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ABSTRACT A simple and complete derivation of the relation between concentration-based preferential interaction coefficients
and integrals over the relevant pair correlation functions is presented for the first time. Certain omissions from the original treat-
ment of pair correlation functions in multicomponent thermodynamics are also addressed. Connections between these con-
centration-based quantities and the more common molality-based preferential interaction coefficients are also derived. The pair
correlation functions and preferential interaction coefficients of both solvent (water) and cosolvent (osmolyte) in the neigh-
borhood of a macromolecule contain contributions from short-range repulsions and generic long-range attractions originating
from the macromolecule, as well as from osmolyte-solvent exchange reactions beyond the macromolecular surface. These
contributions are evaluated via a heuristic analysis that leads to simple insightful expressions for the preferential interaction
coefficients in terms of the volumes excluded to the centers of the water and osmolyte molecules and a sum over the
contributions of exchanging sites in the surrounding solution. The preferential interaction coefficients are predicted to exhibit the
experimentally observed dependence on osmolyte concentration. Molality-based preferential interaction coefficients that were
reported for seven different osmolytes interacting with bovine serum albumin are analyzed using the this formulation together
with geometrical parameters reckoned from the crystal structure of human serum albumin. In all cases, the excluded volume
contribution, which is the volume excluded to osmolyte centers minus that excluded to water centers in units of �VV1; exceeds in
magnitude the contribution of the exchange reactions. Under the assumption that the exchange contribution is dominated by
sites in the first surface-contiguous layer, the ratio of the average exchange constant to its neutral random value is determined
for each osmolyte. These ratios all lie in the range 1.0 6 0.15, which indicates rather slight deviations from random occupation
near the macromolecular surface. Finally, a mechanism is proposed whereby the chemical identity of an osmolyte might be
concealed from partially ordered multilayers of water in clefts, grooves, and pits, and its consequences are noted.

INTRODUCTION

The effects of weakly interacting osmolytes on the confor-

mational equilibria and ligand binding reactions of biological

macromolecules have been studied intensively over the past

two decades (1–4). A major objective in many cases was to

ascertain the difference between the number of water mol-

ecules ‘‘associated’’ with the products of a particular reac-

tion on one hand and the corresponding number ‘‘associated’’

with its reactants on the other. The precise meaning, or

interpretation, of the numbers of ‘‘associated’’ waters and

the differences therein remains a subject of discussion and

some debate (5–9). This general approach to studying

changes in ‘‘associated’’ waters has come to be known as the

osmotic stress method. In the case of a solution, consisting of

water (solvent, component 1), dilute macromolecules (com-

ponents 2J, J ¼ 1, . . . M), and neutral osmolyte (cosolvent,

component 3), the osmotic stress method yields the slope

ð@lnK=@ln a1ÞT;P;c2J
; where K is the equilibrium constant for

the reaction when written so as to take no account of either

water or osmolyte, a1 is the activity of the water, and c2J

denotes the concentrations of each kind of macromolecule.

This slope is extrapolated to the limit of infinite dilution,

cN2J
/0:The difference in ‘‘associated’’ waters between prod-

ucts and reactants is sometimes taken to be the aforemen-

tioned slope,

DG1 [ ð@lnK=@ln a1ÞT;P;c
N
2J
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+
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�+
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� �
T;P;cN2J

�
¼ +
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npG1ðpÞ �+
r

nrG1ðrÞ; (1)

where the index p or r denotes macromolecular products

or reactants, respectively, m0
p and m0

r denote the respective

standard state chemical potentials, np and nr denote the

respective stoichiometric coefficients of the reaction under

consideration, and

G1ð2JÞ[� @m
0

2J
=@m1

� �
T;P;c

N
2J

: (2)

G1ð2JÞ and the symmetrically defined G3ð2JÞ ¼ �ð@m0
2J=

@m3ÞT;P;cN2J

are concentration-based ‘‘preferential interaction

coefficients’’, which characterize the variation of that part

of m2J that does not depend upon c2J with either m1 orm3;
respectively.

Alternative preferential interaction coefficients are defined

in connection with equilibrium dialysis experiments and are

usually molality based. The molalities of species 1, 2, and 3

are denoted by, respectively, m1 ¼ 55:6; m2; and m3: Two
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common molality-based preferential interaction coefficients

are: Gm
m3

¼ ð@m3=@m2ÞT;P;m3
and Gm

m1;m3
¼ ð@m3=@m2ÞT;m1;m3

;
where the index J denoting the macromolecular conforma-

tion has been suppressed. Although relations between these

and other molality-based preferential interaction coefficients

have been intensively investigated, the connections between

molality-based and concentration-based preferential interac-

tion coefficients, like G1ð2JÞ; have received less attention.

Clever and intuitive thermodynamic approaches indicate that

for any given macromolecular species 2,

G
m

m1;m3
¼ N32 � ðc3=c1ÞN12; (3)

where N12 and N32 denote the total number of water and

osmolyte molecules, respectively, in a domain of sufficient

size surrounding a single isolated macromolecule, and c1 and

c3 denote the respective bulk concentrations in an exterior

domain, no part of which is near any macromolecule (1–9).

Gm
m1;m3

can be regarded as the excess number of osmolyte

molecules in the vicinity of the macromolecule above the

quantity that would be expected from the number of water

molecules in that region and the bulk concentration ratio,

c3=c1:
Although the analysis below indicates that Eq. 3 is correct,

the rigor of the thermodynamic approaches used to derive it

is debatable. For example, the neglect of the osmotic pres-

sure due to the macromolecule within its local domain is jus-

tifiable only for a domain of very great size, yet in many

cases that domain was assumed to extend no more than one

or two hydration layers beyond the macromolecule. The

likely resolution of this paradoxical circumstance is noted

briefly below.

Recently several articles appeared in which G1ð2Þ; or

the equivalent G3ð2Þ ¼ �ðc3=c1ÞG1ð2Þ; was expressed in

terms of the so-called Kirkwood-Buff integrals (10),

G12 [
R
d3rðg12ðrÞ � 1Þ and G32 [

R
d3rðg32ðrÞ � 1Þ;

where g12(r) and g32(r) are the pair correlation functions,

which are described in greater detail below (11–14). The

derivation of the main relation followed an unusually

circuitous, piecewise, and technically demanding route that

took place over three different articles and a book that

collectively spanned 26 years (11,15–17). Chitra and Smith

combined two relations that appeared earlier in Ben-Naim’s

book (17), namely his Eq. 6.7.49 for ð@ln c3=@ln a3ÞT;P;c2/0

and Eq. 6.17.16 for ð@m2=@ln c3ÞT;P;c2/0; to obtain the final

expression for G3ð2Þ: The Eq. 6.7.49 was explicitly derived

in Ben-Naim’s book, but the derivation of the much more

difficult Eq. 6.17.16 was simply described as quite lengthy

and omitted entirely. In fact, the first stage of that proof

was presented in his 1975 article (15), and the second stage

was presented in his 1988 article (16). Unfortunately, neither

Chitra and Smith (11) nor Ben-Naim (17) referenced directly

those earlier articles, from which the entire proof could be

assembled. Chitra and Smith (11) demonstrated the approx-

imate validity of their expression for G1ð2Þ by molecular

dynamics simulations of both the pair correlation functions

and the free energies of insertion of different small species 2

into aqueous solutions over a wide range of concentrations of

various cosolvents. Shimizu (13) suggested a way to obtain

the separate G12 and G32 from the measured G1ð2Þ and �VV2;
where �VV2 is the partial molecular volume. He employed

a relation between �VV2 and G12 and G32 that was also first

presented in Ben-Naim’s book (17) (Eq. 6.17.22), but the

derivation, described as quite lengthy, was also omitted en-

tirely. Again, a two-stage proof of the relevant relation can

be found in the same two earlier articles (15,16). Shimizu

(12) also extended his idea to determine the changes, DG32

and DG12, accompanying a reaction of species 2 from the

measured DG1ð2Þ and D�VV2; which was assumed to be the

entire DV associated with the reaction. Shimizu and Smith

(14) examined the differences between the effects of

crowders, such as polyethylene glycol, and small osmolytes,

such as glycerol, that stabilize native protein structures, on

the separate G12 and G23. Schellman (18) undertook a related

analysis in terms of the cross-second virial coefficients (B23).

The initial objective of this study is to provide a complete

and much simpler derivation of the relevant expression for

G1ð2Þ directly from the results of Kirkwood and Buff (10), as

well as some important details that are missing from their

original treatment of multicomponent thermodynamics. Such

details include the choice of origin of the coordinate frame in

a highly deformable macromolecule, its manifestation in the

pair correlation functions, the invariance of the integrals of

gabðrÞ � 1 to that choice, a complete definition of the pair

correlation function in the classical grand ensemble, and

a derivation of the partial molecular volume. This derivation

of G1ð2Þ follows a considerably more direct line than the

Ben-Naim-Chitra-Smith development, and is technically

much simpler. All of the results of Kirkwood and Buff that

are needed to derive G1ð2Þ were rederived and found to be

correct. In addition, a short proof of Ben-Naim’s expression

for �VV2 is provided in Appendix D.

Connections between this concentration-based G1ð2Þ and

the molality-based Gm
m3

and Gm
m1;m3

are derived via thermody-

namic arguments that make use of certain expressions

of Anderson et al. (19,20), which were also verified by

rederivation.

The main objective of this study is to clarify the mean-

ing(s) of the G1ð2Þ and G3ð2Þ; and especially to relate them to

more familiar quantities such as excluded volumes and

equilibrium constants for osmolyte-solvent exchange in the

region surrounding the macromolecule (21–26). Although

this development is more heuristic than rigorous, useful

predictions and significant insights emerge. As an example,

the experimental Gm
m1;m3

data for seven different osmolytes

interacting with bovine serum albumin (BSA) are analyzed

using this formulation in conjunction with geometrical

parameters reckoned from the crystal structure of human

serum albumin (HSA). The separate excluded volume and

exchange contributions are evaluated. Under the assumption

that only the surface-contiguous layer of osmolyte sites is
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important, the ratio of the average exchange constant to its

neutral random value is obtained in each case.

Finally, a mechanism is proposed whereby the chemical

identity of the osmolyte may be concealed from partially or-

dered hydration multilayers in clefts, grooves, and pits, and

its consequences are briefly noted.

A DERIVATION OF G1(2)

Let us consider a system comprising n different molecular

species, a, b, . . . h, at constant T, V. In this case, when each

species j undergoes a change of dNj mol;

dmb ¼ +
n

j¼1

@mb

@Nj

� �
T;V;Ng 6¼j

dNj ¼ +
j¼1

MbjdNj; (4)

where

Mab [
@ma

@Nb

� �
T;V;Ng 6¼b

¼ 1

V

@ma

@cb

� �
T;V;cg 6¼b

: (5)

Thus, the column vector containing the n different dmk is

related to the n different dNj by the matrix relation dm ¼ M
dN, where the elements of M are given by Eq. 5. Inversion of

this matrix relation gives dN ¼ M�1dm, or

dNa ¼ +
h

b¼1

@Na

@mb

 !
T;V;mg 6¼b

dmb ¼ +
h

b¼1

ðM�1Þ
ab
dmb; (6)

where

ðM�1Þ
ab

¼ @Na

@mb

 !
T;V;mg 6¼b

: (7)

Kirkwood and Buff (10) established that the ðM�1Þab in

Eq. 7 are directly related to integrals of the relevant pair

correlation functions,

Bab [ cadab 1 cacb

Z N

0

d
3rðgabðrÞ � 1Þ ¼ ðkT=VÞðM�1Þ

ab
;

(8)

where gabðrÞ is the ab-pair correlation function, or radial

distribution function, and r ¼ jr1 � r2j is the distance

between the arbitrarily chosen central atom of an a-molecule

at r1 and that of a b-molecule at r2, as indicated in Appendix

A. A complete definition of gab(r12) in the grand ensemble

(27) is given in Eq. A1 in Appendix A. It must be empha-

sized that gab(r12) pertains to no atoms other than the arbi-

trarily chosen central atom of each molecule, and will in

general depend upon that choice. Because the relations

presented here derive ultimately from fluctuations in the

numbers of molecules in a volume V that is large enough to

contain on average a great many molecules of each kind,

those relations must be independent of the choice of central

atom. It may be concluded from Eq. 8 that integrals of the

gab(r) � 1 over the volume V, or at least from 0 out to

a distance where gab(r) has converged to 1.0, are in-

dependent of the choice of central atom. The grand ensemble

used to derive Eq. 8 can itself be derived by considering that

the volume V is a tiny fraction of an enormously larger super-

system with a fixed number of molecules (27).

