core model developed by Kummer et al. (20). This model

captures the basic dynamic characteristics of the complete

model. Later on, we will see that our findings also hold true

for more detailed, physiological models. The core model is

represented by three ODEs.

½Ga�9 ¼ k1 1 k2½Ga� � k3

½Ga�½PLC��
ð½Ga�1K4Þ

� k5

½Ga�½Ca�
ð½Ga�1K6Þ

½PLC��9 ¼ k7½Ga� � k8

½PLC��
ð½PLC��1K9Þ

½Ca�9 ¼ k10½Ga� � k11

½Ca�
ð½Ca�1K12Þ

; (7�9)

where Ga denotes the active subunit of the G-protein, PLC*
the activated form of PLC, and Ca the cytosolic calcium

concentration.

Ga is activated upon binding of an agonist (included in k2)

and this process is autocatalytic. There is also a small term

(k1) for the spontaneous activation of Ga. It is inactivated via

two processes, one being activated by Ca (via phosphokinase

C) and one by PLC*. PLC is activated by Ga and inactivated

by a simple enzymatic reaction. Finally Ga also triggers the

increase of calcium concentration in the cytosol and calcium

is removed by an active transport mechanism.

Again, it has to be emphasized that this model is a sim-

plified picture and does not include all the processes that are

known to occur in the context of calcium signal transduction.

Especially, one variable, namely IP3 has been eliminated

completely. For a more detailed and more realistic model,

see, e.g., Larsen et al. (15). However, the basic dynamical

characteristics are captured in this model (as was shown in

Kummer et al. (20)) and therefore we use it to study the

transition from stochastic to deterministic behavior in depen-

dence on the system dynamics.

The bifurcation diagram of the model is shown in Fig. 3.

At smaller values of k2 the system behavior is characterized

FIGURE 1 Experimentally measured calcium concentration in hepato-

cytes with 1.2 mM ATP added.

FIGURE 2 Experimentally measured calcium concentration in hepato-

cytes with increasing amounts of ATP added as indicated.

FIGURE 3 Bifurcation diagram of the core model for bursting calcium

oscillations (Eqs. 7–9). Parameters are: k1 ¼ 0.212, k3 ¼ 1.52, K4 ¼ 0.19,

k5 ¼ 4.88, K6 ¼ 1.18, k7 ¼ 1.24, k8 ¼ 32.24, K9 ¼ 29.09, k10 ¼ 13.58,

k11 ¼ 153, K12 ¼ 0.16. Initial conditions are: a ¼ 0.01, b ¼ 0.01, c ¼ 0.01.
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by simple periodic spiking Ca21 oscillations. By increasing

the value of k2 periodic bursting Ca21 oscillations appear,

and a period adding route leads to a very small chaotic re-

gime around k2 ¼ 2.9259. Beyond the chaotic regime there is

again a small periodic regime before the system settles into

a steady state.

In Fig. 4 we show an example of deterministically simu-

lated periodic bursting oscillations for k2 ¼ 2.85.

We simulated the same time series as obtained by the

ODEs (e.g., Fig. 4) on particle basis with the stochastic al-

gorithm described above. We varied the number of partici-

pating particles to study the transition from deterministic to

stochastic behavior with decreasing particle numbers. In the

following, we will emphasize the number of calcium ions in

the system. However, we want to point out that the number

of particles of the other participating species is in the same

range or higher (depending on the parameters) in this simple

model system. Therefore, we focus on the species with the

lowest particle numbers. This was achieved by changing the

volume of the system and leaving the concentration constant.

Computationally, this is equivalent to letting the volume

constant and changing the particle number in this volume

plus adjusting the kinetic parameters such that the same

qualitative systems behavior will arise. Otherwise, just chang-

ing the particle number in the same constant volume will of

course result in completely different behavior.

The results of the stochastic simulations for k2 ¼ 2.85 are

presented in Figs. 5 and 6 for different particle numbers.

