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ABSTRACT The bacterial flagellar motor is generally supposed to be a stepping mechanism. The main evidence for this is
basedonafluctuationanalysis of experimentswith tetheredbacteria inwhich rotation frequencywasvariedbyapplyinganexternal
torque: the variance in time taken for a fixed number of revolutions was found to be essentially proportional to the inverse square of
the frequency. This behavior was shown to characterize a Poissonian stepper. Here we present a rigorous kinetic and stochastic
analysis of elastic crossbridge stepping in tethered bacteria. We demonstrate that Poissonian stepping is a virtually unachievable
limit. To the extent that a system may approach Poissonian stepping it cannot be influenced by an externally applied torque;
stepping mechanisms capable of being so influenced are necessarily non-Poissonian and exhibit an approximately inverse
cubic dependence. This conclusion applies whatever the torsional characteristics of the tether may be, and contrary to claims, no
perceptible relaxation of the tether following each step is found. Furthermore, the inverse square dependence is a necessary but
not sufficient condition for Poissonian stepping, since a nonstepping mechanism, which closely reproduces most experimental
data, also fulfills this condition. Hence the inference that crossbridge-type stepping occurs is not justified.

INTRODUCTION

It is commonly considered that both the proton-driven bac-

terial flagellar motor and the proton-translocating ATP

synthase are stepping motors (1–3). Although stepping has

been directly observed on the ATP synthase with different

preparations (4–6), it has only been indirectly inferred in the

case of the flagellar motor. Samuel and Berg (7) carried out

a fluctuation analysis of the motor rotation and interpreted

the results in terms of a Poissonian stepping model. Here we

show that this model is incompatible with the experimental

procedure used, namely imposing a variable external torque

on tethered cells to obtain different rotational frequencies.

We further show that the results of the fluctuation analysis

can be satisfactorily reproduced by a nonstepping model (8).

The model considered by Samuel and Berg (7) comprises

a single, and thus rate-limiting, biochemical step linked to an

elementary angular step f of some unspecified element

around the periphery of the rotor (see Fig. 1), which results in

an equal increment in rotation angle Du. Thus the Poissonian

distribution of the biochemical events is directly translated

into a Poissonian distribution of steps in rotation angle. The

authors showed theoretically that the variance in the time

taken for n revolutions at a given rotational frequency f is

Vðn; f Þ ¼ A=f
2
; (1)

where A¼ n/kwith k denoting the number of elementary steps

per revolution. Since their variance measurements obtained

by imposing a variable external torque on tethered Escher-
ichia coli cells conformed with Eq. 1 (see Fig. 5, case 1),

they concluded that the observations were consistent with

a Poissonian stepping mechanism using ;400 steps per re-

volution.

In the model of Samuel and Berg an increment Du can

only occur if the unspecified element mentioned above is

elastic. For Du to equal f, the rate of relaxation of this elastic

element has to be high enough to allow the relaxation to be

essentially completed before the next elementary step takes

place. Moreover, the effect of an externally applied torque

Tex is not taken into account, but it is implicitly assumed that

changing Tex yields different frequencies f. To clarify this

issue we have analyzed a stepping model in which explicit

consideration is given to the relaxation of the stepping units

and that of a tether, as well as to the effect of Tex.

ANALYSIS AND SIMULATIONS

Stepping model

The scheme in Fig. 1 shows the salient features of our elastic

stepping model, whereas the notation used is defined in

Fig. 2. Consider u units, each of which is bound to one of

r equally spaced attachment points on the rotor. At a given

time t, this brings about an angular displacement jj(t) of the
jth unit from its rest position,

jjðtÞ ¼ bjðtÞ � gjðtÞ (2)

(see Fig. 2). This unit then exerts a torque

TjðtÞ ¼ �sjjðtÞ (3)

on the rotor and simultaneously a torque �Tj(t) on the cell

body, where s is an elasticity coefficient reflecting theSubmitted January 27, 2005, and accepted for publication May 23, 2005.
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deformation of the stalk. The total torque Tel exerted by all

units is

TelðtÞ ¼ +
u

j¼1

TjðtÞ ¼ �s+
u

j¼1

jjðtÞ: (4)

The rotation rate of the cell body du/dt as a result of Tel and
a constant externally applied torque Tex is

du=dt ¼ Db½Tex � TelðtÞ�=ðkBTÞ: (5)

Here Db denotes the rotational diffusion coefficient of the

cell body, kB is Boltzmann’s constant, and T the absolute

temperature. The torsion rate of the tether dx/dt as a result of
Tel is

dx=dt ¼ Dr½TelðtÞ � kxxðtÞ�=ðkBTÞ; (6)

where kx is the torsional spring constant of the tether (9) and

Dr is, in effect, a rotational diffusion coefficient of the rotor

plus tether.