The pair correlation function has the following physical

meaning. If the chosen central atom of a molecule of kind a is

located at r1, then cbgab(r) is the probability per unit volume

of finding the chosen central atom of a molecule of kind b at

r2, such that r ¼ jr1 � r2j. A completely random disposition

of b-molecules in the vicinity of a corresponds to gab(r) ¼
1.0. In general, gab(r) is the factor by which the purely ran-

dom probability per unit volume (i.e., cb) must be multiplied

to reckon the actual probability per unit volume of finding a

b-molecule at distance r from an a-molecule. The pair

correlation functions are by definition symmetric, so gab(r) ¼
gba (r), and also Bab ¼ Bba. We shall later regard cbgab(r)
as the rotationally averaged mean density of centers of

b-molecules at a distance r from the center of an a-molecule.

The matrix relation in Eq. 8 can be written as B ¼ (kT/

V)M�1, which can be inverted to give M ¼ (kT/V)B�1, and

@ma

@cb

� �
T;V;cg 6¼b

¼ kTðB�1Þ
ab

¼ kT
jBjab
jBj ; (9)

where jBjab is the cofactor of Bab (i.e., (�1)a1b times the

determinant of the matrix obtained by striking out the ath

row and the bth column) and jBj denotes the determinant of

B (10).

For the particular case of a three-component system held

at constant T and V, the chemical potential m2(T,c1,c2,c3)

depends on all three concentrations, so

dm2 ¼
@m2

@c1

� �
c2 ;c3

dc1 1
@m2

@c2

� �
c1;c3

dc2 1
@m2

@c3

� �
c1 ;c2

dc3:

(10)

The constant T subscript is suppressed in Eqs. 10–16 below.

When c2 is held constant, then dm2 ¼ dm0
2; and it follows

from Eq. 10 that

@m2

@m1

� �
P;c2

¼ @m
0

2

@m1

� �
P;c2

¼ @m2

@c1

� �
c2 ;c3

@c1

@m1

� �
P;c2

1
@m2

@c3

� �
c1 ;c2

@c3

@m1

� �
P;c2

: (11)

An equation analogous to Eq. 10 holds for dm1, from

which it follows that

@m1

@m1

� �
P;c2

¼ 1 ¼ @m1

@c1

� �
c2 ;c3

@c1

@m1

� �
P;c2

1
@m1

@c3

� �
c1 ;c2

@c3

@m1

� �
P;c2

: (12)

The change in c1(T,P,c2,c3) at constant T,P,c2 is
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dc1 ¼
@c1

@c3

� �
P;c2

dc3: (13)

It is shown in Appendix B that ð@c1=@c3ÞP;c2
¼ ��VV3=�VV1;

where �VVj denotes the partial molecular volume

(m3/molecule). Then Eq. 13 yields

@c1

@m1

� �
P;c2

¼ �ð �VV3= �VV1Þ
@c3

@m1

� �
P;c2

: (14)

After substituting Eq. 14 into Eq. 12 and rearranging one

finds

@c3

@m1

� �
P;c2

¼ 1= �ð �VV3= �VV1Þ
@m1

@c1

� �
c2;c3

1
@m1

@c3

� �
c1 ;c2

 !
:

(15)

After substituting Eqs. 14 and 15 into Eq. 11, and Eq. 11

into Eq. 2, there results

G1ð2Þ ¼ ð�Þ
�ð �VV3= �VV1Þ

@m2

@c1

� �
c
N
2 ;c3

1
@m2

@c3

� �
c1 ;c

N
2

" #

�ð �VV3= �VV1Þ
@m1

@c1

� �
c
N
2 ;c3

1
@m1

@c3

� �
c1 ;c

N
2

" #

¼ � �ð �VV3= �VV1ÞjBjN21 1 jBjN23

� �
�ð �VV3= �VV1ÞjBjN11 1 jBjN13

� �: (16)

Equation 9 was used to obtain the second line of Eq. 16 from

the first, and the superscript N on the jBjab indicates that

they are to be evaluated in the limit cN2 /0: The �VV3=�VV1 must

be evaluated in the same limit.

The right-hand side of Eq. 16 is partially evaluated by

leaving the �VV3=�VV1 factors in place, but expanding the jBjNab
in terms of elements of the three-component B-matrix,

Bab ¼ cadab 1 cacbGab; where

Gab [

Z N

0

d
3rðgabðrÞ � 1Þ: (17)

Every term in both the numerator and denominator of the

right-hand side of Eq. 16 contains at least one factor of c2,

which can be divided out. Any remaining terms that still

contain a factor of c2 will vanish in the limit cN2 /0; and are

therefore omitted. After effecting some factorization and

cancellation, the result can be expressed as

G1ð2Þ ¼ c1G12 � c3G32

B11 1 ð �VV3= �VV1ÞB13

B31 1 ð �VV3= �VV1ÞB33

� �
: (18)

It remains to evaluate the factor in parentheses on the

right-hand side of Eq. 18. An expression for �VVa was

presented by Kirkwood and Buff (10) without explicit

derivation. That derivation is sketched briefly in Appendix C

and the result is given in Eq. C6. Note that the denominator

of Eq. C6 is independent of a, and cancels out of the ratio,
�VV3=�VV1: An important simplification is that �VV3=�VV1 applies in

the limit cN2 /0; which leaves just a two-component (2 3 2),

rather than a three-component (3 3 3) B-matrix, so the

indicated cofactors become just elements of the two-

component B-matrix. In fact, Eq. C6 gives the simple

expressions, �VV3 ¼ ð�c1B13 1 c3B11Þ=D and �VV1 ¼ ðc1B33�
c3B31Þ=D; where D is the denominator, which cancels out of
�VV3=�VV1: After performing straightforward algebra, invoking

the symmetry, Bab ¼ Bba, and omitting any canceling terms,

the entire factor in parentheses reduces to c1/c3, and Eq. 18

becomes simply

G1ð2Þ ¼ c1G12 � ðc1=c3Þc3G32: (19)

INTERPRETATION AND DISCUSSION

From the definition of G12 in Eq. 17, it is clear that c1G12 is

the excess number of 1-molecules in the vicinity of a

2-molecule beyond what would be expected from a random

disposition of 1-molecules. An analogous meaning holds for

c3G32. Although the c1G12 and c3G32 in Eq. 19 are explicitly

excess numbers, rather than the total numbers of molecules

in a domain surrounding the 2-molecule, Eq. 19 for G1ð2Þ
can be written in a form that is completely analogous to Eq. 3

for Gm
m1;m3

; as will be seen.

The pair correlation functions g12(r) and g32(r) must

converge to the value 1.0 at large distances. Typically, for

small osmolytes in a solution of dilute macromolecules, this

occurs within, at most, a few nanometers beyond the maxi-

mum extension of the macromolecule (species 2). Thus, the

upper limit of the integral in G12 or G32 can be reduced from

N to R, where R is any value sufficiently great that both

g12(r) and g32(r) have converged to 1.0. Then Eq. 19 can be

written as

G1ð2Þ ¼ c1

Z R

0

d
3rðg12ðrÞ � 1Þ �

Z R

0

d
3rðg32ðrÞ � 1Þ

� �

¼ c1

Z R

0

d
3rg12ðrÞ �

Z R

0

d
3rg32ðrÞ

� �
¼ N12 � ðc1=c3ÞN32; (20)

where Na2 [ ca
R R

0
d3rga2ðrÞ is the number of a-molecules

within a sphere of radius R around the 2-molecule. The

relevant criterion for the minimum size, Rmin, of the domain

surrounding the macromolecule is clearly the convergence of

the relevant pair correlation functions to 1.0 at all r $ Rmin:
Because standard osmolytes are typically at least a few times

larger than water, species 3 is typically excluded by the

macromolecule from a larger volume than is species 1. Con-

sequently, g32(r) cannot possibly converge to 1.0 within the

volume defined by the centers of 1-molecules in the first

hydration shell, and the minimum domain size generally

must involve more water molecules than those in the first

hydration shell in order for Eq. 20 to be valid.

Equation 20 is rigorously valid for a finite domain size of

radius R $ Rmin; even though no account was taken of the

osmotic pressure due to the macromolecule. This is likely
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a consequence of allowing the domain boundary to move

with the macromolecule, so that it can never be contacted by

the macromolecule and never experience its contribution to

the osmotic pressure inside the macromolecular domain.

The preferential interaction coefficient can also be written

in the simple form

G1ð2Þ ¼ c1

Z R

0

d
3rðg12ðrÞ � g32ðrÞÞ

� �
; (21)

which is most useful for our analysis. Corresponding

expressions for G3ð2Þ can also be obtained simply by

replacing the index 1 by 3 and vice versa in Eqs. 2 and 3 and

19–21, which is permitted by the evident symmetry of the

theory in regard to 1 4 3 interchange. It follows from Eqs.

19–21 that

G3ð2Þ ¼ �ðc3=c1ÞG1ð2Þ ¼ c3

Z R

0

d
3rðg32ðrÞ � g12ðrÞÞ:

(22)

The right-hand side of Eq. 22 is just N32 � ðc3=c1ÞN12;
which matches the right-hand side of Eq. 3. Furthermore, it is

shown by thermodynamic arguments in Appendix E that in

the limit, c2;m2/0;

G3ð2Þ ¼ G
m

m1 ;m3
¼ G

m

m3
1 � c3

�VV3 1 � G
m

m1
=G

m

m3

� �� �h i
; (23)

where Gm
m1
[ ð@m3=@m2ÞT;P;m1

(c.f. Eqs. E16 and E19). The

relations in Eq. 23 were obtained by assuming that �VV1; �VV2;
and �VV3 remain constant, independent of c3 and c2: This

should be a rather good approximation, when c2/0 and

c3
�VV3 � 1:0; which correspond to prevailing conditions in

many studies. Gm
m1

is obtained via vapor pressure osmometry,

and Gm
m1;m3

is measured by equilibrium dialysis. At typically

low osmolyte volume fractions ðc3
�VV3 � 1:0Þ; Gm

m3
is quite

close to Gm
m1;m3

; but Gm
m1

is rather different (5,19,20). In any

case, most experimental work has reported Gm
m3

or Gm
m1;m3

or

both. Equation 23 thus provides the principal connections

between these theoretical expressions for G3ð2Þ (or G1ð2Þ) in

terms of pair correlation functions and the experimentally

measured quantities.

We note that this G3ð2Þ cannot be simply expressed as

ð@c3=@c2ÞT;P;m3
; because there is no Maxwell relation equat-

ing ð@m3=@c2ÞT;P;c3
to ð@m2=@c3ÞT;P;c2

: Moreover, G3ð2Þ is

also not equivalent to ð@c3=@c2ÞT;m1;m3
; because direct eval-

uation of the latter in terms of N12 and N32 (9) yielded a result

that is not equivalent to the right-hand side of Eq. 22.

Radial distribution functions of multicomponent systems

have not yet been treated rigorously and analytically, and no

suitable approximate formulation in terms of basic quanti-

ties, such as excluded volumes and exchange constants for

specific sites, was presented previously. Heuristic approxi-

mate evaluations of various contributions to c1g12(r),
c3g32(r), G1ð2Þ; and G3ð2Þ are presented in the following

section.

HEURISTIC EVALUATION OF G1(2) AND G3(2)

In general, both repulsive exclusion forces and attractive

binding forces contribute simultaneously to G1ð2Þ and G3ð2Þ:
These contributions are evaluated approximately below.

Comparisons with the models adopted by other workers will

be discussed after this model is developed.

Repulsive exclusion forces

To simplify the discussion, let us first consider the effects of

repulsive hard-core exclusion forces between the water

(species 1) and the macromolecule (species 2). The

superscript ‘‘ex’’ is used to indicate a contribution arising

from such forces. A substantial void region, where

gex
12ðrÞ ffi 0; is expected around r ¼ 0, as illustrated in Fig.