Fig. 5 shows that for large particle numbers the particle-

based simulations approach the deterministic limit, which is

in accordance with theory. The question arises, however, of

how to determine the transition between stochastic and de-

terministic behavior. This is usually a continuous conver-

gence and it is difficult to exactly determine the transition.

Therefore, it is reasonable to introduce a transition range as

the approximate number of particles at which differences be-

tween stochastic and deterministic behavior become negli-

gible. To estimate the particle number in the transition range

between stochastic and deterministic behavior, we studied

the use of standard approaches for estimating differences be-

tween noisy signals and the respective deterministic sig-

nal. All of these standard approaches like autocorrelation

functions, signal/noise ratio, or interspike interval histo-

grams (ISIH) face strong limitations in this case. The reason

is that in many cases the stochastic simulation does not result

simply in a noisy version of the deterministic limit (as shown

below). It is rather apparent that the stochasticity of the sys-

tem often results in completely different dynamics compared

to the deterministic solution. However, the global character

of the solution (the attractor) is underrepresented when con-

sidering the above-mentioned standard approaches. Thus, on

one hand, a noisy limit cycle will result, e.g., in a very dif-

ferent ISIH compared to the deterministic solution even if

the coarse limit cycle is the same. On the other hand, a

comparison between different attractors will of course also

FIGURE 4 Deterministic simulation of periodic bursting of calcium con-

centration. Parameters as in Fig. 1; k2 ¼ 2.85, Div ¼ �401.9.

FIGURE 5 Stochastic simulation of bursting calcium oscillations close

to the deterministic limit. Parameters as in Fig. 4.

FIGURE 6 Stochastic simulation of bursting calcium oscillations with

lower particle numbers compared to Fig. 5. Parameters as in Fig. 4.
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result in a very different ISIH. Thus, it is almost impossible

to differentiate between a solution that displays a completely

different attractor and a solution that still displays the global

attractive properties of the deterministic solution, but has

added noise. However, a scientist modeling a system will most

certainly choose the faster deterministic simulation, if the

global picture of the simulation is accurate. A better method

would be to use a similarity measure of the global attractors

resulting from the different simulations as such. Few ap-

proaches for such a similarity measure are described in lit-

erature so far (e.g., (31,32)). These need extensive sets of

data that are hard to create in stochastic simulations due to

the computational expense. Therefore, for this study, we

restrict ourselves to matching the solutions in a graphical

and/or visual way. However, we want to include and develop

such global similarity measures in future studies.

For spiking (k2 ¼ 2.0) and periodic bursting oscillations

(k2 ¼ 2.85) with ten-thousands of particles, only small fluc-

tuations in the amplitude are observed. However, decreasing

the particle number to thousands leads to a system already

showing significant stochastic influence (Fig. 6). Stochastic

influences are big variations in the amplitude and period as

well as prolonged secondary oscillations during bursting be-

havior like those seen in the experimental investigations. The

transition from deterministic to stochastic behavior occurs in

this case in the range of tens of thousands of particles.

For chaotic bursting Ca21 oscillations at k2 ¼ 2.9259

deterministic-like behavior was observed only down to a

number of particles in the range of hundreds of thousands.

Decreasing the particle numbers down to tens of thousands

already showed significant stochastic influences, e.g., a phase

space that corresponds more to a noisy limit cycle rather than

to a chaotic attractor, i.e., hardly any amplitude variations.

Decreasing the particle numbers even further leads to ad-

ditional prolonged secondary oscillations. Of course, there is

no possibility to simply match the deterministic and the sto-

chastic simulation in this case like done above. Therefore,

and to get an estimate, we relied on visual inspection taking,

e.g., prolonged secondary oscillations as signs for stochas-

ticity. These signs ceased to appear in the range of hundreds

of thousands of particles in the system in the parameter

regime where chaos is displayed in the deterministic limit.

For the steady state at k2 ¼ 3.0, we observe that even

higher numbers of particles are needed to approach the de-

terministic limit (Figs. 7 and 8). The deterministic limit is

not reached with particle numbers in the high hundred-

thousands, which is well above the physiological range.