The evolution of u and x in time arises from the stepping

of one of the units to an adjacent attachment point at a time-

point ti and the subsequent relaxation of the displacements jj
during the time-interval Dti ¼ ti11 � ti (see Appendix for

a detailed derivation). The intervals Dti are determined by the

rate constants

aj1 ¼ a0 expfl½Dm̃H
1 � sfðjj0ðtiÞ1f=2Þ�=ðkBTÞg; (7a)

aj� ¼ a0 expfðl�1Þ½Dm̃H
1 � sfðjj0ðtiÞ � f=2Þ�=ðkBTÞg;

(7b)

describing the stepping of the jth unit, where aj1 and aj�
pertain to a step by1f and�f, respectively, andf¼ 2p/r is
the angle between adjacent attachment points (see Appendix).

The coefficient l reflects the position of the transition state in

the step, Dm̃H1 is the electrochemical potential difference for

protons driving the rotation, and jj0(ti) denotes the displace-
ment just before the stepping of the unit.

Trajectories u(t) and x(t) were obtained by Monte Carlo

simulation, taking into account exclusion of attachment

points due to steric hindrance (see Appendix), and the rota-

tional frequency f was determined as the slope of a linear

regression to u(t). The trajectories u(t) were evaluated ac-

cording to the procedure of Samuel and Berg (7), and the

variances were fitted to the relation

Vðn; f Þ ¼ A=f
m
: (8)

For a Poissonian stepper, m ¼ 2 (see Eq. 1); moreover, k ¼
Æ tnæ2/[nV(n,f)] at any value of f, where tn is the time taken

for n revolutions (7), and an average value Ækæ can then

be calculated.

Poissonian versus Non-Poissonian behavior

With physically reasonable parameters, which yield the

correct frequencies for the actual Dm̃H1value used (8), our

stepping model winds up the tether to an average steady-state

angle xss such that its restoring torque kxxss balances the

average elastic torque ÆTelæ (see Fig. 3 B and Eq. 6). The

corresponding frequency f ¼ 2p [du/dt]ss is determined

by Tex � ÆTelæ and Db (Eq. 5), i.e., f can be varied by an

externally applied torque Tex, which includes stalling the

motor (Fig. 3 A). The variance analysis of this case yields

FIGURE 2 Projection of the motor in a cell which is tethered to a support,

viewed from the side of the tethering filament (i.e., from the top in Fig. 1).

The dotted line marked ‘‘zero’’ is the reference point on the support with

respect to which angles are measured (positive sense indicated on the right,

corresponding to the clockwise direction of rotation of the cell body in

nonreversing strains). The elastically deformed stalk of one of the units is

shown whose attachment points on the rotor and the cell body are repre-

sented by the angles b and g, respectively (subscripts j for jth unit omitted for

clarity). Note that u is the rotation angle of the cell, whereas x is the torsion

angle of the tether (usually negative, as shown).

FIGURE 1 Schematic diagram of the bacterial flagellar motor. The

flagellar filament is attached by means of a hook to the shaft, which passes

through a bushing in the cell wall (not shown, see Ref. 3). The force-

generating units (MotA/MotB subunits), arrayed around the rotor (M and C

rings), are permanently fixed to the cell wall by means of the stalks. In the

case of the stepping model they are reversibly bound to specific attachment

points on the peripheral surface of the rotor (not shown). From time to time

one of the units steps to an adjacent attachment point. In so doing the stalk of

the unit is elastically deformed, giving rise to a change in the torque exerted

on the rotor. The rate constants governing the stepping depend on the driving

force for the rotation (Dm̃H1 ) and the elastic energy associated with the

deformation.
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a value of m above 3 (Fig. 5, case 2), which is to be expected
since a single rate-limiting step does not occur. Depending

on Tex, between 0.7% and 7% of all steps are ‘‘back steps’’,

i.e., pertain to �f. Two relaxation times, with their as-

sociated exponential functions, appear in the equations of the

model (Eqs. 20). Simulations were performed of the time

courses of the incremental changes u9(t9) and x9(t9) (see

Appendix, Eqs. 9) and the average displacement Æjæ(t9) ¼
Æjæ(ti) 1 x9(t9) � u9(t9) (Eqs. 12, 18, and 20) in the intervals

0# t9#Dti. These revealed that the two relaxation times, t1
and t� (Eq. 22), govern the relaxation of the displacements

jj and the torsion of the tether, respectively. Hence, the

extent of relaxation during the time intervals Dti is indicated
by the values of the functions g6(t9) (Eq. 21) at t9 ¼ Dti.
These functions are bounded by the limits 0 and 1 cor-

responding to zero and complete relaxation, respectively. It

is evident from Fig. 4, A and B, that the relaxation of the

displacements jj is rarely complete, while that of the tether is

only marginal. Interestingly, we do find m close to 2 with

u ¼ 1 (a single stepping unit, not shown), but Ækæ ¼ 1540 6

150 — although in this particular case, k should be equal to

50, and back-stepping ranges between 11% and 32%.