1. If both species 1 and 2 were perfectly spherical, then this

void region would be followed at larger r by the region of the

first coordination shell, where gex
12ðrÞ.1:0 (11,17,28). This is

true even in the case of hard spheres with no attractive

interactions whatsoever. The first coordination shell would

then be followed by a dip of g12(r) below 1.0, which in turn

would be followed by a weaker second coordination shell,

a second shallower dip, and so on, finally leveling off to

g12(r) ¼ 1.0. In the case of a nonspherical macromolecule,

the dips and peaks associated with the void volumes and

coordination shells arising from different parts of the surface

are superposed with a distribution of relative ‘‘phases’’, so

that gex
12ðrÞ likely exhibits simply a more or less smooth

rise to a plateau at 1.0, as indicated in Fig. 1. Because

typical neutral osmolytes (species 3) are larger than water,

the void regions of gex
32ðrÞ would extend outward somewhat

farther than in the case of gex
12ðrÞ; as indicated also in Fig. 1.

The volumes excluded to the centers of species 3 and 1

can be expressed as Vex
3 ¼

R R

0
dr 1 � gex

32ðrÞ
� �

and Vex
1 ¼

R R

0

dr 1 � gex
12ðrÞ

� �
; respectively. The difference between

the volumes accessible to the centers of species 1 and

3 within the macromolecular domain is defined by,

FIGURE 1 Schematic illustration of gex
12ðrÞ and gex

32ðrÞ versus the distance

r between the central atoms of species 2 and either 1 or 3, respectively. The

gex
12ðrÞ and gex

32ðrÞ are those parts of the pair correlation functions that arise

solely from repulsive exclusion forces between species 2 and either 1 or 3,

respectively.
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DVac [
R R

0
dr gex

12ðrÞ � gex
32ðrÞ

� �
¼ Vex

3 � Vex
1 ; which is also

the difference between the volumes excluded to species 3

and 1.

The c1DV
ac contribution to G1ð2Þ can be understood

heuristically in terms of the osmotic pressure-volume work

required to introduce a 2-molecule into the solution. The

2-molecule must effectively extrude the centers of the

osmolytes (species 3) from a region occupied by the centers

of the waters (species 1), which requires the input of work

equal to p Vex
3 � Vex

1

� �
; where p is the osmotic pressure

of species 1 in the bulk solution. This work appears as

a term in m0
2; which is the increase in solution free energy

upon adding a 2-molecule to the solution. The variation

of the osmotic pressure of species 1 with its activity is

given by �VV1dp ¼ �kTd ln a1: Thus, the osmotic work con-

tribution to G1ð2Þ is � @m0
2=@m1

� �ex

T;P;cN2J

¼ �ð1=kTÞ @m0
2=

�
@ln a1Þex

T;P;cN2J
¼ð1=�VV1Þ @m0

2=@p
� �ex

T;P;cN2J

¼ ð1=�VV1Þ Vex
3 � Vex

1

� �
ffi c1DV

ac; when c3 is sufficiently dilute that c1 ffi 1=�VV1: This

simple analysis breaks down, when c3 becomes comparable

to c1:
In the void regions, where gex

12ðrÞ and gex
32ðrÞ vanish, gex

12ðrÞ
and gex

32ðrÞ are practically independent of either c1 or c3: The

contribution of repulsive exclusion forces to G1ð2Þ is ob-

tained from Eq. 21 as

G
ex

1 ð2Þ ¼ c1

Z R

0

d
3r g

ex

12ðrÞ � g
ex

32ðrÞ
� �

[ c1DV
ac

¼ c1 V
ex

3 � V
ex

1

� �
: (24)

Any variation of DVac with c1 or c3 should be rather slight,

due to the constancy of the void volumes, so Gex
1 ð2Þ should

remain nearly constant, so long as c1 doesn’t change much

from the value, c1 ¼ 1=�VV1; which will be the case, provided

that c3 # 1:0 M: Due to the generally larger void volume of

g32(r) in comparison to g12(r), both DVac ¼ Vex
3 � Vex

1

� �
and

Gex
1 ð2Þ should be generally positive. In view of Eqs. 22 and

24, it is also expected that

G
ex

3 ð2Þ ¼ �c3DV
ac
; (25)

where Gex
3 ð2Þ denotes the contribution of purely repulsive

exclusion forces. Hence, Gex
3 ð2Þ is expected to be pro-

portional to c3 and negative.

Generic long-range attractive forces

Let us now consider generic attractive forces, long-range van

der Waals forces in particular, that may affect the densities of

(centers of) species 1 and 3 in the region immediately beyond

the void volume. Such mean densities are denoted by

c1g
ga
12ðrÞ and c3g

ga
32ðrÞ; where the superscript ‘‘ga’’ denotes

generic attractions. For simplicity it will be assumed here

that such generic attractions do not discriminate significantly

between species 1 or 3, so that the ratio of their densities at

any r beyond the void volume matches that of the bulk

solution, that is c1g
ga
12ðrÞ= c3g

ga
32ðrÞ

� �
ffi c1=c3; which implies

that gga
12ðrÞ ffi gga

32ðrÞ; even though both may differ signifi-

cantly from 1.0. In that case, the net contributions to G1ð2Þ
and G3ð2Þ reckoned from Eqs. 21 and 22, respectively, are

G
ga
1 ð2Þ ffi 0 ffi G

ga
3 ð2Þ: Thus, generic, but nondiscriminating,

attractions may alter the local densities of species 1 and 3,

but make no net contribution to the preferential interaction

coefficients. Nonvanishing contributions of attractive inter-

actions presumably arise from discriminatory exchange

reactions, as indicated in the following section.

Osmolyte-water exchange reactions

Schellman (21–26) introduced the notion that the relevant

reactions in solution were exchange reactions at sites or

regions near the surface of the macromolecule (species 2).

The objective here is to incorporate such exchanges within

this formulation of the preferential interaction coefficients in

terms of integrals over particular pair correlation functions.

Let us consider first the jth site, which may contain either

a single osmolyte (species 3) or nj water molecules (species

1). For osmolytes that do not bear charged groups, it is

expected that nj ffi �VV3=�VV1; but that assumption need not be

invoked at this point. The exchange reaction for this site is

written as

M � ðH2OÞ
nj
1L�M � L1 nj H2O; (26)

where M � ðH2OÞnj
denotes a complex with nj bound waters

on average in the jth site and M�L denotes a complex with

a single bound osmolyte at the jth site. It is not required

that nj be an integer. When the macromolecule M (species 2)

is sufficiently dilute, the equilibrium constant for Eq. 26 is

Kj ¼
½M � L�ða1Þnj

½M � ðH2OÞ
nj
�a3

; (27)

where a1 ¼ aw is the water activity for the mol fraction 1.0

standard state and a3 ¼ aL is the osmolyte activity for its

hypothetical Henry’s Law mol fraction 1.0 standard state,

wherein each osmolyte experiences only the environment of

its infinitely dilute solution (in water). The fraction of

occupied (by osmolyte) j-sites is

fj ¼
½M � L�

½M � ðH2OÞ
nj
�1 ½M � L� ¼

Kja3ða1Þ�nj

11Kja3ða1Þ�nj
: (28)

The instantaneous density of the central atom of a

3-molecule in the jth site for any fixed configuration of the

2-molecule is a three-dimensional d-function, d(r � rj),

where rj is the variable position of the central atom of the

3-molecule in the jth site in a coordinate frame originating on

the central atom of the 2-molecule. When this density is

averaged (with appropriate statistical weights) over the rj for

all allowed positions and configurations of the 3-molecule in

the site and over all configurations of the 2-molecule, and
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that result is in turn rotationally averaged about the chosen

central atom of the 2-molecule, there results a distributed or

smeared density function, P
ð3Þ
j ðrÞ ¼ Ædðr� rjÞæ; which

depends only on the distance r from that central atom and

should be peaked near the average distance r ¼ Æjrjæ ¼ Æjrjjæ:
The preceding averages are taken only over those config-

urations, wherein rj lies within the somewhat arbitrarily

defined boundaries of the jth exchange site for each con-

figuration of species 2. This density function is still normal-

ized, so
R R

0
d3rPð3Þ

j ðrÞ ¼ 1:0:
The density function for those 1-molecules that occupy the

jth site, when the 3-molecule is absent, is defined in the

following way. First the center of a 3-molecule with a fixed

configuration is placed at rj in the jth site of a 2-molecule

with a fixed configuration. The surrounding solution is

assumed to consist entirely of 1-molecules. The density of all

the h1 1-molecules in the solution, r1
j ðrÞ ¼ +h1

‘¼1
d r� r1

‘

� �
;

is then averaged over all positions and configurations of

those same 1-molecules. The resulting mean density of

1-molecules will practically vanish over an excluded volume,

Vðrj; j; zÞ; that depends upon the particular rj and fixed

configurations j and z of the 2- and 3-molecules, respec-

tively. The quantities j and z should be regarded as gen-

eralized vectors, or lists, of the coordinates of all the atoms

in the 2-molecule and 3-molecule, respectively. Now, the

3-molecule is removed, but the configuration of the 2-molecule

is held fixed at j. The 1-molecules are allowed to equilibrate

with the 2-molecule in that same configuration j. The

mean density of those 1-molecules, whose centers lie within

the particular excluded volume, Vðrj; j; zÞ; is defined by

P1
j ðr; rj; j; zÞ [ Æ+v1j

‘¼1
d r� r1

‘

� �
æ; where the sum runs only

over the v1j (variable) 1-molecules in each configuration,

whose centers at r1
‘ lie within V(rj,j,z), and the average is

taken over all configurations of 1-molecules. This mean

density of 1-molecules in V(rj,j,z) is further averaged over

the rj (within the jth site), j, and z by repeating this initial

averaging process for various rj, j, and z, and then averaging

the results over rj, j, and z. One obtains P
ð1Þ
j ðrÞ [

Æ+v1j

‘¼1
d r� r1

‘

� �
ærj;j;§; where the subscripts denote the final

averages over rj, j, and z. By definition, the average value of

v1j for the jth site is Æv1jæ ¼
R R

0
d3r � Pð1Þ

j ðrÞ [ nj: When

species 3 has no charged groups, so electrostriction effects

are negligible, it is expected that the average number of

1-molecules that occupy an empty exchange site is

nj ffi �VV3=�VV1: Finally, rotational averaging of P
ð1Þ
j ðrÞ around

the central atom of the 2-molecule yields P
ð1Þ
j ðrÞ; which de-

pends only upon the scalar distance r from the central atom

of the 2-molecule. The normalization integral remains

unchanged, so
R R

0
d3rPð1Þ

j ðrÞ ¼ nj: It is expected that the

final smeared density,P
ð1Þ
j ðrÞ;will normally be peaked near

r ¼ Æjrjjæ and exhibit a slightly greater width than P
ð3Þ
j ðrÞ;

because the centers of multiple 1-molecules are involved.

In light of the preceding remarks, the contribution of the

jth site to the mean density of 1-molecules in the vicinity of

the 2-molecule is

c1g12ðrÞ ¼ P
ð1Þ
j ðrÞ 1= 11Kj a3ða1Þ�nj

� �� �
; (29)

and to the mean density of 3-molecules is

c3g32ðrÞ ¼ P
ð3Þ
j ðrÞ Kj a3ða1Þ�nj= 11Kj a3ða1Þ�nj

� �� �
: (30)

The fraction of occupied sites, fj, from Eq. 28 appears in Eq.

30 and 1 � fj appears in Eq. 29. The contributions of the

exchange reaction at the jth site to the preferential interaction

coefficients follow from Eqs. 21 and 22 and the respective

normalizations of P
ð3Þ
j ðrÞ and P

ð1Þ
j ðrÞ:

G
er

1jð2Þ ¼
nj � ðc1=c3ÞKja3ða1Þ�nj

11Kja3ða1Þ�nj
� � (31)

G
er

3jð2Þ ¼ �ðc3=c1Þ
nj � ðc1=c3ÞKj a3ða1Þ�nj
� �

11Kj a3ða1Þ�nj
� � : (32)

The total contributions of exchange reactions at all such

sites are Ger
1 ð2Þ ¼ +

j
Ger

1j
ð2Þ and Ger

3 ð2Þ ¼ +
j
Ger

3j
ð2Þ; where

the sums run over all sites (j), which lie beyond the macro-

molecular void volume.