Moreover, for lower particle numbers, qualitative behavior is

observed that again displays most of the characteristics of the

complex periodic regime (Fig. 8).

The above findings are summarized in Table 1. For dif-

ferent values of k2, which correspond to different behaviors

of the system, the number of particles is estimated at which

the transition between stochastic and deterministic behavior

appears.

To explain the results presented in Table 1 we estimate the

attractive properties of the phase space for different values of

k2. The hypothesis is that the stochastic influences could be

more pronounced in case of weaker attractive properties of

the phase space. Hence, in a weaker attractive phase space a

higher number of particles would be needed to reach the

deterministic limit. We use the sum of Lyapunov exponents

(the divergence) for estimating the attractive properties of

the phase space. By varying the parameter value of k2 and

corresponding to the different types of oscillations described

above, different values of divergence (Fig. 9) were com-

puted. Fig. 9 shows that the value of divergence approaches

zero with increasing values of k2. By comparing Fig. 9 with

Table 1, we observe that the sensitivity of the system to

stochastic influences increases with increasing divergence.

This means that for a dynamic state representative of a highly

FIGURE 7 Stochastic simulation of calcium behavior corresponding to

parameters for which the deterministic solution is a steady state (k2 ¼ 3.0)

with particle numbers far above physiological concentrations. The dashed

line indicates the deterministic steady state.

FIGURE 8 Stochastic simulation of calcium behavior corresponding to

parameters for which the deterministic solution is a steady state (k2 ¼ 3.0)

with lower particle numbers compared to Fig. 7. The dashed line indicates

the deterministic steady state.
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negative divergence value the system is well described by

deterministic methods even for relatively low (thousands)

particle numbers whereas higher particle numbers are needed

to approach the deterministic limit if the divergence of the

system is close to zero.

To verify that these findings are not restricted to our small

core model, we additionally analyzed a completely different

model of Ca21 oscillations proposed by Shen and Larter

(18). Likewise, a model of the peroxidase-oxidase reaction

(33) was studied (data not shown). This system describes the

oxidation of NADH catalyzed by peroxidases. We observed

again that the number of particles required to obtain results

matching the corresponding deterministic solutions is di-

rectly related to the divergence of the attractors, as already

described above. A divergence value close to zero implies

that the attractor is weak and can easily be altered by the

stochastic fluctuations.

Finally, we studied the influence of calcium buffers in the

cell. For this purpose, we included a simple linear equation

for the binding and release of calcium to protein buffers with

the latter being present in large quantities compared to cal-

cium and therefore assumed to have a constant concentra-

tion. Thus, the equations for calcium concentration reads:

½Ca�9 ¼ k10½Ga� � k11

½Ca�
ð½Ca�1K12Þ

� k13½Ca�1 k14½P�; (10)

with P representing the calcium concentration bound to pro-

tein buffers.

The inclusion of this simple term leads to a decrease in

divergence, because the partial derivation of the equation

describing the evolution of the calcium concentration be-

comes more negative and this feeds into the sum of the

Lyapunov exponents. This means that according to our hy-

pothesis the sensitivity toward stochasticity should decrease

as well. Indeed, this is the case. However, even with ;80%

of the calcium being bound to these buffers, the systems be-

havior is still strongly influenced whenever the divergence of

the system is large (e.g., for k2 ¼ 3). Fig. 10 shows that in this

case the high-frequent part of the noise in the system is

filtered out by the participating buffer (compared to Fig. 6).

Nevertheless, the system is still not running into a steady

state as it would be when calculated deterministically, but

rather it shows complex bursting oscillations.

DISCUSSION

We studied the transition from deterministic to stochastic

behavior in simulations of Ca21 oscillations on a particle

basis. We mainly used the model developed by Kummer et al.