Unidirectional stepping should be possible when l is set to

0, i.e., aj1 ¼ a0 (Eq. 7a), and the elasticity coefficient s of

the stalks is increased until the usually negative term com-

mencing with s in Eq. 7b becomes large enough to satisfy

the condition aj– / 0. Simulations with increasing values of

s revealed that back-steps persist (and even increase in

frequency) until a critical value of 22.8 nN nm/rad2 is

reached. Upon further increase of s there is an increasing

incidence of steps for which the quantity jj0(ti) � f/2 is

positive (i.e., aj– /N), and aj– for these steps has to be set

to 0 to eliminate very large and physically meaningless

values of aj–. The critical value of s causes tb and thus t1
(Eqs. 17 and 22) to be so small that g1(Dti) is larger than 0.94
(see Fig. 4, C and D), i.e., relaxation of the displacements jj
during the time intervals Dti is essentially complete. On the

other hand, a (Eq. 16) and thus q (Eq. 23) approach unity,

which in turn causes t� (Eq. 22) to be so large that g�(Dti)#
0.04, i.e., the tether still does not relax to an appreciable

FIGURE 3 Trajectories of rotation angle u (A, C) and torsion angle x (B,D),

calculated as described in the Appendix. Parameter values: u¼ 8 and r¼ 50

(10), f¼ 2p/50 (7.2�), Db¼ 0.256 rad2/s, corresponding to a frictional drag

coefficient 2p kBT/Db¼ 0.1 nN nm rad�1 Hz�1 (8), d¼ 20, kx ¼ 0.4 nN nm/

rad2 (9),Dm̃H1¼ 0.024 nN nm/H1 (14.5 kJ/mol); Tex /(nN nm rad�1)¼ 0 (a),

1.5 (b), �1.53 (c); temperature, 22�C; sampling time, 5 ms; bidirectional

stepping model, s ¼ 0.8 nN nm/rad2, a0 ¼ 200 s�1, l ¼ 0.5 (A, B);

unidirectional stepping model, s ¼ 23.9 nN nm/rad2, a0 ¼ 500 s�1, l ¼
0 (C, D). The relaxation time (ms) for x (t) in B and the frequency f (Hz) at

steady state in A are 13.66 0.7 and 8.76 0.3 (a), 10.26 1.1 and 19.96 0.4

(b), 17.26 0.4 and 0.0026 0.2 (c), respectively. The corresponding values

for D and C are 41.16 1.6 and 8.66 0.4 (a), 44.46 2.3 and 8.56 0.4 (b),
and 42.4 6 0.6 and 8.8 6 0.4 (c), respectively.

FIGURE 4 Partition functions (histograms) for values of g6 (Eq. 22) and

g (Eq. 27) at the end of the time intervals Dti. F(x) denotes the normalized

frequency with which values of the variable xwere found in the interval from

x to x 1 Dx, x represents g1(Dti) (solid line), g�(Dti) (dotted line) in A–D,

G, and H, or g(Dti) in E and F; Dx ¼ 0.02 (A–F) and 0.00125 (G, H). For
graphical reasons F(x) for g1(Dti) in A, B, G, and H is multiplied by a factor

as indicated. Bidirectional stepping model with Tex ¼ 0 (A) and 3 nN nm/rad

(B); unidirectional stepping model with a0 ¼ 500 s�1 (C, E) and 2000 s�1

(D, F) for d ¼ 20 (elastic tether, C and D) and d ¼ 0 (stiff tether, E and F);

model of Ryu et al. (1) with Tex ¼ 0 (G) and 40 nN nm/rad (H), in this case

F(x) [ 0 for x . 0.0625. Other parameter values are given in the legends

to Figs. 3 and 5. The relaxation times t1 (ms) and t� (ms) are 113 and 44.4

(A, B); 3.96 and 42.1 (C, D); and 175 and 45.8 (G, H), respectively, whereas

tb ¼ 87.4 ms (E, F). The mean values of the time intervals Dti (ms) obtained

from the simulations are 242 6 252 (A), 766 79 (B), 2866 284 (C), 736

75 (D), 2916 297 (E), 736 74 (F), 0.826 0.86 (G), and 1.086 1.11 (H);
note that the standard deviations are close to the mean values as required for