A model for preferential interactions

Let us now consider a model system that exhibits simul-

taneously all of the aforementioned repulsive exclusion

forces, generic attractions, and discriminatory interactions

that are responsible for exchange. For simplicity, we shall

assume that the contributions of the various interactions to

the total mean densities, c1g12(r) and c3g32(r), are additive.

This important assumption is not generally valid and merits

some discussion. For any given fixed configuration of

species 2, the repulsive hard-core exclusion forces between 2

and either 1 or 3 affect the densities of species 1 and 3 in one

region of space, whereas attractions or repulsions of longer

range act on 1 and 3 in a different region (outside the hard

core, but still inside the macromolecular domain of radius R).

Hence, the effects of the short-range and longer-range

interactions are largely spatially complementary, and would

be expected to be nearly additive, even after configurational

and rotational averaging of species 2. Nondiscriminatory

generic attractions make no net contribution to G1ð1Þ or

G3ð2Þ and are not considered further here. In regard to

exchange reactions, some interaction between exchanging

sites is generally expected. The neglect of such interactions

renders this discussion oversimplified in an important regard,

whenever c3 is not small compared to c1: Nevertheless,

useful insights may emerge, and quantitatively useful

accuracy may be obtained whenever c3
�VV3 � c1

�VV1:
Under this additivity assumption

G1ð2Þ ¼ G
ex

1 ð2Þ1 +
j

G
er

1jð2Þ (33)

G3ð2Þ ¼ G
ex

3 ð2Þ1 +
j

G
er

3jð2Þ: (34)
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Equations 24 and 25 give the Gex
k ð2Þ in terms of c1, c3 and

DVac; and Eqs. 31 and 32 express the Ger
kjð2Þ in terms of nj,

Kj, a3, and a1.

To examine the regime of small c3 in more detail,

additional approximations are invoked. First, it is assumed

that �VV1 and �VV3 are independent of c3 (which has units of

molecules/m3) up to a molar concentration of 1.0. To lowest

order in c3, that gives c1 ¼ ð1 � c3
�VV3Þ=�VV1 ffi 1=�VV1 and

a3 ¼ g3X3 ¼ g3ðc3=ðc1 1 c3ÞÞ ffi g3 c3
�VV1; where g3 is the

activity coefficient of species 3. With these approximations,

and the exact relation, c3=c1 ¼ m3=m1; Eqs. 33 and 34

become,

G1ð2Þ ¼
DV

ac

�VV1

1 +
j

nj � Kjg3ða1Þ�nj
� �

11Kjg3c3
�VV1ða1Þ�nj

� � (35)

G3ð2Þ ¼ �ðm3=m1Þ DV
ac
= �VV1 1 +

j

nj � Kjg3ða1Þ�nj
� �

11Kjg3c3
�VV1ða1Þ�nj

� �
" #

:

(36)

Generalization of the exchange model

We imagine that a lattice of exchanging sites (or cells) with

initial volume �VV3 fills the entire osmolyte-accessible region

of the macromolecular domain of radius R $ Rmin: An

osmolyte is regarded as bound to a particular site, when its

central atom lies within that cell. The initial cell volume is

taken as V0 ¼ �VV3; so the cell size matches the partial

molecular volume of the osmolyte. Thus, if all of the initial

sites were filled, species 3 would just fill the entire volume.

The average number of 1-molecules that occupy a cell, when

the osmolyte is absent, is assumed to be n ¼ �VV3=�VV1; which is

exact far from the macromolecular surface, and is almost

certainly a fairly good approximation even near the

macromolecular surface, except when electrostriction effects

are large. Thus, the species 1 would just fill the lattice

volume in the absence of species 3. While holding the overall

lattice volume constant, one could now choose a smaller

uniform cell size for the lattice of exchange sites, namely

V̂Vm ¼ ð1=mÞ�VV3; where m $ 2 is an integer, provided that the

contributions of each site to G1ð2Þ are reduced by the same

factor, 1=m; and that the j-sums in Eqs. 35 and 36 are

extended from the original L sites of volume �VV3 to the mL

smaller sites of volume V̂Vm: For some sufficiently large value

of m, when V̂Vm ¼ �VV3=m � �VV1;G1ð2Þ should become entirely

independent of m or V̂Vm: A lattice cell size in that range is

adopted here. The center of the jth cell is taken at position

q(j), and its exchange constant, Kq(j), may vary from one cell

to the next in a limited way, so as to create a gradient of the

Kq(j) along any reasonably smooth path in the discrete q(j)
space. Both n ¼ �VV3=�VV1 and the exchange constant, Kq(j), for

each smaller cell of volume, V̂Vm ¼ �VV3=m; are taken as the

values typical of a site with the initial volume, V̂V0 ¼ �VV3;
whose center lies within that smaller cell, with the un-

derstanding that m� 1 adjacent sites are closed, whenever an

osmolyte binds to the smaller cell in question. In this way,

any region of volume �VV3 will bind one and only one os-

molyte in approximately the same way as a function of a3

or a1, regardless of the number of cells into which is it

subdivided, and the maximum densities of species 1 and 3

will remain unchanged. The smaller lattice cell volumes are

employed simply to represent the spatial variation of the

exchange constants at higher resolution than is afforded by

cells of volume �VV3: By suitable adjustment of the Kj

associated with the various sites in the lattice, it is possible to

create any conceivable mean densities c1g12(r) and c3g32(r)
at a level of resolution set by the lattice cell size, subject to

the implicit volume conservation rule invoked here (i.e.,

n ¼ �VV3=�VV1). The approximate validity of this model is

limited to the regime of small volume fraction of species 3,

so that events in any one region of volume �VV3 do not affect

events in neighboring regions of the same size. The large

anticooperativity associated with the closure of m � 1

binding sites surrounding a given site, when it becomes

occupied, generally has a very strong influence on the

system, except when the volume fraction of species 3 is

small. In that special case, for a cell volume V̂Vm; Eqs. 35 and

36 become

G1ð2Þ ¼
DV

ac

�VV1

1 ð1=mÞ+
mL

j¼1

n � Kjg3ða1Þ�n
� �

11Kjg3c3
�VV1ða1Þ�n

� � (37)

G3ð2Þ¼�ðm3=m1Þ
DV

ac

�VV1

1ð1=mÞ+
mL

j¼1

n�Kjg3ða1Þ�n
� �

11Kjg3c3
�VV1ða1Þ�n

� �
 !

:

(38)

Neutral binding

When the standard free energy change for an exchange

reaction vanishes, Kj ¼ 1.0. First, let us consider the limit of

small c3, where, g3 / 1.0 and a1 / 1.0, so the numerator of

each term in the j-sums of Eqs. 37 and 38 becomes

n � 1:0 ffi ð�VV3=�VV1Þ � 1:0: For typical small neutral osmo-

lytes, excluding molecules the size of trehalose and sucrose,

one expects that n ffi �VV3=�VV1 ¼ 3 � 5: Note that, if n ¼ 1:0;
as was assumed in early treatments of exchange by

Schellman (21–26), then n � 1:0 ¼ 0; and the entire

exchange contribution of the jth site would vanish. Although

the condition, Kj ¼ 1.0, is the point of neutrality in terms of

vanishing standard state free energy change, it is not

generally the point of neutrality in regard to purely random

binding in the neighborhood of a 2-molecule, because

n 1-molecules are released for every 3-molecule bound. The

point of neutrality in regard to random binding of 1- and

3-molecules at the jth site, when g3 ¼ 1.0 and a1 ¼ 1:0; is

clearly Kj ¼ n.

In general, sites that lie out in the bulk solution sufficiently

far from the surface of the 2-molecule can make no net
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contribution to G1ð2Þ or G3ð2Þ; so for such sites it is

absolutely required that Kj ¼ n= g3ða1Þ�nð Þ; which can be

taken as the general condition for neutrality of any site in

regard to random binding of 1’s and 3’s. Smaller values of Kj

yield a positive contribution of the jth site to G1ð2Þ:
We consider next the limit, wherein Kjg3c3

�VV1ða1Þ�n �
1:0; so the second terms in the denominators of Eqs. 37 and

38 can be ignored. The product, c3
�VV1 is unitless, and has the

same value in any units, so one can take c3 in mol/L and �VV1 in

L/mol. For small neutral osmolytes, one typically has

g3 ’ 1:0 and a1 ’ 1:0 up to c3 ¼ 1.0 M. Thus, for

c3 & 1:0 M; the inequality, Kjg3c3
�VV1a

�n
1 � 1:0; will be

satisfied, when Kj � 1= ðc3
�VV1Þ ¼ ð55:6Þ=c3: Hence, Kj

could be as large as 10, and still satisfy this inequality for

c3 ¼ 1.0 M. In other words, K could be up to 2–3 times

greater than the neutral random binding value, n ¼ 3 � 5;
and still the second terms in the denominators of Eqs. 37 and

38 would be negligibly small for all c3 up to 1.0 M. In this

limit, Eqs. 37 and 38 can be written as

G1ð2Þ ¼ X1ð1=mÞ+
mL

j¼1

n�Kjg3ða1Þ�n
� �

ffi X1ð1=mÞ+
mL

j¼1

ðn�KjÞ (39)

G3ð2Þ ¼� m3

m1

� �
X1

1

m

� �
+
mL

j¼1

n�Kjg3ða1Þ�n
� � !

ffi� m3

m1

� �
X1

1

m

� �
+
mL

j¼1

ðn�KjÞ
 !

; (40)

where X [ DVac=�VV1 is the difference between the volumes

accessible to 1 and 3 in units of �VV1: As noted above,

DVac ¼ Vex
3 � Vex

1 is generally positive, because the osmo-

lyte generally exceeds the water in size, so X should also be

generally positive. The j-sum (of binding terms) can in

principle take either sign, depending upon the magnitude

of Kj.

Variation of G1(2) and G3(2) with c3

Equations 39 and 40 predict that G1ð2Þ should be nearly

constant independent of c3, and that G3ð2Þ should vary nearly

in proportion to m3 with constant slope, up to c3 ¼ 1.0 M. In

fact, for seven different osmolytes interacting with BSA, it

was found that Gm

m1 ;m3
; hence also G3ð2Þ; varied in proportion

to m3 with a constant negative slope up to m3 ¼ 1.0 molal

(5,29,30; J. G. Cannon, personal communication, 2005). The

negative slope implies that the total j-sum is either positive or

not so negative that it overwhelms the positive value of X.

The constant slope indicates that the second terms in the

denominators of Eqs. 37 and 38 are negligible up to m3 ¼
1.0 m, which in turn implies that (in the case of BSA) most

of the contribution from the j-sum must arise from sites

with Kj-values that do not exceed by more than approxi-

mately threefold the random binding value, Krand
j ¼

n= g3ða1Þ�nð Þ ’ n ’ �VV3=�VV1:
Because X derives from a shell volume with a thickness

equal to the difference in radius between the osmolyte and

water, it is expected to vary nearly in proportion to the area in

the case of macromolecules with homologous surfaces.

Likewise, the j-sum concerns primarily just the contact layer

and a few additional layers of osmolyte or water, so that it

too is expected to vary nearly in proportion to the area in the

case of macromolecules with homologous surfaces. Courte-

nay et al. (6) noted that numerous globular proteins exhibit

similar values of the ratio, �G3ð2Þ=ðm3AsÞ; where As is the

water accessible area.

Analysis of G1(2)-values for BSA

Experimental values of G1ð2Þ for different osmolytes

interacting with BSA are obtained from the corresponding

Gm
m1;m3

determined by the Record group (5,29,30; and J. G.

Cannon, personal communication, 2005) via the relations

Eqs. 22, 23, and 40, which are combined to give

G1ð2Þ ¼ X1S¼�ð55:6Þ G
m

m1;m3
=m3

� �
; (41)

where X ¼ DVac=�VV1; and S ¼ ð1=mÞ+mL

j¼1
ðn � KjÞ: By

combining the measured value of Gm
m1;m3

with an estimate

of X obtained from the protein structure, it is possible to

obtain an experimental estimate of S.