(20) and studied here in detail the dependency of the

transition on the system properties. We observed that the

transition from stochastic to deterministic behavior depends

heavily on the attractive properties of the corresponding at-

tractors in phase space, quantified by the divergence. We

conclude that the divergence plays a more important role in

determining the transition range from stochastic to determin-

istic behavior than the complexity of the Ca21 oscillations.

The transition occurs at higher particle numbers if the cor-

responding value of the divergence is close to zero com-

pared to the particle numbers needed when the system has

a highly negative divergence. Comparing the ranges of

particle numbers sensitive to stochastic influences, we ob-

serve that oscillations characterized by a divergence close to

zero show a 10–100-fold larger sensitivity compared to the

TABLE 1 Transition ranges in dependence on k2

k2 Number of particles Behavior

2.0 Ten-thousands Periodic spiking

2.85 Ten-thousands Periodic bursting

2.9259 Hundred-thousands Chaos

2.99 Millions Regular oscillations

3.0 Greater than millions Steady state

FIGURE 9 Divergence value of the core model for bursting calcium

oscillations. Parameters as in Fig. 3.

FIGURE 10 Stochastic simulation of calcium behavior corresponding to

the core model with parameters as in Fig. 3, including binding of calcium

ions to protein buffers (Eq. 10; k13 ¼ 10, k14 ¼ 1). Please note that the total

calcium ion concentration is by far higher because ;80% are bound to pro-

tein buffers in this case.
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oscillations with highly negative divergence in the presented

case study.

The real particle numbers in calcium signal transduction

correspond roughly to the transition number in the cases with

low divergence, namely simple periodic and complex peri-

odic oscillations. This is especially true for a model in which

calcium buffers are included. However, the number of par-

ticles needed to reach the deterministic limit in cases with

high divergence values (chaotic, regular oscillations, steady

state) is far above the concentrations of receptors, channels,

and calcium ions in the real cell, even if buffers are included

in the model. This is also in accordance with the experi-

mental observation that at high agonist concentrations that

correspond to high divergence values in our model, more

apparent stochastic influences are visible. Therefore, one can

argue on the one hand, that the stochastic influence during

simple periodic and complex periodic behavior should not be

tremendous, because the real particle numbers are not well

below the transition range. On the other hand, pronounced

stochastic effects should be present in the real system for

high agonist concentrations (corresponding to a high value of

k2). However, because the studied model is rather qualitative

in its nature, more studies with more realistic models are

needed to clarify this point in sufficient detail. The important

issue here is that the transition from stochastic to deter-

ministic behavior for certain systems dynamics in general

occurs clearly above physiological concentrations and the

resulting stochasticity in the system might be of physiolog-

ical importance. This is especially true for physiological

effects that result from the prolonged secondary oscillations

of the bursting calcium oscillations as described above. Inter-

estingly, such prolonged secondary oscillations have often

been observed experimentally (e.g., (34)). If the elevated

level of calcium concentration is sustained for considerable

time, it will result in different biochemical responses in the

cell, e.g., in cell death (35).

Our findings, showing that transition from stochastic to

deterministic behavior occurs at higher particle numbers if

the corresponding value of the divergence is close to zero,

can also be explained intuitively. If the contractive properties

of an attractor in phase space are weak, then the attractor can

be more easily deformed, if perturbed continuously, which is

the case when studying stochastic simulations. Recently, it

has been shown that Ca21 oscillations are more flexible in

response to external forcing if the divergence takes values

close to zero (36,37). Moreover, it has been shown that the

flexibility of Ca21 oscillations does not significantly depend

on the type of Ca21 oscillations. Therefore, we argue that in

the case of determining the transition from stochastic to de-

terministic behavior the divergence plays a major role.

In the studied systems, no noise-induced chaos has been

found as reported in a number of cases (for a review, see Gao

et al. (38)). However, it has been observed in earlier studies

that adding noise to a periodic bursting calcium oscillation

could result in deterministic chaotic oscillations (39).