a Poisson distribution.
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extent. Such a unidirectional stepper, however, is insensi-

tive to an externally applied torque Tex (see Fig. 3 C), and
its frequency f is solely determined by a0. Hence, the only

possible means of changing f is by direct alteration of a0,

which would require changing the temperature rather than

imposing an external torque. A simulation of this case indeed

yields a value of m close to 2 (Fig. 5, case 3), but the value of
Ækæ is ;200 instead of 400 as predicted by Samuel and Berg

(10). This arises from the exclusion of steps due to steric

hindrance. If this condition is released, m � 2 and Ækæ � 400

are obtained (not shown), but almost all aj– values tend to

infinity and have to be eliminated. Moreover, a crossing-over

of units occurs, and the displacements attain unrealistically

high values of up to 12p.

Ryu et al. (1) have proposed a stepping model in which

each step comprises three substeps covering 5%, 90%, and

5% of the step interval, respectively, with a corresponding

subdivision of Dm̃H1 . This model is sensitive to Tex despite
the condition l ¼ 0 for the rate constants of all substeps, but

Monte Carlo simulations performed with this model yield

again an m value of 3 (Fig. 5, case 4).

Nonstepping model

We have shown (8) that an entirely different model based on

electrostatic interactions, in which no attachment points are

present and hence no stepping occurs, reproduces the results

of a wide variety of different studies, providing two proton

channels are assigned to each force-generating unit; bio-

chemical evidence that this is probably the case has since

been presented (11,12). The simulations with this model

were previously carried out using a deterministic (kinetic)

methodology. We have reexamined this model using Monte

Carlo simulations (13) and including Brownian motion, thus

making fluctuation analysis possible. The results are not only

fully in agreement with our earlier simulations, but yield a

value of m close to 2 for the simulation of the Samuel and

Berg study (7) (Fig. 5, case 5).

DISCUSSION

The stepping model proposed by Ryu et al. (1) incorporates

three states per step in which the units are always bound to

the attachment points (high duty ratio). It is purely phe-

nomenological, since no mechanistic explanation is provided

as to how the transport of protons through the channel of a

unit causes its release from an attachment point and its move-

ment to the adjacent point. Moreover, proton movement is

described in terms of Dm̃H1 instead of explicitly in terms of

proton concentrations and a membrane potential (8,14). The

value of the intrinsic rate constant a0 necessary for the sim-

ulation of the experimental results gives rise to time intervals

Dti, which are at least two orders-of-magnitude smaller

than the relaxation times t1 and t�. Hence g6(Dti) # 0.04

(Fig. 4, G and H), i.e., there is very little relaxation of the

displacements jj as well as of the tether, and the term sf

(jj0(ti) � f /2) in Eq. 7b is rather small. As a consequence,

despite the setting of l ¼ 0, considerable ‘‘back stepping’’

occurs (49% and 34% for Tex ¼ 0 and 40 nN nm rad�1,

respectively). In addition, as already noticed by Ryu et al.

(1), the model is rather insensitive to the value of s if chosen

in a physically reasonable range, which can be estimated

from the elastic parameters of actin filaments (15,16). It is

therefore not surprising that this model cannot reproduce the

experimentally observed inverse second-power dependence

of variance on frequency.

For reasons of consistency we have adopted the approach

of Ryu et al. (1) when designing our stepping model. This

model can be considered to be a simplified version of the

three-state model in which binding, release, and transfer of

protons in a channel all take place in one step. Although this

simplification reduces the number of possible transitions by

a factor of 3, a rate-limiting step still does not appear if phys-

ically reasonable parameter values are used. Such a step can

only occur if l is set to zero and the stalks are assumed to be

extremely stiff. This, however, eliminates the dependence on

Dm̃H1since aj1 ¼ a0 (Eq. 7a) and back steps whose rate

constants aj� depend on Dm̃H1are excluded. On the other

hand, for the intrinsic stepping expressed by the rate constant

a0, the considerable elastic work involved in the movement

of a unit between attachment points (see Eq. 30) would have

FIGURE 5 Analysis of V(n, f ), the variance in time for n revolutions at ro-

tational frequency f, according to the relation log[V(n,f)] ¼ log A � m log f ;
where applicable the average number of elementary steps per revolution Ækæ
is given (see text). (case 1) Experimental data (Ref. 7), m ¼ 2.22 6 0.14, Ækæ
¼ 4146 36; (case 2) bidirectional stepping model, m¼ 3.286 0.12; (case 3)
unidirectional stepping model (a0 varied), m ¼ 1.966 0.08, Ækæ ¼ 2076 26;