Although no crystal structure has been reported for BSA,

it is assumed to be satisfactorily modeled by human serum

albumin. BSA has 607 amino acid residues and HSA has

609, which are 76% homologous with the BSA sequence.

Only 578 of the 609 residues of HSA are resolved in the

crystal structure (31). Here the molecular volume reckoned

for the crystal structure is simply scaled by 609/578 ¼ 1.054

to estimate the corresponding volume for the full HSA (or

BSA). However, the DVac reckoned for the crystal structure

corresponds to the volume of a relatively thin shell of a given

thickness about the macromolecule, so it is scaled by the

factor ð1:054Þ2=3 ¼ 1:035: The osmolyte and water acces-

sible areas are also scaled by 1.035 to estimate the

corresponding areas for HSA (or BSA). The various volumes

and areas are reckoned using the program MSROLL (32).

The crystal structure contains an HSA dimer and seven water

molecules. The nonhydrogen atoms of both the water

molecules and the second dimer and their coordinates are

deleted from the list of atomic coordinates, leaving just the

atoms and coordinates of the 578 resolved residues of the

first monomer. The program assigns a van der Waals radius

to each atom or group of HSA. An effective radius,

Ri ¼ ð1=2Þð�VViÞ1=3; is assigned to water (i ¼ 1) and to each

osmolyte (i ¼ 3).

The molecular displacement volume (�VVdis) of HSA in

water is determined by rolling a water-size sphere of radius

R1 ¼ 1:48 Å around its exterior van der Waals surface in
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each of a series of closely spaced parallel planes. The

program reckons the volume inside the continuous surface

formed by the contact surface(s) of the sphere with the van

der Waals surface of the protein plus the so-called reentrant

surface(s) that bridge the gaps in the contact surface by

following the interior surface of the bridging sphere. We

obtain �VVdis ¼ 76; 762Å3 for HSA, which is then scaled by

1.054 to estimate �VVdis ¼ 80; 879Å3 for BSA. This molecular

displacement volume cannot be occupied by any part of the

1.48 Å sphere, and for numerous globular proteins is found

to lie within 1–2% of the partial molecular volume �VV2 (S.

Aragon, unpublished data). Courtenay et al. (5) report
�VV2 ¼ 81; 651Å3 for BSA, which differs by ;1% from the
�VVdis calculated above. This agreement provides an important

check on the structure and computational protocols used, but

does not pertain directly to the preferential interaction

coefficients.

Next we obtain the volumes excluded by HSA to the cen-

ters of water-size or osmolyte-size spheres. This is the

volume inside a surface that is traced out by the center of the

osmolyte sphere or water sphere, as it rolls over the surface

of the protein, and represents the void volume in gex
12ðrÞ or

gex
23ðrÞ: Although MSROLL does not calculate the volume

inside the excluded-center surface directly, that volume can

be reckoned by first inflating the atomic van der Waals radii

by R1 or R3 and using a probe sphere of zero radius. The

resulting contact plus (vanishing) reentrant surface is the

same surface traced out by the center of a sphere of radius R1

or R3; as it rolls over the uninflated van der Waals surface,

and its interior volume is calculated by the program. The

difference between the volume excluded to an osmolyte and

that excluded to a water center is just DVac ¼ Vex
3 � Vex

1 for

that osmolyte, as illustrated in Fig. 2. After scaling DVac by

1.035, it is divided by the molecular volume of water,
�VV1 ¼ 29:9Å3; to obtain X ¼ DVac=�VV1: Then the exchange

contribution, S ¼ G1ð2Þ � X; is finally evaluated. The results

for X and S are presented for seven different osmolytes

interacting with BSA in Table 1. In every case, X exceeds the

magnitude of S. Thus, in the case of BSA, the largest

contribution to G1ð2Þ is simply a geometrical consequence of

the fact that the osmolytes are substantially larger than water

and therefore have a larger effective sphere radius. Four of

the osmolytes, urea, glycerol, proline, and trehalose, exhibit

a negative value of S, which indicates that Kj is on average

greater than its neutral value, n ffi �VV3=�VV1; and implies

a greater than random preference of the osmolyte for

exchanging sites within the macromolecular domain. The

remaining three osmolytes, trimethylamine N-oxide (TMAO),

K1glutamate, and betaine glycine, exhibit a positive value of

S, which indicates that Kj is on average less than its neutral

value, and implies a lower than random preference of these

osmolytes for the exchanging sites.

In previous work in this field, it was commonly assumed

that G1ð2Þ (or G3ð2Þ) is determined primarily by exchange

sites within the first surface-contact layer. We now also

assume that the exchanging sites are confined to the first

FIGURE 2 Schematic illustration (not to scale) of the difference between

the volume excluded to osmolyte (large sphere) and to water (small sphere)

by human serum albumin. The desired volume is that of the shaded shell

between the surfaces traced out by the center of an osmolyte-size sphere and

that traced out by a water-size sphere, as those spheres are rolled over the

surface of the protein. The sizes of the water and osmolyte relative to that of

BSA are exaggerated for illustrative purposes.

TABLE 1 Excluded volume (X) and exchange reaction (S) contributions to G1ð2Þ and G3ð2Þ for osmolytes interacting with BSA

�VV3=�VV1
y �ð55:6ÞðG3ð2Þ=m3Þ* X* S Ls ÆKæ=ð�VV3=�VV1Þ

Urea 2.45 217 560 �343 1364 1.10

Glycerol 3.92 250 777 �527 932 1.15

TMAO 4.01 1389 888 1501 911 0.86

Proline 4.60 778 981 �203 820 1.05

K1glu� 5.03 1111 1048 163 755 0.95

Betaine 5.43 1283 1107 1176 712 0.96

Trehalose 11.61 1167 1762 �595 392 1.12

*The G3ð2Þ=m3 ¼ Gm
m1;m2

=m3 ffi Gm
m3
=m3 and �VV3 values for the different osmolytes were reported by Courtenay et al. (5), Felitsky et al. (29), Hong et al. (30),

and J. Cannon (2005, personal communication). The X-values were reckoned using the MSROLL program with effective osmolyte radii (R): urea (2.09 Å),

glycerol (2.45 Å), TMAO (2.47 Å), proline (2.58 Å), K1 glutamate (2.66 Å), betaine glycine (2.73 Å), and trehalose (3.52 Å), as described in the text.
y�VV1 ¼ 2:993 10�23 cm3=molecule.
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surface-contact layer. We take the number (Ls) of surface-

contiguous sites for species 3 to be the accessible area traced

out by the center of a sphere of radius R3 rolled over the van

der Waals surface of HSA, scaled by the factor 1.035, and

divided by the area, ð�VV3Þ2=3; of a single site of volume �VV3:
Values of Ls for the different osmolytes are also included

in Table 1. For these sites, the cell volume is V̂Vm ¼ �VV3; so

m ¼ 1.0, and mL ¼ L ¼ Ls: In this case, S ¼ Lsðn � ÆKjæÞ;
where ÆKjæ ¼ ð1=LsÞ+j

Kj is the average exchange constant

for the surface-contiguous sites of species 3. From the values

of S, Ls; and n ¼ �VV3=�VV1; we estimate ÆKjæ=ð�VV3=�VV1Þ; which is

the ratio of the average exchange constant to its neutral (or

random) value. These values are listed in the final column of

Table 1. These ÆKjæ=ð�VV3=�VV1Þ ratios are all remarkably close

to 1.0, with a maximum deviation of ,;0.15. By this

criterion the average interactions of these osmolytes with the

BSA surface are all surprisingly similar.

Comparisons with prior work

An advantage of this formulation for G1ð2Þ (or G3ð2Þ) in

terms of the pair correlation functions (Eqs. 21 and 22) in

comparison to the thermodynamic formulation in terms of

numbers of molecules in the macromolecular domain (Eq. 3)

is that the excluded volume contribution is unambiguously

given byDVac ¼
R R

0
dr gex

12ðrÞ � gex
32ðrÞ

� �
¼ Vex

3 � Vex
1 ; which

is the volume of the shell in Fig. 2.

Shimizu (13) and Shimizu and Smith (14) employed a

single ‘‘excluded’’ volume, VE; that is independent of the

water or osmolyte, and is essentially the macromolecular

displacement volume, VVdis; that is excluded to any part of

a water or osmolyte molecule. Those authors approximated

the excluded volume contribution to the numbers of water and

osmolyte molecules in the macromolecular domain by�c1VE

and �c3VE; respectively. Their use of the same value, VE; for

both Vex
1 and Vex

3 leads to complete cancellation of the

excluded volume contribution to G1ð2Þ; which is incorrect.

However, the primary focus of their work was to determine

G12 and G23 separately, and to interpret the excess quantities,

c1G12 and c3G32: For that purpose, the use of VE in place of

Vex
1 or Vex

3 may be a reasonable approximation.

Schellman (18) evaluated the cross-second virial co-

efficient, B23; of the osmotic pressure for components 2 and 3

in terms of an integral over the potential of mean force

between the osmolyte and macromolecule (averaged over all

positions and numbers of the water molecules). The

excluded volume contribution to that integral is the volume

excluded by the macromolecule to the osmolyte centers, and

is reckoned by a protocol identical to that employed here,

except that the corresponding excluded volume for the water

centers was not subtracted from that for the osmolyte. The

exchange reaction of Schellman is the replacement of a single

water molecule at a site by a single osmolyte at the same site,

and its contribution to B23 is expressed in terms of the

exchange constant, K̂Kj ¼ ðf3=f1Þ=ðf3=f1Þ; where f3 and f1

are the fractional occupations of the jth site by osmolyte and

water, respectively, and f1 and f3 are the volume fractions

of osmolyte and water, respectively, in the bulk solution. The

exchange reaction contribution was then summed over all

sites. The primary objective was to express the change, DB23;
in B23 upon unfolding of the protein (species 2) in terms of

the change in volume excluded to osmolyte centers and the

change in the exchange reaction sum, and to assess their

relative magnitudes. It was suggested that c3B23 is ‘‘the total

excess of cosolvent molecules in the neighborhood of the

protein. Its identity with the preferential interaction co-

efficient (in the absence of nonideality) is thus completely

explained at the molecular level’’. In fact, Schellman’s c3B23

is not identical to the G3ð2Þ obtained here, or to Gm
m1;m3

or to

Gm
m3
; because c3B23 clearly lacks the contribution,

�c3

R R

0
dr gex

12ðrÞ � 1
� �

; that is explicit in Eqs. 20 and 22.

Provided that �VV1 and �VV3 are independent of c2 and c3; this

G3ð2Þ is identical to Gm
m1;m3

¼ ð@m3=@m2ÞT;m1;m3
and very

close to Gm
m3

¼ ð@m3=@m2ÞT;P;m3
: However, Schellman’s os-

motic pressure calculation is carried out (implicitly) for

constant m1; so that c3B23 is conceivably identical to

Gm
m1

¼ ð@m3=@m2ÞT;P;m1
; although a rigorous proof of that

conjecture is lacking. As noted previously (5,19,20), Gm
m1

differs considerably from Gm
m1;m3

and also from Gm
m3

under the

usual conditions of moderately low osmolyte concentration.

In any case, Schellman’s conclusion that urea occupation of

the surface-contiguous layer exceeds the random value by

modest amounts up to 15% for the five proteins analyzed

(ribonuclease T, ribonuclease A, hen egg white lysozyme,

staphylococcus nuclease, and T4 lysozyme) is consistent

with the corresponding result of this analysis for urea inter-

acting with BSA, where urea occupation exceeds the random

value by 10% (c.f. Table 1).