Our results show that it is not sufficient to decide in favor

of or against the stochastic simulation of a system on the

basis of knowing the number of particles for a certain model

in general, but it rather demands taking into account the

specific dynamics of the model and the attractive properties

of a particular oscillatory regime. Moreover, relatively large

concentrations (corresponding to nanomolar and millimo-

lar), which often are simulated deterministically, already

show a pronounced sensitivity toward stochasticity. There-

fore, a careful analysis of this sensitivity should preclude

a decision for a certain simulation method in the case of

simulating calcium oscillations. Because our results are very

general in their nature, this holds for other simulations of

biochemical systems as well. Calculating the divergence

of the system as one measure for the decision in favor of or

against a specific simulation methodology could be easily

automated. This could be included in corresponding soft-

ware packages to aid the user in his/her decision process.

Moreover, calculating the divergence on the basis of deter-

ministic simulations is computationally fast compared to

many trials of stochastic simulations that would be needed

to just try out which method is more appropriate. It is also

possible to compute the sensitivity of the divergence with

respect to different parameters of the system, which gives a

more general view on how robust the decision for or against a

specific simulation method is when parameters are changed.

However, we also would like to point out, that the absolute

values of the divergence might be insufficient as a basis for

the decision process, if a system contains, e.g., very positive

and very negative Lyapunov exponents at the same time

(which was not the case in the studied examples). In this

case, a weighting of these individual components might be

necessary, which is a topic of our future research. In addition,

bistable systems require also a special treatment. Such sys-

tems will display both stable solutions when different runs of

stochastic simulations are performed whereas, e.g., the initial

conditions have to be changed in the deterministic approach

to gain the same kind of information. However, the appear-

ance of the individual solution is again subject to similar

criteria as described above. Moreover, in the case of a stable

steady-state solution with no proximity to any other type of

solution (e.g., oscillations), there are cases where the am-

plitude of the noise due to a stochastic simulation around this

steady state stays the same, independent of the divergence of

the system (as in the simple system A � B with influx of

A and efflux of B, if all rates are altered such that their ratio

stays the same). However, due to the attractive properties of

the respective steady state, which is again dependent on the

divergence, the individual trajectory is able to stay away

from the steady state much longer if the divergence is high

compared to a system with rates corresponding to a low di-

vergence. Thus, if simulating a short time span representing

a real world example, the stochastic simulation of the system

with low divergence will quickly fluctuate around the steady

state whereas the system with high divergence might deviate
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from the steady state for the whole time. Therefore, the

computation of the divergence again adds to the knowledge

in differentiating between the two simulation methods.

Finally, we want to emphasize that inclusion of a spatial

dimension will be an important issue in the future. Particle

numbers in small discrete volumes will be even lower than

considering the particle numbers for the whole cell. We think

that at least for systems described by diffusively coupled

ODEs, our findings will still be applicable, but this will be

a matter of future investigations.
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complex calcium oscillations. Eur. J. Biochem. 269:1333–1355.

18. Shen, P., and R. Larter. 1995. Chaos in intracellular Ca21 oscillations
in a new model for non-excitable cells. Cell Calcium. 17:225–232.

19. Houart, G., G. Dupont, and A. Goldbeter. 1999. Bursting, chaos and
birhythmicity originating from self-modulation of the inositol 1,4,5-
triphosphate signal in a model for intracellular Ca21 oscillations. Bull.
Math. Biol. 61:507–530.

20. Kummer, U., L. F. Olsen, C. J. Dixon, A. K. Green, E. Bornberg-
Bauer, and G. Baier. 2000. Switching from simple to complex oscil-
lations in calcium signaling. Biophys. J. 79:1188–1195.

21. Marhl, M., T. Haberichter, M. Brumen, and R. Heinrich. 2000. Com-
plex calcium oscillations and the role of mitochondria and cytosolic
protein. Biosystems. 57:75–86.

22. Kraus, M., and B. Wolf. 1993. Cytosolic calcium oscillators: critical
discussion and stochastic modeling. Biol. Signals. 2:1–15.

23. Prank, K., U. Ahlvers, F. Baumgarte, H. G. Musmann, A. von zur
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