(case 4) model of Ryu et al. (1), m ¼ 3.00 6 0.15; and (case 5) electrostatic

model, m ¼ 2.06 6 0.14. Parameter values as follows: case 2, l ¼ 0.5,

a0 ¼ 200 s�1; case 3, l ¼ 0, s ¼ 23.9 nN nm/rad2, a0/s
�1 ¼ 500, 750, 1000,

1500, and 2000 (Tex not used); case 4, l ¼ 0, u ¼ 5, a0 ¼ 1.23 3 105 s�1,

for other details see Ryu et al. (1); case 5, u ¼ 11, for other details, see Walz

and Caplan (8). Except where stated, u¼ 8, s ¼ 0.8 nN nm/rad2, kx ¼ 0.4 nN

nm/rad2, f ¼ 2p/50, Db ¼ 0.256 rad2/s, d ¼ 20, Dm̃H1¼ 0.024 nN

nm/H1; Tex/(nN nm rad�1) ¼ 0, 1, 2, 3; n ¼ 10; and temperature, 22�C. For
graphical reasons, curves 2–5 are vertically displaced by �0.8, �0.7, 0, and

�0.5 units, respectively. Standard deviations are shown by vertical bars where

they exceed the size of the symbols.

Stepping in Rotary Molecular Motors 1653

Biophysical Journal 89(3) 1650–1656



to be covered by thermal energy, which is already highly

unlikely at the critical value of s and is even less feasible as

s becomes larger. We also find that the presence of Tex does
not alter the rotational frequency f (Fig. 3 C, and additional

simulations with Tex up to 200 nN nm rad�1), in clear con-

tradiction to what was found experimentally (7,17). More-

over, the unidirectional stepping model cannot reproduce the

experimentally observed proportionality between f and the

number of units (10). Simulations with u ¼ 4 and 1 yield

frequencies which are, respectively, 8% and 17% larger than
those for u¼ 8. The corresponding m values are still close to

2, whereas the Ækæ values decrease to ;140 and 60, respec-

tively. Hence it appears that the model used by Samuel

and Berg (7) to explain the observed inverse second-power

dependence of variance on frequency is neither physically

feasible nor able to reproduce experimental results.

The rotational mobility of the rotor plus tether expressed

by the parameter Dr plays only a minor role. Simulations

performed with different values of Dr up to the limit of 1280

rad2 s�1, which corresponds to a frictional drag coefficient

2p kBT/Dr ¼ 2 3 10�5 nN nm rad�1 Hz�1 as estimated by

Berg (3) for a freely movable rotor in a lipid phase, revealed

that Dr merely affects the time required for the system to

reach the steady state, whereas the characteristics outlined

above are not altered. In particular, the model with the large

value of s required for unidirectional stepping remains

insensitive to an externally applied torque Tex even for the

largest value of Dr. In fact, the rather stiff elements in this

model firmly connect the cell body to the rotor plus tether,

which makes them behave as one rigid body. As a conse-

quence, in contrast to the case of the less rigid stalks, Tex
(which acts on the cell body) has no effect on the rotational

frequency but manifests itself entirely in an altered average

steady-state tether angle xss (Fig. 3 D) at which the restoring
torque kx xss is balanced by the average elastic torque ÆTelæ
and Tex. Thus it would seem that the picture envisaged by

Berg (3,18) for a stepping motor cannot hold true. In that

picture the stepping of a unit first predominantly winds up

the more mobile tether, which subsequently relaxes, thus

carrying the cell body forward. However, this postulated

relaxation of the tether is imperceptibly small in our sim-

ulations (see Fig. 4).

A rigid tether is obtained if Dr is set to zero, and Eq. 20 is

then replaced by Eq. 26 (see Appendix). Simulations and

variance analyses under this condition yield essentially the

same results as with an elastic tether. The m values are

slightly decreased by ;0.2 for the model of Ryu et al. (1)

and our stepping model with l ¼ 0.5 (i.e., bidirectional) and

s ¼ 0.8 nN nm/rad2. They remain at ;2 for our model with

l ¼ 0 (i.e., unidirectional) and s $ 22.8 nN nm/rad2.