Record and co-workers applied the thermodynamic two-

domain model to analyze their preferential interaction

coefficients (9). They demonstrated that G3ð2Þ was pro-

portional to m3 and presented evidence that G3ð2Þ is

correlated with the osmolyte accessible surface area

(5,29,30). They introduced a local domain-bulk domain

partition coefficient, instead of an osmolyte-water exchange

constant, and initially proposed that the volume of the local

domain was that of the surface-contiguous water molecules

(5). Because the centers of the larger osmolytes lie entirely

outside such a domain, the osmolyte number within such

a local domain is either vanishing or not well defined without

additional assumptions, so the local-bulk partition coefficient

in such cases is not well defined. In general, the local-bulk

partition coefficient depends upon the total volume of the

local domain, much as the average exchange constant

depends upon the total number of exchange sites of volume

;�VV3: In their studies to date, Record and co-workers have

made no attempt to treat the separate contributions of

excluded volume on one hand and the exchange reactions, or

osmolyte partitioning into the accessible local domain

volume, on the other. They have investigated the positive
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correlation between G3ð2Þ for betaine glycine and the

fraction of the accessible macromolecular surface area that

is associated with the anionic oxygen atoms of carboxylate

or phosphate groups, and have proposed that the local

domain includes two layers of more strongly bound water

over those parts of the surface (29,30). That phenomenon can

be analyzed in greater detail using this formulation and

model, but that lies outside the scope of this article.

Strong water binding/weak osmolyte
binding sites

It is conceivable that some macromolecules might exhibit

a number of sites, wherein the water is rather more tightly

bound and difficult to displace by common osmolytes. For

such sites, Kj would lie far below the random binding value,

Krand
j ¼ n= g3ða1Þ�nð Þ; which declines with decreasing a1,

up to moderately high values of c3 (or down to correspond-

ingly low values of a1). For such sites, the Kjg3c3
�VV1ða1Þ�n

terms in the denominators of the j-sum (in Eqs. 35 and 36)

are negligibly small compared to 1.0 up to rather high values

of c3 (.1.0 M). Because the Kjg3ða1Þ�n
terms in the numer-

ators are also negligibly small compared to their n-terms, the

n-terms collectively provide the main contribution of such

sites to the j-sum. Osmolytes of similar size should exhibit

similar n-values for any given site. Hence, for osmolytes of

similar size, a dependence on osmolyte structure can enter

the j-sum only through the Kj-terms. However, if those terms

are negligibly small compared to n, as is the case for strong

water binding sites, then the contribution of such terms to the

j-sum, to G1ð2Þ; and to G3ð2Þ; will be negligibly small. Thus,

even though the Kj doubtless vary with osmolyte structure

for osmolytes of comparable size, that variation will be

negligible compared to the+n and to the total contributions of

the strong water-binding sites to the j-sum, or to G1ð2Þ; or to

G3ð2Þ; provided that neither c3 is too large, nor a1 too small.

Upon increasing c3, al decreases, ða1Þ�n
increases, and the

Kjg3c3
�VV1ða1Þ�n

term in the denominator of each term in the

j-sum increases toward (and eventually beyond) 1.0. In

addition, the Kjg3ða1Þ�n
term in the numerator of each term

in the j-sum increases toward its n or beyond. Both effects act

to decrease G1ð2Þ and also to shift the negative slope of

G3ð2Þ with respect to c3 toward less negative, or more

positive, values. Such effects depend upon the Kj, and hence

upon the chemical structure of the osmolyte. Thus, the

contribution of strong water-binding sites to G1ð2Þ and G3ð2Þ
is expected to be independent of osmolyte structure only for

osmolytes of comparable size in the regime of strong

exclusion of 3-molecules, when c3 is not too large.

INTERPRETATION OF DG1(2) FOR HYDRATION
COUPLED REACTIONS

In experimental studies of the effects of osmolytes on

equilibrium constants (K) for macromolecular reactions, it is

typically found that ln K varies in proportion to ln a1, when

c3 is not too large. Thus, DG1ð2Þ (c.f. Eq. 1) typically

remains practically constant over the range of c3 examined.

This is in accord with Eqs. 19–21, 35, 37, 39, and 41, when

c3 is moderately small.

For simplicity we consider a conformational change of the

macromolecule, 2A � 2B; where the subscripts ‘‘A’’ and

‘‘B’’ denote different conformations of species 2. When

c3 & 1:0 M; Eqs. 39–41 apply to 2A and 2B separately. We

adopt identical space-filling lattices of exchange sites

centered at q(j), j ¼ 1,2, . . . , in the regions surrounding the

hard-cores of species 2A and 2B. It is assumed that

n ¼ �VV3=�VV1 is the same for a given osmolyte in the lattices

around both A and B. Then, Eq. 41 gives

DG1ð2Þ[G1ð2BÞ�G1ð2AÞ ¼ XB �XA1ðSB �SAÞ; (42)

where XB and SB are the excluded volume and exchange

reaction contributions for species 2B; and XA and SA are the

corresponding quantities for species 2A: Equation 42 applies

only in the small c3 limit, where g
3
ða1Þ�n ffi 1:0; so DG1ð2Þ

remains nearly constant with increasing c3; as found

experimentally. We now divide the surfaces of both A and

B into two regions, namely the ‘‘passive’’ regions that are

the same in the B conformation as in the A conformation,

and the ‘‘active’’ regions that differ between the two

conformers. An active region may consist of surface that is

either exposed or buried during the A / B transition, so that

it is present in one species, but not in the other. It may also

contain surface whose topography is reconfigured during the

A/B transition, so as to alter the number and/or exchange

constants of the exchanging sites associated with that part of

the surface. A particular example would be the widening or

narrowing of the angle of a cleft during the A / B

transition. Under the assumption that the main contributions

to XA; XB; SA; and SB involve only regions of the solution

that are reasonably proximal to the surface of A or B, the

contribution of the passive parts of the surface to DG1ð2Þ is

expected to cancel. Furthermore, the sums over exchanging

sites associated with the active parts of the surface can be

divided into the terms arising from strong water-binding/

weak osmolyte-binding sites, for which Kj can be neglected

in favor of n, and those terms arising from more neutral

water-binding sites. Then,

DG1ð2Þ ¼ ðXB �XAÞ1 L
B

s �L
A

s

� �
n1L

B

n n� ÆKB

n æ
� ��

�L
A

n n� ÆKA

n æ
� �

�a; (43)

where the subscript ‘‘a’’ on the square bracket indicates

that all quantities therein pertain only to the active parts of

the surface, LB
s and LB

n are the numbers of strong (s) and

more neutral (n) water-binding sites of volume V̂Vm ¼ �VV3;
respectively, associated with the active part of the surface of

conformer 2B; L
A
s ; and LA

n are the corresponding quantities

for conformer 2A; and ÆKB
n æ and ÆKA

n æ are the average

equilibrium constants of the more neutral water-binding sites
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associated with the active surfaces of 2B and 2A; re-

spectively. Weak water-binding/strong osmolyte-binding

sites are not considered here, because, if significant, they

would cause DG1ð2Þ to vary with c3; which is not observed.

The LB
n and LA

n need count only those more neutral sites

sufficiently near the surface that
�
n � KB

nj

�
and

�
n � KA

nj

�
differ significantly from zero.

When is DG1(2) independent of the chemical
structure of the osmolyte?

What are the conditions under which DG1ð2Þ is or is not

independent of the chemical structure of the osmolyte for

osmolytes of comparable size? The XB � XA term in Eq. 43

depends on the osmolyte’s size, but not on its chemical

structure. The LB
s � LA

s

� �
n term also varies with the size,

but not the chemical structure, of all those osmolytes that

have a common set of strong water-binding sites around

conformer 2B and another common set around conformer 2A:
Nonionic, non-zwitterionic osmolytes of similar size, such as

ethylene glycol and acetamide, should have the same set of

strong water-binding/weak osmolyte-binding sites around

a given conformer. In contrast, osmolytes of similar size, but

different ionic character, such as glycerol and TMAO, may

well have different sets of such sites around conformers 2A

and 2B; and would likely exhibit different LB
s � LA

s

� �
n terms.

In general, the ÆKB
n æ and ÆKA

n æ vary with both the osmolyte’s

size and its chemical structure, especially for surface-

contiguous sites, and the LB
n n � ÆKB

n æ
� �

� LA
n n � ÆKA

n æ
� �

term is expected to vary from one osmolyte to another,

except in the event of accidental cancellation, or in the event

that active regions of the surface consist only of strong

water-binding sites, in which case these terms vanish. Except

in special cases, discussed below, one expects to find that

DG1ð2Þ varies with both osmolyte chemical structure and

size. Such variations of DG1ð2Þ with the osmolyte’s chemical

structure and size have often been reported (2,6,33–36). For

many of these processes the magnitude of DG1ð2Þ was found

to increase with osmolyte size, as would be expected, if the

2A / 2B transition involved a significant change in

macromolecular surface area, and if also XB and XA exceed

jSBj and jSAj; respectively, as is the case for BSA.

One scenario, wherein DG1ð2Þ is independent of the

osmolyte’s chemical structure, occurs when the active

regions of the surface almost completely enclose pockets

or channels that cannot be penetrated by any osmolyte

exceeding a certain size. In such a case, there are no

exchanging sites of any kind within the pocket or channel,

and DG1ð2Þ ¼ XB � XA arises entirely from the excluded

volume contribution. Because all osmolytes exceeding

a certain size are completely excluded from the pocket or

channel in 2B; one has ½XB�a ¼ Vex
3 � Vex

1

� �
Ba
=�VV1; which is

just the volume of the pocket or channel in 2B that is

accessible to water centers, but excluded to osmolyte centers,

divided by �VV1; which is approximately the number of

nondisplaceable water molecules within the pocket or

channel of 2B: A similar relation applies to ½XA�a: In this

scenario, DG1ð2Þ can be regarded as the change in the

number of bound water molecules, or more precisely in the

number of water molecules that cannot be displaced by any

osmolyte above a certain size. This nondisplaceable water

scenario is typically proposed to rationalize the observation

that DG1ð2Þ (or �DG3ð2Þ=m3) is independent of the chemical

structure and size of the osmolyte over a significant range of

osmolyte kinds and sizes (6,7,38–39). However, this

scenario seems unlikely to account for the observations of

Spink and Chaires (33), who studied the effects of ethylene

glycol, acetamide, glycerol, and sucrose on DNA melting.

The inverse melting temperature, T�1
m ; varied linearly with ln

a1: The slope, @ T�1
m

� �
=@ln a1; was similar for ethylene glycol,

acetamide, and glycerol, corresponding to DG1ð2Þ ¼ �4

water molecules per basepair, but was substantially greater

for the much larger sucrose, as expected, because it is unable

to penetrate the minor groove and perhaps other nooks, as

well. However, crystal structures of duplex B DNAs appear

to provide no spaces in which to sequester water molecules

so that they cannot in principle be displaced by osmolytes as

small as ethylene glycol or acetamide, or even by glycerol.

Recent and ongoing work in our lab (40) suggests that

ethylene glycol and acetamide at 37�C induce a transition to

an alternative duplex conformation within the B-family, and

may do so in a similar, though not completely identical,

manner as a function of ln a1: These findings suggest that

another mechanism may exist by which osmolytes may exert

effects that depend only weakly on their chemical structure

or even size over a limited range.

Water in small confined spaces, whether accessible to

osmolytes or not, is likely to be at least partially ordered.

When two atomically smooth cylindrical mica surfaces in

aqueous media are pressed together with perpendicular

orientation, the force at first rises smoothly with decreasing

distance, and then for distances # 18Å exhibits five to six

oscillations, as successive water layers are squeezed out (41).

This suggests that water molecules in clefts and grooves of

width # 18Å are likely to be at least partially ordered. In

fact, high resolution x-ray diffraction studies at �110�C
revealed some four layers of partially ordered water in and

above the minor groove of a B-DNA (42,43). The absence of

crystallographic evidence for more widespread occurrence of

more than two layers of ordered water molecules in clefts,

grooves, and pits might arise from the coexistence of two or

a few different partially ordered water structures within the

same cavity, which would appear to be disordered with

a concomitant loss of resolution of the translationally ordered

water. In any case, it would be premature, in our view, to

conclude that water molecules in clefts and grooves of DNA

and protein surfaces are not partially ordered on the basis of

the extant reported crystal structures. If partially ordered

multilayers exist in certain clefts and grooves, as we suspect,

then there also exist multiple exchanging sites within that
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space, where the osmolyte does not contact the macromo-

lecular surface. For such sites, the SB � SA terms in DG1ð2Þ
(Eq. 42) might vary much less with osmolyte chemical struc-

ture than is the case for surface-contiguous sites, as described

below.

We speculate that the osmolyte is preferentially excluded

from any partially ordered water multilayer, much as

impurities are excluded from macroscopic crystalline ice.

In such a case, the exchanging sites within the array are

necessarily of the strong water-binding/weak osmolyte-

binding variety. Hence, the exchange constant, KqðjÞ; along

an approaching trajectory should decline from its random

value, �VV3=�VV1; in bulk solution to a much smaller value

typical of strong water-binding sites, as indicated in Fig. 3.

Although the KqðjÞ-values in the interior and bottom of the

array (i.e., to the left of qðMÞ) may depend strongly on the

osmolyte’s chemical structure, that will not matter much,

because for those sites, KqðjÞ � �VV3=�VV1 in any case. However,

in the region immediately exterior to (i.e., to the right of)

qðMÞ; the KqðjÞ-values also depend on the osmolyte chemical

structure and are large enough to make a significant con-

tribution compared to the �VV3=�VV1 term for each site. Indeed,

sufficiently far to the right of qðMÞ; the KqðjÞ ¼ �VV3=�VV1

everywhere in the bulk solution, and the corresponding

(n � KqðjÞ) terms in S for those sites vanish altogether. It is

conceivable that the deeper, strong water-binding sites in the

cleft are much more numerous than the more neutral water-

binding sites at the outer surface of the hydration multilayer,

as illustrated in Fig. 4 a, so the XB and LB
s n terms dominate

the LB
n n � ÆKB

n æ
� �

term in Eq. 43 for the B conformer, and a

similar circumstance prevails for the A conformer. In such

a case, the relative variation of DG1ð2Þ with osmolyte

FIGURE 3 Variation of the equilibrium constants for osmolyte/solvent

exchange of two different neutral nonzwitterionic osmolytes of different

size, aand b, along the same path passing from the bulk solution into

a hydration multilayer from which the osmolytes are strongly excluded. The

macromolecule (protein or DNA) exhibits two different conformations, A

and B, and A has a more distant outer boundary of its hydration multilayer

than does B. The larger osmolyte a is unable to exchange with sites as close

to the outer edge of the hydration multilayer as those accessed by the smaller

osmolyte b, and that is true for either conformation, A or B, of the

macromolecule. Nevertheless, in this scenario, the difference in positions

where the exchange constants turn down for the two conformations, namely		qB
aðM$Þ

		� 		qA
a ðMÞ

		 for osmolyte a and
		qB

bðM%Þ
		� 		qA

b ðM9Þ
		 for

osmolyte b, is practically the same for both osmolytes, regardless of their

chemical composition or size. The positions, qðMÞ where the exchange

constants turn downward, correspond to the position where the osmolyte

would first contact the outermost hydration layer, if that layer did not melt.

FIGURE 4 (a) Schematic illustration of an osmolyte molecule approach-

ing a partially ordered hydration multilayer in a cleft of a protein (or DNA)

molecule. The maximum occupation positions of the water molecules are

denoted by the ordered array of spheres in this diagram. The path of the

osmolyte through the lattice of osmolyte/solvent exchange sites surround-

ing the protein-water complex begins at position qð1Þ in the bulk solution

and passes through a sequence of sites that are designated by

qð‘Þ; ‘ ¼ 1; 2; . . . (b) As the osmolyte approaches the partially ordered

hydration multilayer, the latter ‘‘melts’’ to form a liquid water film that wets

the surface of the remaining partially ordered waters, and separates the

osmolyte from the partially ordered water. Direct contact between the

osmolyte and partially ordered water is thereby prevented, and the osmolyte

remains surrounded by liquid everywhere along its advancing trajectory.

The free energy cost to ‘‘melt’’ the ordered water resists the advance of the

osmolyte toward the protein (or DNA), by decreasing the equilibrium

constant for osmolyte/solvent exchange as the osmolyte begins to displace

the partially ordered water.
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chemical structure for osmolytes of a similar size might be

rather modest, because the largest terms, XB � XA and

LB
s � LA

s

� �
n; are practically invariant to osmolyte structure.

More complete invariance of DG1ð2Þ to the chemical

structures of osmolytes of similar size requires that the

identity of the osmolyte be concealed from the partially

ordered water, as it approaches from bulk solution to the

position, qðMÞ; of the steep descent. We propose the

following speculative mechanism. If the contact surface free

energy between the hydration multilayer and the osmolyte

sufficiently exceeds the sum of the surface free energy

between the hydration multilayer and liquid water and that

between liquid water and the osmolyte, then the hydration

multilayer will ‘‘melt’’ in front of the advancing osmolyte to

create an interposed liquid water film as indicated in Fig. 4 b.

As an example, crystalline ice forms a stable liquid film at its

interface with air, provided that the temperature is not too far

below the freezing point (44,45). In this case, the chemical

structure of the osmolyte is not directly sensed by the

partially ordered water, from which it is separated by the

liquid film. Of course, there may also be partially ordered

water associated with the osmolyte. Under these conditions,

for osmolytes of similar size, the KqðjÞ are practically

independent of the osmolyte’s chemical structure from

position qð1Þ in the bulk to qðMÞ: The KqðjÞ may vary with

osmolyte structure at deeper sites to the left of qðMÞ; not

only for those sites that place the osmolyte in contact with

the macromolecular surface, but also for those where the

liquid film cannot form, perhaps due to the higher free

energy cost of melting those layers. However, those KqðjÞ-
values are very small compared to �VV3=�VV1 in any case, and

contribute little to G1ð2BÞ; G1ð2AÞ; or DG1ð2Þ: In this

scenario, DG1ð2Þ is practically independent of chemical

structure for osmolytes of the same hydrated size, but it

cannot be identified simply with a change in the amount of

bound water in the multilayer, because some of the KqðjÞ
terms make a significant contribution.

In an ideal case, DG1ð2Þ may also be largely independent

of osmolyte size over a limited range of osmolyte sizes. To

exhibit such behavior, both the excluded volume contribu-

tion, ½XB � XA�a; and the exchange reaction contribution,

½SB � SA�a; associated with the active part(s) of the surface

must display practically the same values for two osmo-

lytes, a and b, of different size. That is, one must

have, ½XB � XA�ba ¼ ½XB � XA�aa ; where ½XB�ba ¼
�
½Vex

b �Ba

�½Vex
1 �BaÞ=�VV1 is the difference between the volume excluded

by species B to osmolyte b and that excluded to solvent 1 in

units of VV1; and similar definitions apply to ½XA�ba ; ½XB�aa ; and

½XA�aa : This condition is equivalent to ½Vex
b �Ba � ½Vex

b �Aa ¼
½Vex

a �Ba � ½Vex
a �Aa: The difference volume, ½Vex

b �Ba � ½Vex
b �Aa;

may well be nearly independent of the size of the osmolyte b

over a limited range of sizes, because it corresponds to the

volume of a partial ‘‘shell’’, associated with the active parts of

the surface, whose thickness is just the difference in the

positions of the active surfaces of the B and A conformers

relative to their own central atoms. In such a case, ½XB�
XA�ba ffi ½XB � XA�aa

� �
: In addition, an osmolyte of smaller size

(b) begins to penetrate the hydration multilayer at a closer

distance to the surface of conformer B than does an osmolyte of

larger size (a), so that its KqðjÞ turns downward at a cor-

respondingly smaller distance ðqB
bðM9Þ vs: qB

aðM9ÞÞ; as in-

dicated in Fig. 3. However, if the separation between the

turndown positions for those two osmolytes (b and a) is the

same for conformer A as for conformer B, as indicated in Fig. 3,

then the contribution of the smaller osmolyte to DG1ð2Þ may

be nearly the same as that of the larger osmolyte. This can be

seen from the expression, ½SB � SA�aa ¼ �ð1=�VV1Þ
R
dqðjÞ

�
ððKBa

qðjÞ=naÞ �ðKAa
qðjÞ=naÞÞ�a; wherein na ¼ VVa =�VV1; �VVa is the

volume of the exchange sites, which is here taken as the partial

molecular volume of the osmolyte a, and KBa
qðjÞ and KAa

qðjÞ are

the exchange constants for an osmolyte a with its center in

the volume element dqðjÞ at position qðjÞ in the vicinity of the

species B or A, respectively. The integral is taken over the

volume of the osmolyte accessible region extending from

the active part of the macromolecular surface out to the point,

where both KBa
qðjÞ=na ¼ 1:0 and KAa

qðjÞ=na ¼ 1:0; so the inte-

grand vanishes. Analogous considerations apply for ½SB� SA�ba :
For the case illustrated in Fig. 3, where the difference between

the downturn positions of the osmolyte b in the vicinity of B

and A is very similar to the corresponding difference for the

osmolyte a, the integrals may well take rather similar values for

two osmolytes of somewhat different size, hence their

½SB � SA�a-values may also be nearly identical. Under these

conditions, then, DG1ð2Þ may become independent of osmolyte

size, as well as osmolyte chemical structure, over a limited

range of osmolyte sizes. However, DG1ð2Þ does not necessarily

correspond to the change in the amount of ordered water,

because some of the KqðjÞ terms make a significant contribution.

It is not known whether a liquid film actually is formed

between a hydration multilayer and an osmolyte, or at what,

if any, depth it ceases to form, because the free energy

required to ‘‘melt’’ an interior layer is simply too high.

Nevertheless, this scenario may merit consideration in those

cases, where DG1ð2Þ is found to be independent of osmolyte

chemical structure for osmolytes of the same size, and

perhaps also independent of osmolyte size over a limited

range of sizes, but where also the crystal structure appears to

provide no places to sequester water in such a way that it

could not be displaced by those same osmolytes.

Possible biological relevance of highly
excluded osmolytes

It is noteworthy that cells employ osmoprotectants that are

zwitterionic (betaine glycine, glycine, proline, and trimethyl-

amine N-oxide) or both ionic and zwitterionic (glutamate),

and which are excluded from 2.3 to 5.3 times as much water-

occupied volume as is glycerol, for which �VV3 ¼ 3:9 �VV1: Cells

also employ neutral nonzwitterionic species, such as

trehalose, which has a larger �VV3; and is also excluded from
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three times as much water as glycerol. Such superexcluded

osmolytes are unable to displace some of the innermost water

molecules in clefts, grooves, and pits. It is conceivable that

these osmolytes have been selected to lower a1 without

displacing important inner water molecules associated with

the cell’s macromolecules, which may be the most strongly

coupled to changes in macromolecular structure and

function. Felitsky et al. (29) proposed that betaine glycine

was commonly selected as an osmoprotectant, because it has

the least effect on protein-unfolding equilibria for a given

osmolality. It is not unlikely that both functions, namely

preserving inner waters and minimally altering unfolding

equilibria, are important for an osmoprotectant.

APPENDIX A: DEFINITION OF Gab(R) IN THE
GRAND ENSEMBLE

The pair correlation function is defined in the following way. First, a par-

ticular atom at the same topological position in every molecule of a given

kind is arbitrarily designated as its central atom. The coordinates of the

central atom of the ith molecule of the ath kind are denoted by rai ; and the

coordinates of its remaining ð§a � 1Þ atoms are denoted by a generalized

3ð§a � 1Þ3 1 vector, Sai : The full set of coordinates of all the atoms in the

ith molecule of kind a are denoted by a generalized 3§a 3 1 vector,

Ra
i ¼ rai ;S

a
i

� �
: The full set of all of the coordinates of all the atoms in all the

molecules in the volume V are denoted by a generalized vector R of

dimension M ¼ +N

a¼1
Na � 3§a; which has associated volume element dMR.

The potential energy function U(R) depends upon all of the coordinates. The

pair correlation function, or radial distribution function, for the central atom of

a b-molecule at r2, given a central atom of an a-molecule at r1, is defined by

ÆNaæÆNbæ
V

2 gabðr12Þ[ +
N

Na¼0

+
N

Nb¼0

. . . +
N

Nh¼0

P
n

j¼1
l

Nj

j ðLjÞ3Nj=Nj!
� �� �

NaNb�Nadab

� �Z
. . .