However, the function g(Dti) in Eq. 27, which is analogous to
g1(Dti) in Eq. 20, adopts all possible values in the interval

from 0 to 1 with variable frequencies depending on the value

of a0 (Fig. 4, E and F). This indicates that relaxation of

the displacements jj during the time intervals Dti is mostly

incomplete under these circumstances, but this criterion

seems not to be crucial for m to attain a value close to 2.

Brownian motion was excluded from the simulations with

the stepping models in order not to blur the stepping be-

havior. Including Brownian motion has little effect on the

model of Ryu et al. (1) and our model with l ¼ 0 and s $

22.8 nN nm/rad2, but decreases m by ;0.4 if l ¼ 0.5 and

s ¼ 0.8 nN nm/rad2. It should be mentioned that Brownian

motion in a broken motor yields, for all models, m � 3 (not

shown), as is experimentally observed.

The experimental finding that the motor in de-energized

cells appears to be ‘‘locked’’ (9) may be considered as evi-

dence for a motor with units always bound to attachment

points. However, simulations with the stepping models as

well as with our electrostatic model at Dm̃H1¼ 0 did not

show any locking of the motor. But we can reproduce this

phenomenon if we assume closure of proton channels upon

de-energization, in analogy to the closure of channels in a

sodium ion-driven motor (11). Hence it is not the type of

interaction between rotor and stator (binding of units or

electrostatic interaction) but the restricted proton movement

that causes the locking of the motor.

In conclusion, the inverse second-power dependence of

variance on frequency (Eq. 1) is not a suitable criterion for

stepping; in fact a nonstepping mechanism can comply with

this criterion, whereas a stepping mechanism in many cases

does not. Hence there is no evidence for the notion (1,3,7)

that the flagellar motor operates in a stepwise mode with

units that are virtually always engaged (high duty ratio).

APPENDIX A

Motor rotation due to stepping of units and
relaxation of elastic elements as well as
elastic tether

Let u9 and x9 denote the advancement of u and x during the relaxation period

Dti ¼ ti11 � ti, respectively, such that

uðtÞ ¼ uðtiÞ1 u9ðt9Þ and xðtÞ ¼ xðtiÞ1 x9ðt9Þ
for ti # t# ti11 and 0# t9#Dti; (9)

where

t9 ¼ t � ti: (10)

Since all units are attached to the rotor and the cell body during this period,

i.e., a duty ratio of 1 (see Ref. 1),

bjðtÞ ¼ bjðtiÞ1 x9ðt9Þ and gjðtÞ ¼ gjðtiÞ1 u9ðt9Þ
for ti # t# ti11 and 0# t9#Dti: (11)

Hence by means of Eq. 2,

jjðtÞ ¼ jjðtiÞ1 x9ðt9Þ � u9ðt9Þ
for ti # t# ti11 and 0# t9#Dti: (12)

Recalling that jj0(ti) denotes displacements just before the stepping of the kth

unit occurs, it follows that
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jkðtiÞ ¼ bkðtiÞ6f� gkðtiÞ ¼ jk0ðtiÞ6f; (13a)

jjðtiÞ ¼ jj0ðtiÞ for j 6¼ k; (13b)

where f ¼ 2p/r. Note that steps of 1f and �f give rise to positive and

negative contributions to the displacement, respectively. Inserting Eqs. 4, 9,

10, 12, and 13 into Eqs. 5 and 6 yields

du9=dt9 ¼ ½�u9ðt9Þ1 x9ðt9Þ1C1�=tb; (14a)

dx9=dt9 ¼ ½u9ðt9Þ � a x9ðt9Þ � C2�=tr; (14b)

with the abbreviations

C1 ¼ ÆjæðtiÞ1 Tex=ðusÞ; C2 ¼ ÆjæðtiÞ1 kxxðtiÞ=ðusÞ (15)

and

a ¼ 11 kx=ðusÞ: (16)

Here tb and tr are scaling factors denoting, respectively, characteristic

rotation times of the cell body and the rotor plus tether, and are defined as

tb ¼ kBT=ðusDbÞ; tr ¼ kBT=ðusDrÞ: (17)