Z
d

MR ð1�dabÞd ra1 � r1

� �
d rb1 � r2

� ��
1dabd ra1 � r1

� �
dðra2 � r2Þ

�
exp½�UðRÞ=kT�=GPF; (A1)

wherein l‘ ¼ exp½m‘=kT�;La [ P§a
n¼1ðð2pmankTÞ=h2Þ1=2; dab is the Kro-

necker d, k is Boltzmann’s constant, T is absolute temperature, man is the

mass of the nth atom of an a-molecule, and GPF denotes the grand partition

function,

GPF[ +
N

Na¼0

. . . +
N

Nh¼0

P
n

j¼1
l

Nj

j ðLjÞ3Nj=Nj!
� �� �

Z
. . .

Z
d

MR exp½�UðRÞ=kT�: (A2)

In the thermodynamic limit of extremely large systems, the terms in the

sums of both the numerator and denominator on the right-hand side of Eq. A1

are strongly peaked near the mean values of the Nj, in which case the kinetic

energy factors ðLjÞ3Nj cancel out of the gabðr12Þ; as expected in classical

statistical mechanics.

APPENDIX B: EVALUATION OF (›c1/›c3)T,P,c2

For the kth species, ck [Nk=V; so dck ¼ dNk=V � Nk dV=V
2; and

dNk=V ¼ dck 1 ckd ln V: At constant T,

dV ¼ �VV1 dN11 �VV2 dN21 �VV3 dN31ð@V=@PÞN1 ;N2 ;N3
dP: (B1)

Dividing Eq. B1 by V and using the preceding relations for dNk /V yields

d ln V ¼ �VV1ðdc11c1 d lnVÞ1 �VV2ðdc21c2 d ln VÞ
1 �VV3ðdc31c3 d ln VÞ�kdP; (B2)

wherein the compressibility is defined by k [ � ð@lnV=@PÞN1 ;N2 ;N3
: After

collecting all of the dln V terms on the left-hand side, one has ðdlnVÞ
1 � c1

�VV1 � c2
�VV2 � c3

�VV3ð Þ ¼ 0 on that side. There remains then

0¼ �VV1dc11 �VV2dc21 �VV3dc3 �kdP; (B3)

so at constant c2 and P one has finally

ð@c1=@c3ÞP;c2
¼� �VV3= �VV1: (B4)

APPENDIX C: EVALUATION OF �VVa

At constant T, mj(T,c1, . . . ,cn) depends upon all the concentrations. Hence,

�VVa ¼ ð@ma=@PÞNg
¼ +

n

b¼1

ð@ma=@cbÞcg 6¼b
ð@cb=@PÞNg

: (C1)

Using dcb ¼ ð1=VÞdNb � cb d lnV from Appendix B, one finds

ð@cb=@PÞNg
¼�cbð@ ln V=@PÞNg

¼ cbk; (C2)

where k is the compressibility defined in Appendix B. Use of Eq. C2 in Eq.

C1 yields

�VVa ¼ k +
n

b¼1

cbð@ma=@cbÞcg 6¼b
: (C3)

Equation C3 is multiplied by ca on both sides and summed over a¼1, . . . , n

to give

1:0¼ k +
n

a¼1

+
n

b¼1

cacbð@ma=@cbÞcg 6¼b
: (C4)

After inserting Eq. 9, there results

k¼ jBj

kT +
n

a¼1

+
n

b¼1

cacbjBjab
: (C5)

After inserting Eq. C5 into Eq. C3 and again using Eq. 9, there results

�VVa ¼
+
n

b¼1

cbjBjab

+
n

g¼1

+
n

d¼1

cgcdjBjgd
: (C6)

Equations C5 and C6 are precisely the expressions of Kirkwood and

Buff (10).

APPENDIX D: VERIFICATION OF BEN-NAIM’S
EXPRESSION FOR �VV 2

We adopt Eq. 6.17.22 of Ben-Naim (17) as a conjecture for the three-

component system at constant T:
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�VV2 ¼� �VV1c1G12 � �VV3c3G321kTk: (D1)

In the limit c2/0; �VV1; �VV3; and k are properties of the two-component

solution (1 1 3), whereas �VV2 is a property of the three-component solution.

Equation C3 with a ¼ 3 can be written as

k¼ �VV3=+
b

cbð@m3=@cbÞT;cg 6¼b
¼ jB9j=kTD9; (D2)

where the second equality was obtained from the first by using Eq. C6 for �VV3

and Eq. 9 for ð@m3=@cbÞT;cg 6¼b
; the primes denote quantities pertaining to the

two-component system, and

D9¼+
b

+
g

cbcgjBjbg ¼ c
2

1B33 �2c1c3B31 1c
2

3B11: (D3)

Use was made of the symmetry of the B-matrix to obtain the final equality of

Eq. D3. After substituting equations D2 and C6 into the right-hand side (rhs)

of Eq. D1 and expanding out the two-component sums for �VV1; �VV3; and jB9j
(in k) there results

rhs¼f�c1G12ðc1B33 � c3B31Þ� c3G32ð�c1B131c3B11Þ
1B11B33 �B13B31g=D9 (D4)

The left-hand side (lhs) of Eq. D1 is evaluated for the three-component

system via Eq. C6, which after expansion of the various terms gives

lhs¼fc1jBj211c3jBj23 1c2jBj22g=D
¼f�c1ðB12B33 �B13B32Þ� c3ðB11B32 �B12B31Þ
1c2ðB11B33 �B13B31Þg=D; (D5)

where

D¼ c
2

1ðB22B33 �B23B32Þ1c
2

2ðB11B33 �B13B31Þ
1c2

3ðB11B22 �B12B21Þ12c1c3ðB21B32 �B22B31Þ
�2c1c2ðB21B33 �B23B31Þ� 2c3c2ðB11B23 �B13B21Þ:

(D6)

Every term in the numerator of lhs in Eq. D5 contains a single factor of c2:

The terms in D in Eq. D6 all contain either one or two factors of c2: Hence,

both numerator and denominator of lhs can be divided by c2: Any terms that

still contain a factor of c2 can be neglected against the constant terms in the

limit c2/0: In this limit, D becomes identical to D9 in Eq. D3, and finally

lhs¼f�c1G12ðc1B33 � c3B31Þ� c3G32ð�c1B131c3B11Þ
1B11B33 �B13B31g=D9¼ rhs; (D7)

so the conjectured Eq. D1 is verified.

APPENDIX E: CONNECTION BETWEEN G2(3)
AND OTHER PREFERENTIAL
INTERACTION COEFFICIENTS

For a three-component system, m2 and m3 depend upon T, P, and the

concentrations, c2 and c3: Thus, at constant T, P, and c2;

dm2 ¼m
c

23dc3 (E1)

dm3 ¼m
c

33dc3; (E2)

where mc
k3 [ ð@mk=@c3ÞT;P; c2; k ¼ 2; 3: Dividing Eq. E1 by Eq. E2

yields

G3ð2Þ[�ð@m2=@m3ÞT;P;c2
¼� m

c

23=m
c

33

� �
: (E3)

For the same system, m2 and m3 can also be expressed in terms of T, P, and

the molalities, m2 and m3; so at constant T, P,

dm2 ¼m
m

22dm21m
m

23dm3 (E4)

dm3 ¼m
m

32dm21m
m

33dm3; (E5)

where mm
kl [ ð@mk=@mlÞT;P;mg 6¼l

; k; l ¼ 2; 3: Hence, at constant T, P,

m
c

23 ¼m
m

22ð@m2=@c3Þc2
1m

m

23ð@m3=@c3Þc2
(E6)

m
c

33 ¼m
m

32ð@m2=@c3Þc2
1m

m

33ð@m3=@c3Þc2
: (E7)

The subscripts denoting constant T and P of the slopes, @mk=@cl; in Eqs. E6

and E7 are omitted for clarity and this convention applies in the sequel.

We assume for simplicity that the partial molar volumes, �VV1; �VV2; and �VV3;

are constants independent of c2 and c3 at constant T, P over the range of c3

up to ;1.0 M, which should be a good approximation, provided that c2 is

sufficiently dilute.

The molalities, m2 and m3; can be expressed in terms of the con-

centrations and solvent molar mass, M1; by

m2 ¼ c2=ðc1M1Þ ¼ c2ð �VV1=M1Þ=ð1� c2 :�VV2 � c3 :�VV3Þ (E8)

m3 ¼ c3=ðc1M1Þ ¼ c3ð �VV1=M1Þ=ð1� c2 :�VV2 � c3 :�VV3Þ: (E9)

After performing the derivatives and collecting terms, we obtain

ð@m2=@c3Þc2
¼m2

�VV3=ð1� c2
�VV2 � c3

�VV3Þ ¼m2
�VV3=c1

�VV1

(E10)

ð@m3=@c3Þc2
¼m3ð1� c2

�VV2Þ=ðc3ð1� c2
�VV2 � c3

�VV3ÞÞ
¼m3ð1� c2

�VV2Þ=ðc3c1
�VV1Þ: (E11)

In the limit c2
�VV2 � 1:0; the c2

�VV2 term in Eq. E11 may be neglected, and we

obtain

ð@m2=@c3Þc2
=ð@m3=@c3Þc2

¼ ðm2=m3Þðc3
�VV3Þ ¼ c2

�VV3: (E12)

After dividing Eq. E6 by Eq. E7 in accord with Eq. E3, dividing both

numerator and denominator of the resulting quotient by mm
33ð@m3=@c3Þc2

;

and rearranging somewhat, there results

G3ð2Þ ¼ ð�Þ m
m

22

m
m

33

c2
�VV3 �G

m

m3

� �

ð�ÞGm

m3
c2
�VV311

� �

¼ G
m

m3
� c2

�VV3G
m

m2
G

m

m3

� �

1� c2

�VV3G
m

m3

� �
: (E13)

The Maxwell relation, mm
23 ¼ mm

32; and the definition, Gm
m3

[ � mm
32=m

m
33;

were used to obtain the first equality, and the definition, Gm
m2

[ � mm
22=m

m
23;

was used to obtain the second. In the limit of small c2; G
m
m3

becomes

independent of c2; and the second term in the denominator may be neglected

to obtain

G3ð2Þ ¼G
m

m3

�
1� c2

�VV3G
m

m2

�
: (E14)

The second term in Eq. E14 cannot be neglected for small c2; as seen in Eq.

E15 below. The definitions of Gm
m3
; Gm

m2
; and Gm

m1
[ ð�Þmm

12=m
m
13; and their

alternative representations used here are given in Table 1 of Anderson et al.

(19). An exact expression linking Gm
m3
; Gm

m2
; and Gm

m1
was also derived in Eq.

12 of that same article, and can be rearranged without approximation to give

G
m

m2
¼ ðm3=m2Þ

��
G

m

m3
�G

m

m1

�
=G

m

m3

�
1G

m

m1
: (E15)

Inserting Eq. E15 into Eq. E14 and taking the limit c2/0; where Gm
m3

and

Gm
m1

remain constant, yields
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G3ð2Þ ¼G
m

m3

�
1�f3

�
1�G

m

m1
=G

m

m3

��
; (E16)

where f3 [ c3
�VV3 is the volume fraction of species 3.

An expression relating the ‘‘dialysis’’ preferential interaction coefficient,

Gm
m1;m3

[ ð@m3=@m2ÞT;m1 ;m3
; to Gm

m1
and Gm

m3
was derived by Anderson et al.

(20) (their Eq. 20). In the limit m2/0; that relation becomes

G
m

m1;m3
¼ G

m

m3
1ðm3

�VV3ÞðGm

m1
�G

m

m3
Þ=ðm1

�VV11m3
�VV3Þ

¼ G
m

m3
ð1�f3Þ1f3G

m

m1
: (E17)

The relation between G3ð2Þ and Gm
m1 ;m3

is obtained by solving Eq. E17

for Gm
m3
;

G
m

m3
¼
�
G

m

m1;m3
�f3G

m

m1

�
=ð1�f3Þ; (E18)

and inserting that into Eq. E16 in both places where Gm
m3

occurs. There results

finally

G3ð2Þ ¼
�
G

m

m1 ;m3
�f3G

m

m1

�
ð1�f3Þ

1�f3 1�
ð1�f3ÞG

m

m1

G
m

m1;m3
�f3G

m

m1

 ! !

¼ G
m

m1 ;m3
: (E19)

Thus, in the limit m2/0; this concentration-based G3ð2Þ is equal to the

molality-based Gm
m1;m3

; provided that �VV1; �VV2; and �VV3; are constants

independent of c3 at constant T, P over the range considered.
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