The quantity Æjæ(ti) is the average displacement just after the kth unit has

stepped,

ÆjæðtiÞ ¼ +
u

j¼1

jjðtiÞ
" #

=u ¼ Æjæ0ðtiÞ6f=u; (18)

where

Æjæ0ðtiÞ ¼ +
u

j¼1

jj0ðtiÞ
" #

=u (19)

is the average displacement just before stepping of the unit. The solutions to

Eqs. 14 satisfying the boundary conditions u9(0)¼ x9(0)¼ 0 are found to be

u9ðt9Þ ¼ A1 g1ðt9Þ1A2 g�ðt9Þ; (20a)

x9ðt9Þ ¼ h1 A1 g1ðt9Þ1 h� A2 g�ðt9Þ; (20b)

where

g6ðt9Þ ¼ 1� exp½�t9=t6� (21)

and the relaxation times t6 are defined as

t6 ¼ 2tbtr=½ð16 qÞðtr 1 atbÞ� ¼ 2tb=½ð16 qÞð11 a dÞ�:
(22)

The quantities d, q, and h6 are abbreviations that read

d ¼ Dr=Db; q ¼ ½1� 4ða� 1Þd=ð11 a dÞ2�1=2;
h6 ¼ 1� ð16 qÞð11 a dÞ=2; (23)

and the constants A1 and A2 are given by

A1 ¼ ðC1 h� 1C2 dÞ=½qð1� h1Þð11 a dÞ�; (24a)

A2 ¼ �ðC1 h1 1C2 dÞ=½qð1� h�Þð11 a dÞ�: (24b)

Since the jj values reached at the end of the ith time interval Dti are the

jj0values of the next interval starting at ti11, it follows from Eq. 12 that

Æjæ0ðti11Þ ¼ ÆjæðtiÞ1 x9ðDtiÞ � u9ðDtiÞ: (25)

Special case Dr ! 0

This case corresponds to a rigid or motionless tether. Here d / 0, q / 1,

h1 / 0, h– / 1 (Eq. 23), t1 / tb (Eq. 22), and A1 ¼ C1 (Eq. 24a). The

term A2 g�(t9) can be shown, by L‘Hopital’s rule, to go identically to zero in

this limit. Hence

u9ðt9Þ ¼ C1 gðt9Þ and x9ðt9Þ ¼ 0; (26)

where

gðt9Þ ¼ 1� expð�t9=tbÞ: (27)

Kinetics

Following Ryu et al. (1) the rate constants aj1 and aj� describing the

stepping of the jth unit are assumed to be determined by an intrinsic rate

constant a0 and a Boltzmann factor which comprises the difference in free

energy DGj6 associated with the step and a coefficient l reflecting the po-

sition of the transition state in the step,

aj1 ¼ a0 expflDGj1=ðkBTÞg; (28a)

aj� ¼ a0 expfðl� 1ÞDGj�=ðkBTÞg: (28b)

DGj6 is composed of two terms, the free energy which powers the rotation,

i.e., Dm̃H1 , and the difference in elastic energy DGj,el between the initial and

the final state of the step in the direction that gives rise to a positive

contribution to Tel. The elastic energy can be determined by integrating the

relation

Tj ¼ �@Gj;el=@jj: (29)

Hence by means of Eq. 3, and with the boundary condition Gj,el ¼ 0 for

jj ¼ 0,

Gj;el ¼ sj
2

j =2: (30)

Since the displacements jj0(ti) and jj(ti) represent the initial and final states

of a step by1f, but the final and initial states of a step by�f, the difference

in free energy becomes (see Eq. 30)

DGj6 ¼ Dm̃H
1 1DGj;el ¼ Dm̃H

16s½jj0ðtiÞ
2 � jjðtiÞ

2�=2:
(31)

Inserting Eqs. 13a (with k ¼ j) and 31 into Eqs. 28 then yields Eqs. 7.

Monte Carlo simulations

For the Monte Carlo simulation (13) it is convenient to renumber the rate

constants as

a2j�1 ¼ aj� and a2j ¼ aj1 : (32)

The order of the renumbered rate constants is not crucial. An alternative

numbering yielding the same results is aj ¼ aj� and au1 j ¼ aj1. The time

interval Dti at the time point ti is then given by

Dti ¼ �lnðG1Þ=S; (33)

whereas the index k satisfying the condition
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+
k�1

j¼1

aj ,G2S#+
k

j¼1

aj (34)

determines which unit steps, and in which direction. In Eqs. 33 and 34 the

quantities G1 and G2 are random numbers drawn from a unit-interval uniform

distribution, and S denotes the sum over all rate constants:

S ¼ +
2u

j¼1

aj: (35)

Since binding of two units to the same attachment point should be excluded

for steric reasons, a bookkeeping of occupied attachment points is

performed, and the rate constant of a step which would end in an occupied

attachment point is set to zero.

Trajectories u(t) and x(t) can then be calculated by means of Eqs. 7, 9, and

15–25, starting from the initial conditions t0 ¼ u (t0) ¼ x(t0) ¼ Æjæ0(t0) ¼ 0.
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2002. Stepwise rotation of the g-subunit of EF0F1-ATP synthase

observed by intramolecular single-molecule fluorescence resonance

energy transfer. FEBS Lett. 527:147–152.

7. Samuel, A. D. T., and H. C. Berg. 1995. Fluctuation analysis of

rotational speeds of the bacterial flagellar motor. Proc. Natl. Acad. Sci.
USA. 92:3502–3506.

8. Walz, D., and S. R. Caplan. 2000. An electrostatic mechanism closely

reproducing observed behavior in the bacterial flagellar motor. Biophys.
J. 78:626–651.

9. Block, S. M., D. F. Blair, and H. C. Berg. 1989. Compliance of bacterial

flagella measured with optical tweezers. Nature. 338:

514–518.

10. Samuel, A. D. T., and H. C. Berg. 1996. Torque-generating units of the

bacterial flagellar motor step independently. Biophys. J. 71:918–923.

11. Sato, K., and M. Homma. 2000. Functional reconstitution of the Na1-

driven polar flagellar motor component of Vibrio alginolyticus. J. Biol.
Chem. 275:5718–5722.

12. Braun, T. F., and D. F. Blair. 2001. Targeted disulfide cross-linking of

the MotB protein of Escherichia coli: evidence for two H1 channels in

the stator complex. Biochemistry. 40:13051–13059.

13. Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical

reactions. J. Phys. Chem. 81:2340–2361.

14. Hill, T. L. 1977. Free Energy Transduction in Biology. Academic

Press, New York.

15. Kojima, H., A. Ishijima, and T. Yanagida. 1994. Direct measurement

of stiffness of single actin filaments with and without tropomyosin by

in vitro nanomanipulation. Proc. Natl. Acad. Sci. USA. 91:12962–
12966.

16. Tsuda, Y., H. Yasutake, A. Ishijima, and T. Yanagida. 1996. Torsional

rigidity of single actin filaments and actin-actin bond breaking force

under torsion measured directly by in vitro micromanipulation. Proc.
Natl. Acad. Sci. USA. 93:12937–12942.

17. Berg, H. C., and L. Turner. 1993. Torque generated by the flagellar

motor of Escherichia coli. Biophys. J. 65:2201–2216.

18. Berg, H. C. 1976. Does the flagellar rotary motor step? In Cell Motility,

Cold Spring Harbor Conferences on Cell Proliferation. R. Goldman,

T. Pollard, and J. Rosenbaum, editors. Cold Spring Harbor, NY.

47–56.

a Dimensionless quantity defined by Eq. 16.

Db Rotational diffusion coefficient of cell body.

Dr Rotational diffusion coefficient of rotor plus tether.

d, q, h1, h– Dimensionless quantities defined by Eqs. 23.

F(x) Normalized frequency with which values of x
occur in the interval x to x 1 Dx.

f Rotational frequency.

g1, g�, g Exponential functions associated with t1, t�,

and tb, respectively (Eqs. 21 and 27).

k Number of elementary steps per revolution.

kB Boltzmann’s constant.

kx Torsional spring constant of tether.

m Exponent of f in expression for V: for a Poissonian

stepper m ¼ 2.

n Number of revolutions.

r Number of attachment points.

T Absolute temperature.

Tel Total torque exerted by all elastic units.

Tex Externally applied torque.

Tj Torque exerted by jth unit on rotor.

t Time.

u Number of stepping units.

V Variance in time taken for n revolutions at rotational

frequency f.

aj1, aj� Rate constants specifying the stepping of the jth unit.

a0 Intrinsic rate constant.

b Angle specifying attachment point of stepping

unit to rotor.

G1, G2 Random numbers drawn from a unit-interval

uniform distribution.

g Angle specifying attachment point of stepping

unit to cell body.

DGj1, DGj� Free energy differences associated with the jth step.

DGj,el Elastic energy difference between initial and

final state of the jth step.
Dti Time interval between steps at time points ti and

ti11.

Dm̃H1 Electrochemical potential difference for protons

driving rotation.

u Rotation angle of cell.

l Coefficient reflecting the position of the transition

state in a step.

j Angular displacement of a stepping unit from its

rest position.

s Elasticity coefficient of stepping unit.

tb, tr Characteristic rotation times of cell body and rotor plus

tether, respectively.

t1, t� Relaxation times governing unit displacements and

tether torsion, respectively.

f Elementary angular step.

x Torsion angle of tether.

xss Average steady-state torsion angle of tether.

9 Denotes an incremental change between steps (e.g., u9).
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